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Absence of split pairs in cross correlations of a highly transparent normal
metal–superconductor–normal metal electron-beam splitter
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The nonlocal conductance and the current cross-correlations are investigated within scattering theory for three-
terminal normal metal–superconductor–normal metal (NSN) hybrid structures. The positive cross-correlations
at high transparency found by Mélin, Benjamin, and Martin [Phys. Rev. B 77, 094512 (2008)] are not due to
crossed Andreev reflection. On the other hand, local processes can be enhanced by reflectionless tunneling but
this mechanism has little influence on nonlocal processes and on current cross-correlations. Therefore Cooper
pair splitting cannot be enhanced by reflectionless tunneling. Overall, this shows that NSN structures with highly
transparent or effectively highly transparent interfaces are not suited to experimentally producing entangled split
pairs of electrons.
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I. INTRODUCTION

Transport in normal metal–superconductor–normal metal
(NaSNb) three-terminal hybrid nanostructures has received
special attention, because those structures allow in principle
to produce split pairs of spin-entangled electrons from a
superconductor, acting as a Cooper pair beam splitter.1,2 This
is possible when the size of the region separating the NaS
and the NbS interfaces becomes comparable to the super-
conducting coherence length, allowing coherent processes
involving two quasiparticles, each simultaneously crossing
one of the two interfaces.3–9 Much effort has been devoted
to the theoretical understanding and to the experimental
observation of such a Cooper pair splitting effect. In a
transport experiment where electrons are difficult to measure
one by one—contrarily to the similar production of entangled
photons—one relies on steady transport measurement, e.g.,
the current-voltage characteristics (conductance) and the cu-
mulants of the current fluctuations (nonequilibrium current
noise10,11 and its counting statistics).12,13 In practice, the
conductance and the second-order cumulant (the shot noise
and the current cross-correlations between the two current
terminals Na , Nb) are the quantities to be extracted from
experiments. Indeed, due to Fermi statistics, the “partition”
noise correlations at a three-terminal crossing of normal
metal contacts are negative,10,14 manifesting the antibunching
properties of individual electrons. If instead one contact is
made superconducting, the cross-correlations may become
positive, suggesting the splitting of Cooper pairs.5

Two elementary nonlocal processes occur at a double NSN
interface: crossed Andreev reflection (CAR), which alone
leads to Cooper pair splitting into separated electrons bearing
opposite spins (for a spin singlet superconductor), and elastic
cotunneling (EC), which alone leads to (spin-conserving)
quasiparticle transmission between the normal contacts, across
the superconducting gap.7 For tunnel contacts, at lowest order
in the barrier transparencies, those two processes are decoupled
and simply related to the conductance, leading to positive
(resp. negative) conductance and current cross-correlations
for CAR (resp. EC) processes. Indeed Bignon et al.11 showed
that for tunnel contacts the linear dependence of the current

cross-correlation on the voltages applied to the contacts Na ,
Nb allows one to separately track the amplitudes of CAR and
EC. Due to the expected compensation of the opposite CAR
and EC conductance components at low transparencies,7,15

ferromagnetic contacts are required to detect CAR and EC
from the conductance with tunnel contacts.6,7,16 Yet, such
polarizations are not easily achievable; moreover, if one is
interested in producing spin-entangled electrons in a nonlocal
singlet state, one should of course not spin-polarize the
contacts.

As regards experiments, the situation for (extended) tunnel
barriers looks more complicated than given by a simple
tunnel model.17,18 Zero-frequency noise measurements can be
carried out in low-impedance sample (current noise), or at
high impedance (voltage noise). The positive current-current
cross correlations discussed here at high transparency may
be measured in the setup of Ref. 19 using three SQUIDs
as current amplifiers. It has been found theoretically that, at
high transparency,9,20–24 the nonlocal conductance is negative,
which leaves the current cross-correlations as the only possible
probe of Cooper pair splitting processes, provided one controls
the voltages on both contacts. Contrarily to conductance mea-
surements with metals25 or quantum dots,26 cross-correlations
have led to few experimental results.19,27,28 At the theoretical
level, the dependence of the cross-correlations on the contact
transparency is not yet fully understood.

In view of the current experiments on metallic structures,
the main question is therefore, Can the cross-correlations
be positive, and if the answer is yes, is this a signature of
Cooper pair splitting? Previous work on a NSN structure29

showed that the cross-correlations can indeed be positive at
large transparencies, although the nonlocal conductance is
negative. The origin of this somewhat surprising result was
not fully elucidated. Further work24 showed that the sign of
the cross-correlations indeed changes with the transparency of
the interfaces, being positive at low transparency, negative
at intermediate transparency, and positive again at high
transparency. While the positive sign at low transparency is
clearly ascribed to Cooper pair splitting, it was shown that the
positive sign at high transparency should not be interpreted in
the same way. Indeed, at high transparency, CAR processes
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do not dominate either in the conductance or in the noise.
Instead, the positive cross-correlations should be ascribed to
local Andreev reflection (AR) on one side, and the opposite
process on the other side, a process equivalent to exchanging a
pair of electrons between the two normal contacts. In Ref. 30,
a quasiclassical analysis using a perturbative expansion in the
nonlocal Green’s function connecting the two interfaces led
to positive noise correlations at high transparencies, and the
authors conclude that it is due to CAR. This interpretation
looks surprising, given the domination of EC in the conduc-
tance in the same regime, and the total absence of CAR at
high transparency in the transmission coefficient. We insist
that it is of importance for the community, before embarking
into experimental developments, to state clearly that positive
cross-correlations should not be interpreted in terms of CAR
at high transparencies.

To show that contacts with high transparency, or with
effectively high transparency, are not suitable as a source of
Cooper pair splitting, we also investigate how the localizing
effects of disorder influence the nonlocal conductance and
the cross-correlations in a NSN structure. At a single NS
interface, it was shown that disorder in the N region, or multiple
scattering at a clean NNlS double interface, can strongly
enhance Andreev reflection, by a mechanism nicknamed
“reflectionless tunneling.”31–33 With a disordered Nl region, it
leads to a zero-bias anomaly below the Thouless energy, where
the mutual dephasing of electrons and Andreev-reflected holes
is negligible. In the case of a clean double NNlS interface,
maximum Andreev transmission is obtained by balancing the
transparencies Tnn and Tns of the NNl and NlS interfaces,
such that the Nl region acts as a resonant cavity. Melsen
and Beenakker33 performed an average on the modes inside
Nl in order to mimic a disordered region. We ask here the
question of whether a similar mechanism can enhance nonlocal
Andreev reflection, e.g., boost CAR compared to AR and
EC. A zero-bias anomaly was obtained in Ref. 34, within
a quasiclassical analysis. Its sign reveals an amplification of
quasiparticle transmission. It is however not mentioned in this
reference whether one should also expect boosting of the CAR
channel, which is a requirement for experimental observation
of Cooper pair splitting. We demonstrate on the contrary that
reflectionless tunneling in the nonlocal conductance is not
accompanied by reflectionless tunneling in the CAR channel.

The needed clarification, both for conductance and noise,
comes from a model which is exactly solvable and where all
local and nonlocal amplitudes can be clearly distinguished.
This is an advantage over the quasiclassical approach used in
Ref. 34, which does not produce separate expressions for the
CAR and for the EC contributions to the conductance. Thus,
we use the scattering approach35 for a setup NaNlSNrNb with
a quadruple interface. The scattering theory is performed in a
one-dimensional geometry, varying the transparencies of the
barriers and the width of the superconductor. It is known to
reproduce the main qualitative features of realistic devices,
and allows one to account for any barrier transparency and
any distance d between the interfaces. It does not rely on
any expansion in the nonlocal scattering matrix elements (or
Green’s functions). This is especially important if noticing
that close to the gap edges, the relevant length scale for the
penetration of evanescent quasiparticles (thus for the Andreev

reflection) diverges as ξ (ω) = ξ0/

√
1 − ω2

�2 . The scattering
method only assumes a sharp variation of the order parameter
at the interface, which is strictly valid for contact sizes
smaller than ξ0. It should be modified to take into account
self-consistency if d ∼ ξ , or to describe nonequilibrium
effects. One advantage of the scattering approach is the
precise bookkeeping of the scattering amplitudes associated
with the various (AR, CAR, EC) processes. This allows an
unambiguous diagnosis of Cooper pair splitting in either the
conductance or the noise, as obtained by simple expressions
of these scattering amplitudes.

If averaging independently the modes in the left and the
right regions Nl,r , no boosting of the CAR process is obtained.
Indeed, “reflectionless tunneling” is a quantum coherent
process which demands that the Andreev-reflected hole retrace
the path of the electron, by scattering on the same impurities.
On the contrary, with nonlocal Andreev reflection, the electron
and the transmitted hole sample different disorders and no
coherence is obtained. This result does not contradict Ref. 34
which states that the total crossed conductance is enhanced.
Again, the scattering technique allows one to track the different
contributions, and the zero-bias anomaly is here due to the
enhancement of the direct Andreev reflection, not to CAR.

Section II presents the model and Sec. III the scattering
theory of the NaNlSNrNb system. Section IV provides the
results obtained by averaging over channels in Nl and Nr , in
the spirit of Ref. 33.

II. THE MODEL

We study a one-dimensional model of a symmetrical three-
terminal normal metal–superconductor–normal metal hybrid
structure depicted in Fig. 1. The central superconducting
electrode is grounded; the normal terminals are biased with
voltages Va and Vb. The length R of the superconducting
electrode can be comparable to the superconducting coherence
length. The interfaces between the normal metal and the
superconducting electrodes are modeled by barriers with
transparencies Tlns and Trsn. In both normal metal electrodes
there is an additional barrier at a distance Ll (respectively Lr )
from the normal metal superconductor interface with trans-
parency Tlnn (respectively Trnn).

The system can be described by a 4 × 4 scattering matrix
s
αβ

ij where Latin indices run over the normal electrodes a

and b and Greek indices over electrons e and holes h. The
scattering theory assumes that the superconductor is a reservoir
of Cooper pairs, so the structure is implicitly a three-terminal
one and the superconducting electrode is taken as grounded.
The transformation of quasiparticles into Cooper pairs is taken
into account by the correlation length ξ (ω) which sets the scale

Tlnn Tlns Trsn Trnn

N a N l S N r N b

L l R L r

a b

Ia

V V

FIG. 1. (Color online) Schematic of the model.
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of the damping of the electron and hole wave functions in the
superconductor.

The elements of the scattering matrix are evaluated from
the BTK approach35 (see Appendix A). Here we do not use
the Andreev approximation valid in the limit of zero energy
where the electron and hole wave vectors are set to the Fermi
wavelength, but instead keep the full expressions for the wave
vectors. The calculation of the average current I and current
cross-correlations S rely on the formulas derived by Anantram
and Datta in Ref. 14:

Ii = e

h

∑
k∈{a,b}

∑
α,β∈{e,h}

sgn(α)
∫

dE
[
δikδαβ − ∣∣sαβ

ik

∣∣2]
fkβ(E)

(1)

Sij = 2e2

h

∑
k,l∈{a,b}

∑
α,β,γ,δ∈{e,h}

sgn(α)sgn(β)

×
∫

dE Akγ,lδ(iα,E)Alδ,kγ (iα,E)fkγ (E)[1 − flδ(E)]

(2)

with Akγ,lδ(iα,E) = δikδilδαγ δαδ − s
αγ †
ik sαδ

il , sgn(α = e) = 1,
sgn(α = h) = −1, and fiα the occupancy factors for the
electron and hole states in electrode i, given by the Fermi
function where the chemical potential are the applied voltages
fie(E) = [1 + exp(E−Vi

kBT
)]−1 −−→

T →0
θ (−E + Vi), fih(E) =

[1 + exp(E+Vi

kBT
)]−1 −−→

T →0
θ (−E − Vi).

In this one-dimensional model, both current and noise
are highly sensitive to the distances Ll , R, Lr between the

barriers: They oscillate as a function of these distances with
a period equal to the Fermi wavelength λF � Ll,R,Lr . In a
higher dimensional system with more than one transmission
mode, the oscillations in the different modes are independent
and are thus averaged out. Multidimensional behavior can
be simulated qualitatively with a one-dimensional system by
averaging all quantities over one oscillation period:

X(Ll,R,Lr )

= 1

λ3
F

∫ Ll+ λF
2

Ll− λF
2

dll

∫ R+ λF
2

R− λF
2

dr

∫ Lr+ λF
2

Lr− λF
2

dr X(ll ,r,lr ). (3)

This procedure is appropriate to describe metallic systems.
These averaged quantities are studied in Sec. IV.

III. COMPONENTS OF THE DIFFERENTIAL
CONDUCTANCE AND THE DIFFERENTIAL

CURRENT CROSS-CORRELATIONS

An electron, arriving from one of the normal metal
reservoirs at the interface to the superconductor, can be (i)
reflected as an electron [normal reflection (NR)], (ii) reflected
as a hole [Andreev reflection (AR)], (iii) transmitted as an
electron [elastic cotunneling (EC)], or (iv) transmitted as a
hole [crossed Andreev reflection (CAR)], and similarly for
holes. The corresponding elements of the scattering matrix are
for NR: see

aa , shh
aa , see

bb, shh
bb ; AR: seh

aa , she
aa , seh

bb , she
bb ; EC: see

ab, shh
ab ,

see
ba , shh

ba ; and CAR: seh
ab , she

ab , seh
ba , she

ba .
The current in electrode Na given by Eq. (1) can naturally

be divided into AR, CAR, and EC contributions (the unitarity
of the scattering matrix has been used):

Ia = |e|
h

∫
dE

{ [∣∣seh
aa(E)

∣∣2 + ∣∣she
aa(E)

∣∣2]
[fae(E) − fah(E)]︸ ︷︷ ︸

local Andreev reflection

+ ∣∣see
ab(E)

∣∣2
[fae(E) − fbe(E)] + ∣∣shh

ab (E)
∣∣2

[fbh(E) − fah(E)]︸ ︷︷ ︸
elastic cotunneling

+ ∣∣seh
ab(E)

∣∣2
[fae(E) − fbh(E)] + ∣∣she

ab(E)
∣∣2

[fbe(E) − fah(E)]︸ ︷︷ ︸
crossed Andreev reflection

}
. (4)

In the following, we focus on (i) the differential conductance in the symmetrical case where Va = Vb = V and the current Ia is
differentiated with respect to V , and (ii) the differential nonlocal conductance in the asymmetrical case where Va = 0 and the
current Ia is differentiated with respect to Vb. In the zero-temperature limit, only the nonlocal processes, CAR and EC, contribute
to the nonlocal conductance:

∂Ia

∂Vb

∣∣∣∣
Va=0

= −e2

h

[∣∣see
ab(|e|Vb)

∣∣2 + ∣∣shh
ab (−|e|Vb)

∣∣2]
︸ ︷︷ ︸

elastic cotunneling

+ e2

h

[∣∣seh
ab(−|e|Vb)

∣∣2 + ∣∣she
ab(|e|Vb)

∣∣2]
︸ ︷︷ ︸

crossed Andreev reflection

, (5)

while the symmetric case contains local Andreev reflection and crossed Andreev reflection:

∂Ia

∂V

∣∣∣∣
Va=Vb=V

= e2

h

{[∣∣seh
aa(|e|V )

∣∣2 + ∣∣she
aa(|e|V )

∣∣2] + [∣∣seh
aa(−|e|V )

∣∣2 + ∣∣she
aa(−|e|V )

∣∣2]}
︸ ︷︷ ︸

local Andreev reflection

+ e2

h

{[∣∣seh
ab(|e|V )

∣∣2 + ∣∣she
ab(|e|V )

∣∣2] + [∣∣seh
ab(−|e|V )

∣∣2 + ∣∣she
ab(−|e|V )

∣∣2]}
︸ ︷︷ ︸

crossed Andreev reflection

. (6)
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Let us now perform a similar analysis for the current cross-correlations. We study only the zero-temperature limit, where
fkγ (E)[1 − flδ(E)] is zero if k = l and γ = δ and the current cross-correlations are

Sab(T = 0) = 2e2

h

∑
k,l∈{a,b}

∑
α,β,γ,δ∈{e,h}

sgn(α)sgn(β)
∫

dEs
αγ †
ak sαδ

al s
βδ†
bl s

βγ

bk fkγ (E)[1 − flδ(E)]. (7)

Every summand in Sab contains the product of four elements
of the scattering matrix. As pointed out in Refs. 36 and 37,
differently from the situation for the current, it is impossible to
combine those matrix elements to absolute squares. Let us now
sort out and classify the contributions of the noise as we did
above for the current. We find that no summand consists of only
one kind of elements of the scattering matrix. Every element
consists of two local elements (NR or AR) and two nonlocal
elements (CAR or EC) (see Appendix B). Either the two local
elements and the two nonlocal elements are identical, which
gives the components EC-NR, CAR-NR, EC-AR, CAR-AR, or
all four matrix elements belong to different categories and we
will call these summands MIXED. Sometimes, it is useful to
divide MIXED further as a function of its voltage dependence.
As the formulas for the current cross-correlations are lengthy,
they are relegated into Appendix B.

Examination of these expressions allows an interpretation
of the various components. First, EC-NR does not involve
any Andreev scattering and corresponds to quasiparticle
fluctuations across the double NSN barrier. Second, CAR-
NR involves two amplitudes for electron-hole scattering
across NSN (crossed Andreev) and two normal scattering
amplitudes. This process tracks fluctuations of the current
of split Cooper pairs emitted in or absorbed by S. Third,
EC-AR involves two local Andreev scattering amplitudes and
propagation of a pair of quasiparticles in S. It thus reflects the
fluctuations of pairs back and forth across the NSN double
interface. Fourth, CAR-AR involves two crossed Andreev
and two normal Andreev amplitudes. This process which
amounts to splitting two pairs from S is usually weak. Fifth,
mixed processes can be analyzed in the same fashion; they
involve a combination of split pair and quasiparticle crossing
fluctuations.

For the interpretation of current cross-correlations, the
global sign plays an important role. Later on, the differential
cross-correlation ∂Sab/∂Va,b will be plotted. For positive
applied bias voltages, this quantity has the same sign as the cur-
rent cross-correlations. For negative applied voltages current,
cross-correlations and differential current cross-correlations
have opposite signs. To avoid confusion, we only show pictures
of the differential current cross-correlations calculated for
positive bias voltages (and thus negative energies E = −|e|V ).
Due to the electron-hole symmetry of the model, differential
current cross-correlations calculated for negative bias voltages
are up to a global sign identical to the ones calculated
at positive bias voltage. For small bias voltages, current
cross-correlations depend linearly on voltage. Thus, current
cross-correlations and differential current cross-correlations
show the same qualitative behavior if studied as a func-
tion of the interface transparency or the distance between
barriers.

In Ref. 24, we performed a similar analysis of current
cross-correlations in terms of Green’s functions for a NSN
structure. For the relations between these two classifications
see Appendix C. Bignon et al.11 have studied current cross-
correlations in the tunneling limit. They find that noise mea-
surements in the tunneling limit can give access to the CAR and
EC contribution of the current. We have just seen that at least
two processes are involved in every component of noise, but the
contributions of noise they calculate fall into the categories EC-
NR and CAR-NR. In the tunneling limit, the NR contribution
is very close to 1; therefore what remains is very similar to
the current contributions. In what follows, more generally, the
CAR-NR component provides the diagnosis of Cooper pair
splitting.

IV. RESULTS

A. Positive cross-correlations without CAR

If a CAR process is interpreted as the splitting of a
Cooper pair into two electrons leaving the superconductor in
different electrodes, positive cross-correlations are its logical
consequence. However, the CAR process is not the only one
which can lead to positive cross-correlations. Let us investigate
in more detail the influence of the different processes on
the current cross-correlations in a NSN-system, i.e., in a
system without the additional barriers in the normal conducting
electrodes.

The black line in Fig. 2 shows the averaged differential
current cross-correlations for symmetric bias (V = Va = Vb).
The total current cross-correlations have already been pub-
lished in Ref. 24, but here, Fig. 2 shows in addition the different
parts which contribute to the total current cross-correlations.
The total cross-correlations are positive for high interface

− 0.5

−0.25

0

0.25

0.5

d
S

ab
d

|
|

e
3

h

0 0.25 0.5 0.75 1
lnT Ts = rsn

EC-AR
CAR-NR
MIXED
total

V

FIG. 2. (Color online) Averaged differential current cross-
correlations for a symmetrical biased (V = Va = Vb � �/|e|) NSN
system as a function of the transparency of the interfaces Tlns = Trsn.
The positive cross-correlations at high interface transparency are due
to the EC-AR process, represented by a dotted line.
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transparencies and for low interface transparencies. As we
have already argued in Ref. 24, the positive cross-correlations
at high interface transparencies are not due to CAR; only
processes which conserve momentum can occur, since there
are no barriers which can absorb momentum. CAR processes
do not conserve momentum; if, e.g., an electron arrives
from the left-hand side carrying momentum kF , the hole
that leaves at the right-hand side carries momentum −kF .
As the cross-correlations do not tend to zero even for very
high transparencies, they cannot be due do CAR. Indeed, if
we plot the different components of the noise introduced in
the last section separately, we see that the positive current
cross-correlations at high interface transparencies have a
different origin: a large positive EC-AR contribution, thus
correlated pair fluctuations without pair splitting. But positive
current cross-correlations at low interface transparencies are
a consequence of a large CAR-NR component and therefore a
consequence of CAR processes.

We can put the contributions to the current cross-
correlations into two categories with respect to their sign,
which is independent of the interface transparency. EC-NR,
CAR-AR, MIXED2, and MIXED4 carry a negative sign;
CAR-NR, EC-AR, MIXED1, and MIXED3 carry a positive
sign. The current can either be carried by electrons I e or by
holes Ih. The sign of the different contributions to the current
cross-correlations depends on whether only currents of the
same carrier type are correlated14 (〈�Îe

a �Î e
b 〉 + 〈�Îh

a �Î h
b 〉 +

a ↔ b), which is the case for EC-NR, CAR-AR, MIXED2,
and MIXED4 and leads to a negative sign, or whether electron
currents are correlated with hole currents (〈�Îe

a �Î h
b 〉 +

〈�Îh
a �Î e

b 〉 + a ↔ b), which is the case for CAR-NR, EC-AR,
MIXED1, and MIXED3 and leads to a positive sign. In purely
normal conducting systems, the electron and hole currents
are uncorrelated; only correlations of the same carrier type
contribute to the current cross-correlation and lead to a negative
sign. The sign of the total current cross-correlations is a
consequence of the relative strength of the different parts of
the current cross-correlations, which depends on the interface
transparency.

B. Multiple barriers

In the last paragraph, we showed that positive cross-
correlations due to CAR can only be found in the tunneling
regime, where the signals are quite weak. The conductance
over an NS-tunnel junction can be amplified for a “dirty”
normal conductor containing a large number of nonmagnetic
impurities, where transport is diffusive, by an effect called
reflectionless tunneling,31,32 yielding an excess of conductance
at low energy. It is thus natural to ask whether a similar effect
could also enhance conductance and current cross-correlations
in a three-terminal NSN structure. To answer this question
within the scattering approach, we use the model of Melsen
and Beenakker33 where the disordered normal conductor is
replaced by a normal conductor with an additional tunnel
barrier leading to an NNS structure. Duhot and Mélin21

have studied the influence of additional barriers on the
nonlocal conductance in three-terminal NSN structures. They
indeed find that two symmetric additional barriers enhance
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4

41×10−

d
I
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d
V

b

e
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lnn = rnn

CAR
EC
total

0
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0.006

d
I
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d
V

e
2 h

0 0.25 0.5 0.75 1

lnn = rnn

AR
CAR
total

T T

T T

(a)

(b)

FIG. 3. (Color online) Averaged differential conductance in the
limit of zero energy in (a) the symmetrical bias situation Va = Vb �
�/|e| and (b) in the asymmetrical case Va = 0, Vb � �/|e| for a
superconducting electrode much shorter than the coherence length
(R = 0.25ξ ) as a function of the transparencies of the additional
barriers Tlnn = Trnn. The barriers next to the superconductor are in
the tunnel regime (Tlns = Trsn = 0.01).

the nonlocal conductance. A similar result is obtained by
quasiclassical methods in Ref. 34.

First, let us get a deeper understanding of the result of
Ref. 21 by calculating the AR, CAR, and EC components of the
current separately. Afterwards, we will study the influence of
additional barriers on the current cross-correlations. Figure 3
shows the averaged conductance in the symmetrical bias
situation Va = Vb � �/|e| and in the asymmetrical voltage
case Va = 0, Vb � �/|e| for a superconducting electrode
much shorter than the coherence length (R = 0.25ξ ). The sum
of the AR, CAR, and EC components, traced in black, features
in both cases an extremum. Yet, examining at the behavior
of these components, we see that they arise from different
mechanisms. Let us first have a look at the symmetrically
biased case. Without the additional barriers, i.e., in the limit
Tlnn = Trnn → 1, the contributions of AR and CAR are similar
in magnitude. The EC component is completely suppressed,
since it is proportional to the difference of the applied voltages.
The introduction of two additional barriers increases the AR
component up to a factor 30. The shape of the curves is
similar to the one of the NNS structure derived analytically
by Melsen and Beenakker,33 which can be exactly recovered
by increasing the length of the superconducting electrode far
beyond the coherence length. However, the CAR curve stays
almost constant over a wide range of values of barrier strength
of the additional barriers, and it eventually vanishes when the
transparencies go to zero.
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FIG. 4. (Color online) Total averaged differential conductance,
as in Fig. 3, but at different energies.

In the asymmetrical voltage case Va = 0, the AR compo-
nent is zero as it is proportional to the local voltage Va . Like
in the first case, the additional barriers have little influence
on the CAR component, except for the fact that it obviously
tends to zero for vanishing transparency. Over a wide range
of barrier strength values, lowest order tunneling prevails, and
the EC component is identical in amplitude, but opposite in
sign to the CAR component.7 For small Tlnn = Trnn values the
EC component displays a small extremum, but it is much less
pronounced than the maximum of the AR component of the
first case. The CAR component, on the other hand, does not
show any extremum.

In the limit Tlnn = Trnn → 1, the EC component tends
more slowly to zero than the CAR component which as
a consequence yields a maximum in the absolute value
of the total conductance, dominated by EC. The fact that
the conductance maxima in the symmetrical bias case and
in the asymmetrical bias case have different origins can
also be illustrated by studying their energy dependence,
depicted in Fig. 4: The enhancement of the AR component
of the conductance in the symmetrical biased case disappears
completely with increasing bias voltage, as expected for a
zero-bias anomaly. On the contrary, the extremum of the
conductance in the asymmetrical biased case decreases slightly
with increasing bias voltage, but only up to a certain voltage
value, then it saturates.

Why is the AR component enhanced by the additional
barriers, but not the EC or CAR components? Reflectionless
tunneling occurs because the electrons and holes resonate
inside the double barrier and have therefore a higher prob-
ability to enter the superconductor at low energy, despite
phase averaging. In the AR case the incoming electron and
the leaving hole may encounter the same scattering path. On

−1

−0.5

0

0.5

d
I

a
dV

b

e2 h

0 0.25 0.5 0.75 1

lnn = rnn

CAR
EC
total

T T

FIG. 5. (Color online) Effect of correlated averaging in the
asymmetrical case with coupled integrals Tlns = Trsn = 0.01,
R = 0.25ξ : Now, also the EC and the CAR components are enhanced
by reflectionless tunneling.

the contrary in the EC and CAR processes, the incoming
particle and the leaving particle encounter different scattering
path. The energy dependence of the conductance enhancement
of the AR component is consistent with reflectionless tunneling
which occurs at low bias voltage. At higher bias voltage,
electrons and holes have different wave vectors and the
reflectionless tunneling peak disappears. The integrals over
the phases between the additional barriers on the left- and on
the right-hand side have, of course, been taken independently.
There is no reason to think that the channel mixing, which is
emulated by the integrals, on the left- and on the right-hand
side are coupled. To verify this scenario, let us couple the
two integrals in an gedanken experiment. We set the distance
Ll between the two left-hand side barriers to be equal to
the distance Lr between the two right-hand side barriers and
perform only one integral over L = Ll = Lr . The result is
shown in Fig. 5. Now, the CAR and the EC components are
also enhanced by a large factor. Yet, the increase of the EC
component is larger than the one of the CAR component,
and EC still dominates the nonlocal conductance, like for a
transparent NSN structure.

To sum up the above analysis of the conductance enhance-
ment by disorder, we showed that the crossed processes CAR
and EC cannot be amplified but by an unrealistic correlation
between disorder on the two sides of the NSN structure.
Comparing qualitatively with the different approach of Ref. 34,
we also find an enhancement of the crossed conductance
[Fig. 3(b)], which is not due to any marked maximum in
CAR or EC components. Having the sign of EC, it cannot
be interpreted in terms of enhanced Cooper pair splitting.

Let us turn back to independent averaging and consider the
current cross-correlations. The results are shown in Fig. 6. In
the symmetrical bias case, similarly to Fig. 3(a), the additional
barriers do not lead to an enhancement of the signal. The noise
is dominated by the CAR-NR component, featuring Cooper
pair splitting and, as we have seen above, CAR is not influenced
by reflectionless tunneling. The EC-AR component, on the
other hand, is amplified by the additional barriers, because the
AR amplitude describing a local process is amplified. This
leads to a small shoulder in the total cross-correlations. But
since we are in the tunnel regime and the leading order of
CAR-NR is T 2 while the leading order of EC-AR is T 4, the
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FIG. 6. (Color online) Averaged differential current cross-
correlations in (a) the symmetrical bias situation Va = Vb � �/|e|
and (b) the asymmetrical bias case Va = 0, Vb � �/|e| for
a superconducting electrode shorter than the coherence length
(R = 0.25ξ ) as a function of the transparencies of the additional
barriers Tlnn = Trnn. The barriers next to the superconductor are in
the tunnel regime (Tlns = Trsn = 0.01).

influence of the EC-AR-component is too small to lead to a
global maximum.

In the asymmetrical bias case Va = 0,Vb � �/|e|, on
the other hand, the additional barriers weakly enhance the
signal. But the cross-correlations are dominated by EC-NR
and are therefore negative, and they do not feature Cooper
pair splitting. In conclusion, in a phase-averaged system,
additional barriers only enhance the AR-component, a local
process. It cannot help to amplify nonlocal signals. Again,
positive cross-correlations signaling Cooper pair splitting are
only encountered in the tunneling regime. This conclusion is
contrary to the interpretation of the quasiclassical theory given
in Ref. 30.

V. CONCLUSION

We have found that at high transparency, crossed processes
are dominated by electron transmission and that positive cross-
correlations in this range of interface transparency are not due
to Cooper pair splitting. Instead, for symmetrical voltages, they
originate from correlated fluctuations of Cooper pairs from
the superconductor to both metallic contacts and vice versa.
Cooper pair splitting in the tunnel regime cannot be enhanced
with additional barriers by a process similar to reflectionless
tunneling, if an average (here, over the interbarrier lengths)
has to be performed, mimicking disorder landscapes which
are uncorrelated on the two sides of the set-up. In analogy, one

expects that the same conclusion holds if one uses diffusive
normal metals. These conclusions are important for settling fu-
ture experimental programs. Positive cross-correlations might
well be observed at high transparency, but they are not a
signature of Cooper pair splitting. They are not related to
spatially separated spin-entangled pairs. Conductance and
cross-correlation measurements with controlled and tunable
interface transparencies would be very useful, and may be
attempted for instance in carbon nanotubes junctions. Finally,
a crossover to negative current cross-correlations for a highly
transparent NSN junction biased above the gap is expected. Its
theoretical description is more involved, because it requires
taking nonequilibrium effects such as charge imbalance38–40

into account. A starting point for those calculations can be
found in Ref. 41.
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APPENDIX A: DETAILS OF THE
SCATTERING APPROACH

The elements s
αβ

ij of the scattering matrix are calculated
within the BTK approach:35 Two-component wave functions,
where the upper component describes electrons and the lower
components holes, are matched at the interfaces and the
coefficients of the resulting system of equations give the
elements of the scattering matrix.

In the normal conductors the wave functions are plane
waves with wave vectors close to the Fermi wave vec-
tor h̄kF = √

2mμ. The wave vector for electrons reads
h̄q+ = √

2m
√

μ + E, the one for holes h̄q+ = √
2m

√
μ − E.

In the superconductor, the wave function has to obey
the Bogoliubov–de Gennes equation, where the supercon-
ducting gap is supposed to be a positive constant in-
side the superconductor and zero outside of it. This is
achieved by modifying the amplitudes of the wave func-
tion in the superconductor with the coherence factors uE

and vE , which read for energies smaller than the gap
(E < �)

uE = 1√
2

√
1 + i

√
�2 − E2

E
,

(A1)

vE = 1√
2

√
1 − i

√
�2 − E2

E
,

and by using for quasiparticles proportional to ( uE

vE
) the

wave vector h̄k+ = √
2m

√
μ + i

√
�2 − E2 and for quasi-

particles proportional to ( vE

uE
) the wave vector h̄k− =

√
2m

√
μ − i

√
�2 − E2.
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For example, the wave functions for an electron incoming from electrode Na take the form

ψNa
(x) =

(
1
0

)(
1eiq+x + see

aae
−iq+x

) +
(

0
1

)(
she
aae

iq−x + 0e−iq−x
)
, (A2)

ψNl
(x) =

(
1
0

)
(c1e

iq+x + c2e
−iq+(x−Ll )) +

(
0
1

)
(c3e

iq−x + c4e
−iq−(x−Ll )), (A3)

ψS(x) =
(

uE

vE

)
(c5e

ik+(x−Ll ) + c6e
−ik+(x−Ll−R)) +

(
vE

uE

)
(c7e

−ik−(x−Ll + c8e
ik−(x−Ll−R)), (A4)

ψNr
(x) =

(
1
0

)
(c9e

iq+(x−Ll−R) + c10e
−iq+(x−Ll−R−Lr )) +

(
0
1

)
(c11e

iq−(x−Ll−R) + c12e
−iq−(x−Ll−R−Lr )), (A5)

ψNb
(x) =

(
1
0

)(
s
e,e
b,ae

iq+(x−Ll−R−Lr ) + 0e−iq+(x−Ll−R−Lr )
) +

(
0
1

)(
0eiq−(x−Ll−R) + s

h,e
b,ae

−iq−(x−Ll−R−Lr )
)

(A6)

in the sections Na , Nl , S, Nr , and Nb, respectively (see Fig. 1), and give access to the scattering matrix elements se,e
a,a , sh,e

a,a , s
h,e
b,a ,

and s
e,e
b,a . The remaining elements of the scattering matrix can be obtained from the other possible scattering processes, i.e., a hole

incoming from electrode Na , an electron/hole incoming from electrode Nb.
The interfaces are modeled by δ potentials V (x) = Zh̄vF δ(x), where the BTK parameter Z is connected to the interface

transparency T by T = (1 + Z2)−1. The elements of the scattering matrix can be determined and the constants ci eliminated
using the continuity of the wave functions at the interfaces [ψNa

(0) = ψNl
(0), etc.] and the boundary condition for the derivatives

[ψ ′
Nl

(0) − ψ ′
Na

(0) = Zh̄vF ψa(0), etc.] at every interface.
In simple cases, i.e., for only two or three sections and in the limit of zero energy, the system of equations giving the scattering

matrix elements can be solved analytically (see Ref. 24), but in the present case of five sections the expressions become so
unhandy that the equations are solved numerically.

APPENDIX B: COMPONENTS OF CURRENT CROSS-CORRELATIONS

Components of the current cross-correlations:

Sab(T = 0,Va,Vb)

= 2e2

h

∫
dE

× (
2�[

see
abs

ee
bas

ee†
aa s

ee†
bb

]
[θ (|e|Va − E) − 2θ (|e|Va − E)θ (|e|Vb − E) + θ (|e|Vb − E)]

+ 2�[
shh
ab shh

ba s
hh†
aa s

hh†
bb

]
[θ (−|e|Va − E) − 2θ (−|e|Va − E)θ (−|e|Vb − E) + θ (−|e|Vb − E)]

}
EC-NR

+ 2�[
seh
ba s

he
abs

hh†
aa s

ee†
bb

]
[−θ (−|e|Va − E) + 2θ (−|e|Va − E)θ (|e|Vb − E) − θ (|e|Vb − E)]

+2�[
seh
abs

he
ba s

ee†
aa s

hh†
bb

]
[−θ (|e|Va − E) + 2θ (|e|Va − E)θ (−|e|Vb − E) − θ (−|e|Vb − E)]

}
CAR-NR

+ 2�[
shh
ab see

bas
eh†
bb s

he†
aa

]
[−θ (|e|Va − E) + 2θ (|e|Va − E)θ (−|e|Vb − E) − θ (−|e|Vb − E)]

+2�[
see
abs

hh
ba s

eh†
aa s

he†
bb

]
[−θ (−|e|Va − E) + 2θ (−|e|Va − E)θ (|e|Vb − E) − θ (|e|Vb − E)]

}
EC-AR

+ 2�[
she
ba s

he
abs

he†
aa s

he†
bb

]
[θ (|e|Va − E) − 2θ (|e|Va − E)θ (|e|Vb − E) + θ (|e|Vb − E)]

+2�[
seh
abs

eh
ba s

eh†
aa s

eh†
bb

]
[θ (−|e|Va − E) − 2θ (−|e|Va − E)θ (−|e|Vb − E) + θ (−|e|Vb − E)]

}
CAR-AR

+ 2�[
seh
abs

hh
ba s

hh†
bb s

eh†
aa + shh

ab seh
ba s

hh†
aa s

eh†
bb

]
[−θ (−|e|Va − E) + 2θ (−|e|Va − E)θ (−|e|Vb − E) − θ (−|e|Vb − E)]

+ 2�[
see
abs

he
ba s

ee†
aa s

he†
bb + see

bas
he
abs

ee†
bb s

he†
aa

]
[−θ (|e|Va − E) + 2θ (|e|Va − E)θ (|e|Vb − E) − θ (|e|Vb − E)]

}
MIXED1

+ 2�[
see
abs

eh
ba s

ee†
bb s

eh†
aa + shh

ba she
abs

hh†
aa s

he†
bb

]
[θ (−|e|Va − E) − 2θ (−|e|Va − E)θ (|e|Vb − E) + θ (|e|Vb − E)]

+ 2�[
seh
abs

ee
bas

ee†
aa s

eh†
bb + shh

ab she
ba s

hh†
bb s

he†
aa

]
[θ (|e|Va − E) − 2θ (|e|Va − E)θ (−|e|Vb − E) + θ (−|e|Vb − E)]

}
MIXED2

+ 2�[
shh
aa see

bas
eh†
ba she†

aa + see
aas

hh
ba s

he†
ba seh†

aa

]
[−θ (|e|Va − E) + 2θ (|e|Va − E)θ (−|e|Va − E) − θ (−|e|Va − E)]

}
MIXED3a

+ 2�[
seh
abs

he
bb s

ee†
ab s

hh†
bb + shh

ab see
bbs

he†
ab s

eh†
bb

]
[−θ (|e|Vb − E) + 2θ (|e|Vb − E)θ (−|e|Vb − E) − θ (−|e|Vb − E)]

}
MIXED3b

+ 2�[
seh
aas

ee
bas

ee†
aa s

eh†
ba + shh

ba she
aas

hh†
aa s

he†
ba

]
[θ (|e|Va − E) − 2θ (|e|Va − E)θ (−|e|Va − E) + θ (−|e|Va − E)]

}
MIXED4a

+ 2�[
see
abs

eh
abs

ee†
bb s

eh†
ab + seh

abs
he
bb s

hh†
bb s

he†
ab

]
[θ (|e|Vb − E) − 2θ (|e|Vb − E)θ (−|e|Vb − E) + θ (−|e|Vb − E)]

)}
MIXED4b
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Differential current cross-correlations in the nonlocal conductance setup:

dSab(T = 0,Va = 0,Vb)

dVb

= 2|e|3
h

sgn(Vb)

× (
2�[

see
ab(|e|Vb)see

ba(|e|Vb)see†
aa (|e|Vb)see†

bb (|e|Vb)
] + 2�[

shh
ab (−|e|Vb)shh

ba (−|e|Vb)shh†
aa (−|e|Vb)shh†

bb (−|e|Vb)
]}

EC-NR

−2�[
seh
ba (|e|Vb)she

ab(|e|Vb)shh†
aa (|e|Vb)see†

bb (|e|Vb)
] − 2�[

seh
ab(−|e|Vb)she

ba (−|e|Vb)see†
aa (−|e|Vb)shh†

bb (−|e|Vb)
]}

CAR-NR

−2�[
see
ab(|e|Vb)shh

ba (|e|Vb)seh†
aa (|e|Vb)she†

bb (|e|Vb)
] − 2�[

shh
ab (−|e|Vb)see

ba(−|e|Vb)seh†
bb (−|e|Vb)she†

aa (−|e|Vb)
]}

EC-AR

+2�[
she
ba (|e|Vb)she

ab(|e|Vb)she†
aa (|e|Vb)she†

bb (|e|Vb)
] + 2�[

seh
ab(−|e|Vb)seh

ba (−|e|Vb)seh†
aa (−|e|Vb)seh†

bb (−|e|Vb)
]}

CAR-AR

−2�[
see
ab(|e|Vb)she

ba (|e|Vb)see†
aa (|e|Vb)she†

bb (|e|Vb) + see
ba(|e|Vb)she

ab(|e|Vb)see†
bb (|e|Vb)she†

aa (|e|Vb)
]

−2�[
seh
ab(−|e|Vb)shh

ba (−|e|Vb)shh†
bb (−|e|Vb)seh†

aa (−|e|Vb) + shh
ab (−|e|Vb)seh

ba (−|e|Vb)shh†
aa (−|e|Vb)seh†

bb (−|e|Vb)
]
}

MIXED1

+2�[
seh
ab(|e|Vb)see

ba(|e|Vb)see†
aa (|e|Vb)seh†

bb (|e|Vb) + shh
ab (|e|Vb)she

ba (|e|Vb)shh†
bb (|e|Vb)she†

aa (|e|Vb)
]

+2�[
see
ab(−|e|Vb)seh

ba (−|e|Vb)see†
bb (−|e|Vb)seh†

aa (−|e|Vb) + shh
ba (−|e|Vb)she

ab(−|e|Vb)shh†
aa (−|e|Vb)she†

bb (−|e|Vb)
]
}

MIXED2

−2�[
seh
ab(|e|Vb)she

bb (|e|Vb)see†
ab (|e|Vb)shh†

bb (|e|Vb) + shh
ab (|e|Vb)see

bb(|e|Vb)she†
ab (|e|Vb)seh†

bb (|e|Vb)
]

−2�[
seh
ab(−|e|Vb)she

bb (−|e|Vb)see†
ab (−|e|Vb)shh†

bb (−|e|Vb) + shh
ab (−|e|Vb)see

bb(−|e|Vb)she†
ab (−|e|Vb)seh†

bb (−|e|Vb)
]
}

MIXED3b

+2�[
see
ab(|e|Vb)seh

ab(|e|Vb)see†
bb (|e|Vb)seh†

ab (|e|Vb) + seh
ab(|e|Vb)she

bb (|e|Vb)shh†
bb (|e|Vb)she†

ab (|e|Vb)
]

+2�[
see
ab(−|e|Vb)seh

ab(−|e|Vb)see†
bb (−|e|Vb)seh†

ab (−|e|Vb) + seh
ab(−|e|Vb)she

bb (−|e|Vb)shh†
bb (−|e|Vb)she†

ab (−|e|Vb)
])
}

MIXED4b

Differential current cross-correlations in the symmetrical setup:

dSab(T = 0,Va + V,Vb = V )

dV

= 2|e|3
h

sgn(|e|V )

× (−2�[
seh
ba (|e|V )she

ab(|e|V )shh†
aa (|e|V )see†

bb (|e|V ) + seh
ab(|e|V )she

ba (|e|V )see†
aa (|e|V )shh†

bb (|e|V )
]

−2�[
seh
ba (−|e|V )she

ab(−|e|V )shh†
aa (−|e|V )see†

bb (−|e|V ) + seh
ab(−|e|V )she

ba (−|e|V )see†
aa (−|e|V )sbb†

hh (−|e|V )
]
}

CAR-NR

−2�[
shh
ab (|e|V )see

ba(|e|V )seh†
bb (|e|V )she†

aa (|e|V ) + see
ab(|e|V )shh

ba (|e|V )seh†
aa (|e|V )she†

bb (|e|V )
]

−2�[
shh
ab (−|e|V )see

ba(−|e|V )seh†
bb (−|e|V )she†

aa (−|e|V ) + see
ab(−|e|V )shh

ba (−|e|V )seh†
aa (−|e|V )she†

bb (−|e|V )
]
}

EC-AR

+2�[
see
ab(|e|V )seh

ba (|e|V )see†
bb (|e|V )seh†

aa (|e|V ) + shh
ba (|e|V )she

ab(|e|V )shh†
aa (|e|V )she†

bb (|e|V )
]

+2�[
see
ab(−|e|V )seh

ba (−|e|V )see†
bb (−|e|V )seh†

aa (−|e|V ) + shh
ba (−|e|V )she

ab(−|e|V )shh†
aa (−|e|V )she†

bb (−|e|V )
]

+2�[
seh
ab(|e|V )see

ba(|e|V )see†
aa (|e|V )seh†

bb (|e|V ) + shh
ab (|e|V )she

ba (|e|V )shh†
bb (|e|V )she†

aa (|e|V )
]

+2�[
seh
ab(−|e|V )see

ba(−|e|V )see†
aa (−|e|V )seh†

bb (−|e|V ) + shh
ab (−|e|V )she

ba (−|e|V )shh†
bb (−|e|V )she†

aa (−|e|V )
]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

MIXED2

−2�[
shh
aa (|e|V )see

ba(|e|V )seh†
ba (|e|V )she†

aa (|e|V ) + see
aa(|e|V )shh

ba (|e|V )she†
ba (|e|V )seh†

aa (|e|V )
]

−2�[
shh
aa (−|e|V )see

ba(−|e|V )seh†
ba (−|e|V )she†

aa (−|e|V ) + see
aa(−|e|V )shh

ba (−|e|V )she†
ba (−|e|V )seh†

aa (−|e|V )
]
}

MIXED3a

−2�[
seh
ab(|e|V )she

bb (|e|V )see†
ab (|e|V )shh†

bb (|e|V ) + shh
ab (|e|V )see

bb(|e|V )she†
ab (|e|V )seh†

bb (|e|V )
]

−2�[
seh
ab(−|e|V )she

bb (−|e|V )see†
ab (−|e|V )shh†

bb (−|e|V ) + shh
ab (−|e|V )see

bb(−|e|V )she†
ab (−|e|V )seh†

bb (−|e|V )
]
}

MIXED3b

+2�[
seh
aa(|e|V )see

ba(|e|V )see†
aa (|e|V )seh†

ba (|e|V ) + shh
ba (|e|V )she

aa(|e|V )shh†
aa (|e|V )she†

ba (|e|V )
]

+2�[
seh
aa(−|e|V )see

ba(−|e|V )see†
aa (−|e|V )seh†

ba (−|e|V ) + shh
ba (−|e|V )she

aa(−|e|V )shh†
aa (−|e|V )she†

ba (−|e|V )
]
}

MIXED4a

+2�[
see
ab(|e|V )seh

ab(|e|V )see†
bb (|e|V )seh†

ab (|e|V ) + seh
ab(|e|V )she

bb (|e|V )shh†
bb (|e|V )she†

ab (|e|V )
]

+2�[
see
ab(−|e|V )seh

ab(−|e|V )see†
bb (−|e|V )seh†

ab (−|e|V ) + seh
ab(−|e|V )she

bb (−|e|V )shh†
bb (−|e|V )she†

ab (−|e|V )
])

}
MIXED4b
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APPENDIX C: RELATIONS BETWEEN THE NOISE
CLASSIFICATION IN THE BTK AND IN THE GREEN’S

FUNCTIONS APPROACHES

The elements of the scattering-matrix are connected to the
retarded Green’s functions of the tight-binding model studied
in Ref. 24 via

s
αβ

ij = iδij + 2πti tj
√

ρα
i

√
ρ

β

j GR
ijαβ, (C1)

where ti is the transmission coefficient of the barrier i, ρα
i the

density of electron or hole states of electrode i, and GR
ijαβ the

Green’s function connecting the first site in the superconductor
next to the electrode j to the first site in the superconductor
next to the electrode i. Table I shows the correspondences

TABLE I. Correspondences between the categories in the lan-
guage of Green’s functions from Ref. 24 and in the language of
scattering matrix elements.

Scattering matrix Green’s function
classification classification

CAR-NR CAR
EC-AR AR-AR
MIXED1, MIXED2 PRIME
EC-NR EC
CAR-AR AR-AR
MIXED3, MIXED4 MIXED

between the categories in the language of Green’s functions
and in the language of scattering matrix elements.
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Phys. Rev. B 81, 184524 (2010).
40K. Yu. Arutyunov, H.-P. Auraneva, and A. S. Vasenko, Phys. Rev.

B 83, 104509 (2011).
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