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Antiferromagnetic (AFM) order and a spatial order peculiar to Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
states, previously indicated in the quasi-two-dimensional d-wave superconductors CeCoIn5 with strong
paramagnetic pair breaking (PPB) in a magnetic field parallel to the basal plane, are considered in the field
configurations tilted from the basal plane within an approach assuming that the wavelength of the FFLO
modulation is relatively long. It is demonstrated that, with increasing the tilt angle, both the AFM and FFLO
orders are gradually suppressed, and that disappearance of the AFM order in the zero-temperature limit occurs at a
lower angle than that of the FFLO state. Consequently, a nonmagnetic FFLO-ordered high-field superconducting
phase is realized in an intermediate range of the tilt angle even at low enough temperatures. As the perpendicular
field configuration (H ‖ c) is approached by the field tilt, the nonvanishing AFM order in real space tends to
occur only close to the FFLO nodal planes in contrast to the high-field behavior in the H ⊥ c case. Further, in the
field versus temperature (H -T ) phase diagram, the AFM order reduces, at a higher angle, to an AFM quantum
critical point lying at a lower field than Hc2(0) as a consequence of competition between the field dependencies
of the nesting condition and of PPB. These features of the AFM order and the resulting H -T phase diagram
strikingly coincide with those seen in a recent NMR measurement on CeCoIn5 in tilted field configurations.
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I. INTRODUCTION

Recently, the quasi-two-dimensional (Q2D) heavy-fermion
superconductor CeCoIn5 has attracted much attention due to
a possible realization of a Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) superconducting (SC) state1,2 in its high-field low-
temperature (HFLT) SC phase.3 This new SC phase is
separated through a second-order transition on H ∗(T ) from the
familiar Abrikosov vortex lattice state and has been examined
repeatedly in the field configuration H ⊥ c parallel to the SC
planes.4 The experimental fact in H ⊥ c that this new SC phase
is extremely sensitive to both the magnetic5 and nonmagnetic6

impurity dopings implies7 that, prior to the doping, this phase
is spatially inhomogeneous. Further, an observed square-root
(∼ √

H − H ∗) dependence of the internal field in a NMR
measurement8 has been consistent with the picture4,9 that the
HFLT phase includes a FFLO spatial modulation parallel to
the field. It should be kept in mind that a similar HFLT phase
also appears3,9,10 in the perpendicular field configuration H ‖ c

over a narrower field range.
On the other hand, neutron scattering measurements in

H ⊥ c have revealed the existence of an incommensurate
AFM order within the HFLT SC phase.11,12 The detected11,12

staggered moment m is parallel to the c axis, and its
incommensurate wave vector is parallel to [1,1,0] or [1,−1,0]
irrespective of the H direction. As noted elsewhere,13,14 this
AFM ordering should be closely related to the AFM quantum
critical behavior near the mean field SC transition field Hc2(0)
observed not only in CeCoIn5 in H ⊥ c and H ‖ c (Refs.
15–17), but also in pressured CeRhIn5,18 NpPd5Al2,19 and
Ce2PdIn8.20

It is striking that this high-field AFM order does not
appear outside the HFLT phase because conventional theories
in zero field suggest that the AFM order is suppressed
by a nonvanishing value of the SC excitation gap.21,22 To
explain why, in nonzero magnetic fields, the AFM order
favors coexistence with the SC order, several pictures have

been proposed so far.13,14,23–25 The common point of view
to these theories is that the AFM order is enhanced by the
dx2−y2 -wave26 pairing symmetry and a strong PPB effect. As
will be discussed at the end of this paper, on the other hand,
there are crucial differences between those existing theories.

In this work, we focus on the intermediate field con-
figurations connecting between the H ⊥ c and H ‖ c cases,
motivated by several experiments performed in magnetic
fields tilted from the basal (a-b) plane. Neutron scattering
measurements27 have discovered that the 17◦ rotation of the
field away from the basal plane results in the disappearance of
the AFM order and have indicated that the staggered moment
m remains fixed along the c axis while the field is tilted.
On the other hand, the magnetostriction experiments28 and
the magnetization measurements29 have shown that the HFLT
phase disappears at a larger angle, 20◦, which, by being
combined with the neutron result,27 suggests that the FFLO
state with no AFM order is realized in a narrow range of the
tilt angle. More recently, NMR data30 obtained by tilting the
field direction from the a-b plane have led to several nontrivial
pictures on the HFLT phase. First of all, a separation of the
AFM-ordered region from the HFLT phase has been clearly
seen even for the 7◦ rotation: The resulting AFM-ordered
region existing only within the HFLT phase is, in the H -T
phase diagram, narrower than the region of the HFLT one. As
the field direction is tilted further, it is first lost from the higher
fields and higher-temperature side of the HFLT phase. This
disappearance of the AFM order from higher fields suggests
that an AFM quantum critical point (QCP) to be realized at
a higher angle should lie at a lower field than Hc2(0). This
seems to be closely related to the experimental fact16,31 that
the apparent AFM QCP in H ‖ c lies at a lower field than
Hc2(0). In addition, the NMR data in tilted fields30 suggest an
AFM order lying, in the real space, in the vicinity of the FFLO
nodal plane on which the SC order parameter vanishes. This is
in contrast to the picture seen in H ⊥ c that, at least in higher
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fields, the AFM order basically favors a spatial region with a
nonvanishing SC order parameter.8,13,14,32

In this paper, we develop a theory addressing possible
HFLT phases of d-wave superconductors with strong PPB
effects in the tilted field configurations by extending the
treatments in Refs. 14 and 32. To simplify theoretical analysis
and make it easier to understand implication of the obtained
results, we have used two kinds of approaches separately to
examine the angular dependencies: One is based on deriving
the Ginzburg-Landau (GL) mean field free energy, which
takes a form of an expansion in the SC order parameter
but fully includes both the paramagnetic and orbital pair-
breaking effects, from an electronic Hamiltonian for a uniaxial
Q2D model superconductor. There, effects of the orbital pair
breaking, enhanced by tilting the field direction, on the FFLO
and AFM orderings are stressed. The other is the Pauli-limited
model based on a tight-binding electronic Hamiltonian in
which the resulting SC free energy fully includes the SC order
parameter, while the orbital pair breaking is neglected so that
the SC order parameter is assumed to be homogeneous in the
plane perpendicular to the field. It is found that the phase
diagrams we obtain in the tilted field configurations become
consistent with the experimentally observed one.30

This paper is organized as follows. In Sec. II, we derive
the GL mean field free energy by including not only the
PPB-induced AFM ordering, but also the orbital pair-breaking
effect and primarily explain how the two (AFM and FFLO)
orders induced by PPB are affected by the field tilt. In Sec. III,
the approach in the Pauli limit for the same issue is explained
to discuss angular dependencies of not only the phase diagram,
but also the details of the AFM order. In summary, the
obtained pictures on angular dependencies of the HFLT phase
of CeCoIn5 are discussed, and our theory is compared with
others23–25 focusing on the parallel field case.

II. MICROSCOPIC GINZBURG-LANDAU APPROACH

In this section, the mean field GL free energy for a uniaxial
d-wave superconductor will be derived based on a Q2D mi-
croscopic Hamiltonian by incorporating both the paramagnetic
and the orbital pair-breaking effects and will be used to study
how the resulting magnetic phase diagram, in particular the
AFM order in the FFLO phase corresponding to the HFLT
phase of CeCoIn5, in our theory is affected by the tilt of the
applied magnetic field from the basal plane. For simplicity
of our analysis, the interaction terms will be treated from the
outset in the mean field approximation. Then, our starting
electronic Q2D Hamiltonian can be expressed, as given
elsewhere,32 in the form H = Hkin + HSC + HAFM, where

Hkin = d
∑
σ,j

∫
d2r⊥

[[
ψ

(σ )
j (r⊥)

]†
[ ξ (−i∇⊥ + eA⊥) − σI ]

×ψ
(σ )
j (r⊥) − J

2

[[
ψ

(σ )
j (r⊥)

]†
ψ

(σ )
j+1(r⊥) + H.c

]]
,

(1)

with

ψ
(σ )
j (r⊥) = 1√

V

∑
p

ĉp,σ ei(p⊥·r⊥+ipzdj ), (2)

and the mean field interaction terms on superconductivity
HSC and antiferromagnetism HAFM will be introduced below.
The index j is the label of the SC layers, d is the interlayer
distance in the c direction, σ (= ±1) denotes the spin
projection, J represents the interlayer hopping integral, ξ (p)
is the kinetic energy measured from the Fermi energy μ in
the two-dimensional (2D) limit with μ > J , V is the system’s
volume, and I = g(θ )μBH is the Zeeman energy expressed
with the Bohr magneton μB and the angle-dependent g

factor g(θ ). We shall introduce a uniaxial anisotropy and
the resulting angle dependence of the g factor because the
real CeCoIn5 shows such a remarkable anisotropy of the
magnetic susceptibility.33 As a model, we assume the form
g(θ ) = √

g2
acos2θ + g2

c sin2θ , where gj is the g factor for
an applied field H in the j direction, and ga = gb. The unit
h̄ = c = kB = 1 will be used throughout this paper. The
coordinates r = (x,y,z) will be often used, which implies the
coordinates (r⊥,dj ) in the a-b-c crystal frame. That is, x, y,
and z axes are taken along the a, b, and c axes, respectively.

To describe a superconductor in a magnetic field tilted away
from the a-b plane, we use a new rotated frame (x̃ − ỹ − z̃)
defined by rotating the crystal frame (x − y − z) around the x

axis. It is expressed as

x̃ = x, ỹ = y cos θ + z sin θ, z̃ = −y sin θ + z cos θ,

(3)

where the magnetic field is H = H (ŷ cos θ + ẑ sin θ ) = H ˆ̃y.
Then, in the type-II limit with no spatial variation of the flux
density, the vector potential is represented simply by

A(r) = (Hz̃, 0, 0) (4)

in the (x̃, ỹ, z̃) frame.
The second term of Eq. (1) represents an attractive interac-

tion between quasiparticles, which leads to superconductivity,
and, in the mean field approximation, may be expressed as

HSC = 1

|g|
∑

q

|�(q)|2 −
∑

q

(
�(q)�̂†(q) + H.c.

)
, (5)

with

�̂(q) = 1

2

∑
p,α,β

(−iσ̂y)α,β wp ĉ−p+ q
2 ,αĉp+ q

2 ,β ,

(6)
�(q) = |g|〈�̂(q)〉.

Here, σ̂i (i = x,y,z) are the Pauli matrices. The SC pairing
symmetry is represented by the pairing function wp, and, in the
case of the dx2−y2 pair, the identity wp+Q0 = −wp is satisfied,
where Q0 = (π/a,π/a,π/d) is the commensurate nesting
vector represented with the lattice constant a in the a-b plane.
After this identity has been used in the analytic treatment, wp

will be replaced by its linearized form
√

2(p̂2
x − p̂2

y) to perform
the angle average over the Fermi surface.

The third term of Eq. (1) is the AFM interaction term and,
in the mean field approximation, takes the form

HAFM = 1

U

∑
q

|m(q)|2 −
∑

q

(m(q) · Ŝ†(q) + H.c.), (7)
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with

Ŝ(q) =
∑
p,α,β

ĉ†p,α (σ̂ )α,β ĉp+Q0+q,β ,

(8)
m(q) = U 〈Ŝ(q)〉,

where the coupling constant U is assumed to be positive.
Within the present model, an incommensurate nesting property
will be incorporated in the dispersion relation in the manner

ξ (p + Q0) = −ξ (p) + δICTc, (9)

where the deviation from a perfect nesting is represented by
a constant parameter δIC. Then, we define the velocity vp =
dξ (p⊥)/dp⊥ + J sin(pzd)ẑ and we have the relation

vp⊥+Q0 = −vp⊥ . (10)

We note that the gap function �(q) and the staggered
field m(q) play the roles of SC and AFM order parame-
ters, respectively. Consistently with the previous theoretical
works7,9,13,14,34 and with the NMR data8 in CeCoIn5, we
consider the case of a SC order parameter with a one-
dimensional modulation of the Larkin-Ovchinnikov type2

parallel to H,

�(r) = |�|ϕ0(z̃,x̃)
√

2 cos(qLOỹ), (11)

as a reasonable model of the HFLT phase of CeCoIn5. Here, the
FFLO wave number qLO plays the role of the order parameter
representing the presence of a FFLO modulation and vanishes
with the square-root field dependence ∼ √

H − H ∗(T ) (see
Sec. I) at the transition field H ∗ to the ordinary Abrikosov
lattice state with qLO = 0. We note that, in CeCoIn5 where
the uniaxial anisotropy γ between the coherence lengths [see
Eq. (13)] is moderate in magnitude,35 it is reasonable to assume
that the direction of the FFLO modulation is not deviated from
H by tilting H from the a-b plane. The ordinary Abrikosov
vortex lattice is expressed by the function ϕ0 belonging to the
lowest Landau level. In the present tilted field configuration,
it takes the form

ϕ0(z̃,x̃) =
√

k√
π

∞∑
n=−∞

exp

[
i

(
nk�(θ )

rH
x̃ + πn2

2

)

− 1

2

(
1

rH�(θ )
z̃ + nk

)2
]

(12)

with integer n, where rH = 1/
√

2eH , and the angle-dependent
factor �(θ ) is associated with the material anisotropy and

described as

�4(θ ) = sin2 θ + 1

γ 2
cos2 θ,

(13)

γ =
√√√√〈

v2
x

〉
FS〈

v2
z

〉
FS

= 2
√

1 − J/μ

πJ/μ
.

As shown in our previous works,13,14 the FFLO modulation
of the SC order parameter should induce a spatial modulation
parallel to H of the AFM order parameter through a coupling
term f

(2,2)
�,m [see Eqs. (16) and (32)] in the free energy with the

SC order parameter. Naively, we choose the form

m(r) =
∑

q

|m|eiq·r√2 cos(qLOỹ + φ) (14)

for the AFM order parameter. For simplicity, we focus on
the situation in which the FFLO modulation wave number
qLO is much smaller than that of the AFM modulation, so that
nonlocal couplings, proportional to q2

LO, between the AFM and
FFLO orders may be negligible. That is, through the last factor
cos(qLOỹ + φ) in Eq. (14), just the local coupling between the
spatial modulations parallel to the magnetic field of the two
order parameters will be taken into account.14 Hereafter, this
treatment will be called as the local approximation.

As illustrated in Fig. 1, in the case of φ = 0, the AFM
order primarily appears in the region where |�| is maximal,
while it appears, when φ = π/2, primarily in the vicinity
of the FFLO nodal plane on which � = 0. Hereafter, we
call the former as the in-phase configuration and the latter
as the out-of-phase one. Strictly speaking, the transformation
between the two structures indicated in Fig. 1 seems to occur
through two continuous transitions (see Ref. 46 of Ref. 14).
Nevertheless, for simplicity, we restrict ourselves to these
two structures throughout this paper. Further, we assume
the direction m of the AFM moment to be locked along
the z axis corresponding to the c axis of the Q2D material
(see the caption of Fig. 2 and Sec. I). In this case, we have
m(r) = m(r) ẑ = m(r)( ˆ̃y sin θ + ˆ̃z cos θ ).

A. Ginzburg-Landau free energy

The mean field free-energy density for the Hamiltonian
defined above is given by

fGL(�,m,qLO) = −V −1T ln Trc,c†

×{exp[−(H0 + HSC + HAFM)/T ]}.
(15)

y~  

|Δ|2 |m|2  (a) AFM(1) 

y~  

|Δ|2 |m|2  (b) AFM(2) 

FIG. 1. (Color online) Typical configurations in real space of the AFM order [dashed (red) curve] in the FFLO state with one-dimensional
spatial modulation of the amplitude |�| of the SC order parameter [solid (black) curve] parallel to the field. In the in-phase structure (a), the
AFM order favors coexistence with the SC order, while, in the out-of-phase structure (b), it tends to lie around the nodal planes, on which
|�| = 0, of the FFLO modulation (see the text). These states correspond to the φ = 0 and π/2 cases in Eq. (14), respectively.
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FIG. 2. Coordinate frames used in the present calculations. The
x-y-z frame corresponds to the crystal a, b, and c frames of a uniaxial
crystal and the frame x̃-ỹ-z̃ with the magnetic field H in the ỹ
direction is obtained by the θ rotation of the x-y-z frame about the x

axis. According to Ref. 27 on CeCoIn5, the orientation of the moment
m is assumed to be locked in the c direction irrespective of the H
direction.

In the present situation including the AFM and FFLO orders,
we consider the following Ginzburg-Landau (GL) form of
the free-energy density expressed in powers of the order
parameters |�| and m ≡ |m|:

fGL(�,m,qLO) = f
(2)
� (qLO) + f

(4)
� (qLO) + f

(6)
�

+ f (2)
m + f (4)

m + f
(2,2)
� m , (16)

where

f
(2)
� (qLO) = f

(2,0)
� + f

(2,2)
� q2

LO + f
(2,4)
� q4

LO,
(17)

f
(4)
� (qLO) = f

(4,0)
� + f

(4,2)
� q2

LO + f
(4,4)
� q4

LO.

Since the present AFM ordering is enhanced or induced
by the SC ordering, we can assume that the SC order is
rigid enough and thus is unaffected by the AFM ordering,
especially if the high-field Hc2 transition is discontinuous as
a consequence of the strong PPB.4 That is, we determine the
SC energy gap by focusing on the m-independent terms. In
our GL approach taking account of the orbital pair breaking,
other higher-order terms in � have been neglected.14,32 We
have repeatedly checked that, in low temperatures and high
fields of our interest, the conditions f

(4)
� < 0 and f

(6)
� > 0 are

always satisfied so that the Hc2 transition is discontinuous,
while truncating the GL expansion in the sixth order in |�|
is permitted. On the other hand, the FFLO transition line, i.e.,
the onset of the FFLO modulation of the SC order parameter,
is determined through the appearance of a nonvanishing qLO

according to the expressions (17).
Here, we should mention that the local approximation has

been taken, as in Ref. 14, in other free-energy terms including
the AFM order parameter m such as the coupling term f

(2,2)
� m

of the AFM and SC orders [see also the sentence following
Eq. (14)]. We note that the sign of f

(2,2)
� m , proportional to |�|2,

is negative in systems with strong enough PPB and in the
range of the tilt angle where the AFM order is realized at finite
temperatures. This sign favors the in-phase structure illustrated
in Fig. 1(a) of the AFM order in real space. However, it will
be shown in Sec. III that this result may be an artifact of the
use of the GL expansion in �.

B. GL coefficients

Now, we turn to the calculation of the coefficient of
each term in the GL free-energy density. To obtain each GL
coefficient, we apply the semiclassical approximation

G(H )
εn,σ

(r,r′) � Gεn,σ (r − r′) exp

(
ie

∫ r′

r
ds · A(s)

)
(18)

for the normal Green’s function G(H )
εn,σ

in a magnetic field,
where Gεn,σ (r − r′) appearing in the right-hand side is the
Green’s function in the case with no orbital pair breaking of
the magnetic field, and its Fourier transformation is expressed
by

Gεn,σ
(p) = {iεn − ξ (p⊥) + J [1 − cos(pzd)] + σI }−1, (19)

where εn = (2n + 1)πT is the fermion’s Matsubara frequency.
Further, the orbital pair-breaking effect is incorporated by
the gradient � = −i∇ + 2eA(r) operating on the pair fields
through the formula

exp

(
2ie

∫ r′

r
ds · A(s)

)
�(r′) = exp

[−i(r − r′) · �
]
�(r).

(20)

Then, the quadratic, quartic, and sixth-order terms in � of the
GL free-energy density are represented by

f
(2)
� (qLO) =

〈
�∗(r)

[
1

|g| − K
(2)
� (�)

]
�(r)

〉
sp

,

K
(2)
� = T

2

∑
εn,p,σ

|wp|2Gεn,σ (p)G−εn,−σ (−p + �),

f
(4)
� (qLO) = 〈

K
(4)
� (�i)�

∗(s1)�(s2)�∗(s3)�(s4)
∣∣
si→r

〉
sp,

K
(4)
� = T

4

∑
εn,p,σ

|wp|4Gεn,σ (p)G−εn,−σ (−p + �
†
1)

×G−εn,−σ (−p + �2)Gεn,σ (p + �
†
3 − �2),

f
(6)
� (qLO) = 〈

K
(6)
� (�i)�

∗(s1)�(s2)�∗(s3)�(s4)

×�∗(s5)�(s6)
∣∣
si→r

〉
sp,

K
(6)
� = T

6

∑
εn,p,σ

|wp|6Gεn,σ (p)G−εn,−σ (−p + �
†
1)

×G−εn,−σ (−p + �6)Gεn,σ (p − �
†
1 − �2)

×G−εn,−σ (−p + �
†
1 + �

†
3 − �2)

×Gεn,σ (p − �6 + �
†
5). (21)

The concrete expressions of these terms are represented in the
Appendix. In obtaining them, we need to rewrite the expression
exp (iAvp · �)�(r). To perform this, it will be represented in
the rotated frame as follows:

exp (iAvp · �) = exp (iAṽ p̃ · �̃)

= exp (iAṽp̃,ỹ�̃ỹ) exp (iAṽ p̃,⊥ · �̃⊥), (22)
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where ṽ p̃,⊥ = (ṽp̃,z̃,ṽp̃,x̃) and �̃⊥ = (�̃z̃,�̃x̃) represent the
components perpendicular to the field (‖ ỹ axis) of vp and �

in the rotated frame (see Fig. 2). By introducing the creation
and annihilation operators on the Landau levels representing
possible vortex states

�̃± = rH√
2

[�(θ )�̃z̃ ± i�−1(θ )�̃x̃], (23)

we find

exp (iAṽ p̃,⊥ · �̃⊥) = exp
( − 1

2 |μ|2A2
)

exp(iμ�̃+A)

× exp(iμ∗�̃−A), (24)

where

μ = �−1(θ )ṽp̃,z̃ − i�(θ )ṽp̃,x̃√
2rHTc

. (25)

Next, we calculate the GL terms associated with the AFM
order parameter m. The expression of the term quadratic in m
is given by

f (2)
m =

〈[
1

U
+

2∑
j=1

K
(2)
m, j (q)

]
|m(r)|2

〉
sp

, (26)

where q is the incommensurate part of the AFM wave vector
which should be determined by minimizing the free energy,
and the concrete expression of K

(2)
m, j is

K
(2)
m, j (q) = AjT

2

∑
εn,p,σ

Gεn,σ (p)Gεn,αj
(p + Q0 + q)

= −AjπT N (0)

×
∑
εn,σ

〈
isε

2iεn + (σ + αj )I − δICTc + vp · q

〉
FS

TABLE I. Coefficients αj , Aj , Bj in Eqs. (27) and (31).

j αj Aj Bj

1 −σ cos2 θ 0
2 σ sin2 θ ρ

= −AjN (0)
∫ ∞

0
dρ f (ρ,Bj )

×
〈

cos

[(
− δIC + vp · q

Tc

)
ρ

]〉
FS

. (27)

Here, the angle brackets denote the Fermi surface average,
N (0) is the density of states at the Fermi energy, sε is the sign
of εn,

f (x,y) = 2πt

sinh (2πtx)
cos

(
2

I

Tc

y

)
, (28)

with t = T/Tc, and the coefficients αj ,Aj ,Bj are represented
in Table I. Here, the identity

1

α
=

∫ ∞

0
dρ exp (−αρ) (Re α > 0) (29)

was used in obtaining Eq. (27).
By using Eq. (29), the coupling constant U is represented

by

1

U
= N (0)

(
ln

T

TN
+ 2πT

∑
εn>0

1

εn

)

= N (0)

(
ln

T

TN
+

∫ ∞

0
dρ f (ρ,0)

)
, (30)

where TN is the AFM transition temperature in the normal
state. Then, the quadratic term in m is expressed by

f (2)
m = N (0)T 2

c

[
ln

T

TN
+

∫ ∞

0
dρ

(
f (ρ,0) −

2∑
j=1

Ajf (ρ,Bj )

〈
cos

[(
− δIC + vp · q

Tc

)
ρ

]〉
FS

)]( |m|
Tc

)2

. (31)

Further, the term giving the coupling between the SC and magnetic orders is expressed by

f
(2,2)
� m =

〈[
4∑

j=1

K
(2,2)
� m, j (�s,q)

]
�∗(r)�(s)

∣∣∣∣
s→r

|m(r)|2
〉

sp

, (32)

where the kernels K (2,2) with j = 1,2 take the form

K
(2,2)
� m, j (�s,q) = A′

j T

2

∑
εn,p,σ

|wp|2Gεn,σ (p)Gεn,α
′
j
(p − Q0 − q)Gεn,σ (p)G−εn,−σ (−p + �s)

= A′
jπT N (0)

∑
εn>0,σ,sε

〈
|wp|2 isε

[2iεn + (σ + α′
j )I − δICTc − vp · q](2iεn + 2σI − vp · �s)

×
(

1

2iεn + (σ + α′
j )I − δICTc − vp · q

− 1

2iεn + 2σI − vp · �s

)〉
FS
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= A′
jN (0)

2

∑
sε

∫ ∞

0

3∏
i=1

dρi

[
f

(
3∑

i=1

ρi,B
′
j

)〈
|wp|2 exp

[
− isε

(
−δIC + vp · q

Tc

)
C ′

j

]
exp (−isεvp · �sD

′
j )

〉
FS

+ f

(
3∑

i=1

ρi,E
′
j

)〈
|wp|2 exp

[
− isε

(
−δIC + vp · q

Tc

)
F ′

j

]
exp

(
−isε

vp · �s

Tc

G′
j

)〉
FS

]
, (33)

while, for j = 3,4, these kernels are expressed, in terms of the property wp+Q0 = −wp on the dx2−y2 -wave pairing function, by

K
(2,2)
� m, j (�s,q) = −A′

j T

2

∑
εn,p,σ

wpwp+Q0Gεn,σ (p)Gεn,α
′
j
(p − Q0 − q)G−εn,α

′
j
(−p + Q0 + q + �s)G−εn,−σ (−p + �s)

= −A′
jπT N (0)

∑
εn>0,σ,sε

〈
|wp|2 isε

[2iεn + (σ + α′
j )I − δICTc − vp · q]

× 1

[2iεn + (σ + α′
j )I + δICTc + vp · q]

(
1

2iεn + 2σI − vp · �s
− 1

2iεn + 2α′
j I + vp · �s

)〉
FS

= A′
jN (0)

2

∑
sε

∫ ∞

0

3∏
i=1

dρi

[
f

(
3∑

i=1

ρi,B
′
j

)〈
|wp|2 exp

[
− isε

(
− δIC + vp · q

Tc

)
C ′

j

]
exp

(
− isε

vp · �s

Tc

D′
j

)〉
FS

+ f

(
3∑

i=1

ρi,E
′
j

)〈
|wp|2 exp

[
−isε

(
−δIC + vp · q

Tc

)
F ′

j

]
exp

(
− isε

vp · �s

Tc

G′
j

)〉
FS

]
. (34)

The coefficients α′
j , A′

j , B ′
j , C ′

j , D′
j , E′

j , F ′
j , G′

j are represented in Table II.
By using the above-mentioned mathematical tools, we obtain

f
(2,2)
� m = 3N (0)T 2

c

2

4∑
j=1

A′
j

∫ ∞

0

3∏
i=1

dρi

[
f

(
3∑

i=1

ρi,B
′
j

)〈
|wp|2 cos

[(
− δIC + vp · q

Tc

)
C ′

j

]
exp

(
−|μ|2

2
D′

j

)〉
FS

+ f

(
3∑

i=1

ρi,E
′
j

)〈
|wp|2 cos

[(
−δIC + vp · q

Tc

)
F ′

j

]
exp

(
−|μ|2

2
G′

j

)〉
FS

]( |�|
Tc

)2( |m|
Tc

)2

. (35)

Finally, the quartic term f (4)
m in m is expressed as

f (4)
m =

〈[
5∑

j=1

K
(4)
m, j (q)

]
|m(r)|4

〉
sp

, (36)

where

K
(4)
m, j (q) = A′′

j T

2

∑
εn,p,σ

Gεn,σ (p)Gεn,α
′′
j
(p + Q0 + q)Gεn,β

′′
j
(p)Gεn,γ

′′
j
(p + Q0 + q)

= N (0)A′′
j

∫ ∞

0

3∏
i=1

dρi

[
f

(
3∑

i=1

ρi,B
′′
j

)
+ f

(
3∑

i=1

ρi,C
′′
j

)]〈
cos

[(
−δIC + vp · q

Tc

)(
3∑

i=1

ρi

)]〉
FS

. (37)

Then, the corresponding term in the free energy is expressed as

f (4)
m = 3N (0)T 2

c

2

5∑
j=1

A′′
j

∫ ∞

0

3∏
i=1

dρi

[
f

(
3∑

i=1

ρi,B
′′
j

)
+ f

(
3∑

i=1

ρi,C
′′
j

)]〈
cos

[(
− δIC + vp · q

Tc

)( 3∑
i=1

ρi

)]〉
FS

( |m|
Tc

)4

.

(38)

The coefficients α′′
j , β ′′

j , γ ′′
j , A′′

j , B ′′
j , C ′′

j are listed in
Table III. The resulting numerical calculation results are
characterized by the Maki parameter

αM(θ ) =
√

2Hθ
orb(0)

Hθ
P (0)

(39)

generalized to the case with the tilt angle θ , which mea-
sures the relative strength of the paramagnetic and orbital
pair-breaking effects at the angle θ . Here, Hθ

P (0) is the
Pauli-limiting field at T = 0 and at the angle θ and is
defined as πTc/[2eγEμBg(θ )], where eγE = 1.77 is the Euler
constant, while the T = 0 orbital-limiting field Hθ

orb(0)
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TABLE II. Coefficients α′
j , A′

j , B ′
j , C ′

j , D′
j , E′

j , F ′
j , G′

j in Eqs. (33), (34), and (35).

j α′
j A′

j B ′
j C ′

j D′
j E′

j F ′
j G′

j

1 −σ 2 cos2 θ ρ2 ρ1 + ρ3 ρ2 ρ2 + ρ3 ρ1 ρ2 + ρ3

2 σ 2 sin2 θ ρ2 ρ1 + ρ3 ρ2 ρ2 + ρ3 ρ1 ρ2 + ρ3

3 −σ cos2 θ ρ3 −ρ1 + ρ2 ρ3 ρ3 −ρ1 + ρ2 −ρ3

4 σ sin2 θ
∑3

i=1 ρi −ρ1 + ρ2 ρ3
∑3

i=1 ρi −ρ1 + ρ2 −ρ3

satisfies Hθ
orb(0) = H

(θ=0)
orb (0)/γ�2(θ ). Both of these two lim-

iting fields decrease with tilting the field direction from the
a-b plane. In our numerical calculations, we use the parameter
values gc/ga = 2.1, γ = 2.8, and αM(0) = 6.11.

C. Results

Figure 3 shows possible H versus T phase diagrams for
tilt angles θ = 0◦, 18◦, 22◦, and 30◦, respectively. The dotted
(red) lines express the second-order transition between the
ordinary vortex state and the FFLO vortex lattice, and, in
the low-temperature region shown here, the mean field SC
transition on Hc2(T ), expressed by the black solid curve, is of
first order in character in the mean field approximation.4 On
the other hand, the character of the AFM ordering transition in
the SC phase, occurring on the dashed (blue) curve, seems to
depend on the parameters such as the tilt angle θ , although it
tends to become of second order in most situations. Its detail
will be discussed at the end of Sec. III.

As one can see in Fig. 3(a) where θ = 0◦, the AFM order
appears only in the FFLO region. As indicated in Refs. 13
and 14, the AFM ordering is enhanced by the FFLO order
and stabilized with a spatial modulation commensurate with
that of the FFLO state. Such appearance of the AFM order is
consistent with that found in experiments on CeCoIn5.8,11,12

On the other hand, contrary to the experimental fact,8,11,12 a
nonmagnetic FFLO region with no accompanying AFM order
inevitably appears at higher temperatures in our calculation
shown in Fig. 3. However, if AFM fluctuation effects are
incorporated beyond the present mean field treatment, this
FFLO region is expected to shrink significantly.9

Regarding the relative spatial structure in the direction
parallel to the field between the AFM and FFLO orders, just
the in-phase configuration expressed in Fig. 1(a) and denoted
as FFLO + AFM(1) in Fig. 3 is found to be realized even in
θ �= 0◦ cases in the present approach using the GL expansion
in �. This feature, inconsistent with the experimental data,30

is found in the next section to be an artifact of the present GL

TABLE III. Coefficients α′′
j , β ′′

j , γ ′′
j , A′′

j , B ′′
j , C ′′

j in Eqs. (37)
and (38).

j α′′
j β ′′

j γ ′′
j A′′

j B ′′
j C ′′

j

1 −σ σ −σ cos4 θ 0 0
2 σ σ σ sin4 θ

∑3
i=1 ρi

∑3
i=1 ρi

3 σ σ −σ 2 cos2 θ sin2 θ ρ1 ρ1 + ρ3

4 σ −σ σ 2 cos2 θ sin2 θ ρ1 + ρ3 ρ1

5 σ −σ −σ −2 cos2 θ sin2 θ ρ1 − ρ2 ρ1 − ρ2

approach keeping only the lowest term proportional to |�|2 m2

regarding the coupling between the AFM and SC orders (see
also Ref. 14).

Next, the angular dependencies of the resulting two orders
will be discussed. As the field is tilted away from the con-
ducting plane in the uniaxial material, the relative contribution
of the orbital pair breaking increases, while effects of PPB
diminish. Since both of the FFLO and AFM orders have
their origin in PPB for the d-wave SC pairing state, the field
tilt implies that both of the orders are suppressed at higher
angles. However, the AFM order has another origin on its
suppression due to the field tilt: The Zeeman effect on the
AFM ordering occurring from the field component parallel to
the AFM moment m becomes an origin of its suppression:
As seen in the difference between j = 1 and 2 components
in Eq. (31), the nesting property gradually becomes unsatis-
factory with increasing the tilt angle. Consequently, the AFM
order diminishes more remarkably than the FFLO order with
tilting the field, and a tilt instability of the AFM order should
occur at a lower angle than a threshold angle at which the
FFLO phase is lost. Then, a nonmagnetic FFLO phase with no
accompanying AFM order needs to exist at lower angles than
the FFLO threshold angle. This picture suggested by Fig. 3 is
consistent with the experimental fact.27–29

Further, when the field value H increases, the above-
mentioned reduction of the nesting condition due to an increase
of the field component parallel to m competes with the
enhancement of the AFM order due to stronger PPB in larger
H . Due to this competition, the magnetic field values at which
the AFM order is realized at finite temperatures should lie at
a lower field than Hc2(T = 0). This explains why the dashed
(blue) curve in Fig. 3(b) shows a field-induced disappearance
of the AFM order in contrast to that in Fig. 3(a). This result
implies that the AFM quantum critical point (QCP), which
should occur at an angle between 18◦ and 22◦ in the case of
Fig. 3, should also lie at a lower field than Hc2(0).

III. PAULI LIMIT

In turn, following the previous work,14 we will explain
our results in the Pauli limit performed in order to examine
consequences of the band structure on the HFLT phase of
CeCoIn5. For this purpose, we start from the conventional
tight-binding Hamiltonian with a dispersion ε(p). Broadly, the
basic elements in the Hamiltonian are the same as those in the
previous section. The only differences are to replace Hkin in
the previous section by

H′
0 =

∑
σ

∫
d3r[ψ (σ )]†(r)[ε(−i∇) − σI ]ψ (σ )(r) (40)
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FIG. 3. (Color online) Angular dependence of the H -T phase diagrams for the θ = 0◦, 18◦, 22◦, and 30◦ cases. The dotted (red) and the
thick solid (black) lines express the curves of the second-order transition curve from the Abrikosov lattice (A) phase to the FFLO one and of
the discontinuous Hc2(T ) transition, respectively, while the dashed (blue) line represents the nonmagnetic FFLO to the AFM-FFLO transition.
In this calculation, the parameters αM(0) = 6.11, the incommensurability δ = 0.001, γ = 2.8, gc/ga = 2.1, and TN/Tc = 0.0012 are used.

with

ψ (σ )(r) = 1√
V

∑
p

ĉp,σ eip·r,

ε(p) = −2t1[cos(pxa) + cos(pya)]

− 4t2 cos(pxa) cos(pya)

− 2t3[cos(2pxa) + cos(2pya)]

− 2t4 cos(pzd) − μ, (41)

and to neglect the orbital effect of the magnetic field. Hereafter,
the HamiltonianH′ = H′

0 + HSC + HAFM is used to obtain the
free energy f�, while we will avoid the GL expansion of f�

in the SC order parameter �. Due to the neglect of the orbital
effect of the magnetic field, the SC order parameter in the
FFLO phase can be assumed to be homogeneous (uniform), in
the real space, in the plane perpendicular to the field so that we
assume the form �(r) = |�|√2 cos (qLOỹ) for the SC order
parameter. Further, in our calculation in the Pauli limit, we have
assumed the g factor to be isotropic because the anisotropy in
the g factor merely leads to a trivial θ -dependent change of
the scale of the magnetic field (see also below).

The normal and anomalous Green’s functions in the
Matsubara representation are defined as

G(σ )(τ ; r1,r2) = −〈Tτ [ψ (σ )(r1,τ )[ψ (σ )]†(r2,0)]〉,
F

(σ )
(τ ; r1,r2) = −〈Tτ [[ψ (−σ )]†(r1,τ )[ψ (σ )]†(r2,0)]〉,

F (σ )(τ ; r1,r2) = −〈Tτ [ψ (σ )(r1,τ )ψ (−σ )(r2,0)]〉,
G

(σ )
(τ ; r1,r2) = −〈Tτ [[ψ (σ )]†(r1,τ )ψ (σ )(r2,0)]〉, (42)

and the Nambu matrix notation

Ĝ(σ )(τ ; r1,r2) =
[

G(σ )(τ ; r1,r2) F (σ )(τ ; r1,r2)

F
(σ )

(τ ; r1,r2) G
(−σ )

(τ ; r1,r2)

]
(43)

will be used. The Fourier component Ĝ(σ )
εn

(p; R) ≡∫
dτ eiεnτ

∫
d3(r1−r2)Ĝ(σ )(τ ; r1,r2)e−ip·(r1−r2) is represented

as

[
iεn − ε(p + ∂R) + σI −σ�p(R)

σ�∗
p(R) −iεn − ε(p + ∂R) − σI

]

× Ĝ(σ )
εn

(p; R) = 1̂ (44)

with R = (r1 + r2)/2. The Green’s functions are expanded
as a power series in the gradient ∇R and expressed as
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Ĝ(σ ) = Ĝ
(σ )
(0) + Ĝ

(σ )
(2) + Ĝ

(σ )
(4) + . . . where

Ĝ
(σ )
εn, (0)(p; R) =

[
iεn − ε(p) + σI −σ�p(R)

σ�∗
p(R) −iεn − ε(p) − σI

]−1

= 1

ε(p)2 − (iεn + σI )2 + |�p(R)|2

×
[−iεn − ε(p) − σI σ�p(R)

−σ�∗
p(R) iεn − ε(p) + σI

]
,

(45)

Ĝ
(σ )
εn, (2)(p,R) = Ĝ

(σ )
(0)

[
vp · ∂R

(
Ĝ

(σ )
(0) vp · ∂RĜ

(σ )
(0)

)]
,

Ĝ
(σ )
εn, (4)(p,R) = Ĝ

(σ )
(0)

(
vp · ∂R

{
Ĝ

(σ )
(0) vp · ∂R

[
Ĝ

(σ )
(0) vp · ∂R

× (
Ĝ

(σ )
(0) vp · ∂RĜ

(σ )
(0)

)]})
, (46)

∂R =
⎧⎨
⎩

� = −i∇R − 2eA(R) for �(R),
�† = −i∇R + 2eA(R) for �∗(R),

−i∇R otherwise.
(47)

The mean field free energy associated with the SC order
can be constructed in the way36

f�(qLO)

=
〈 |�(R)|2

|g| + T

2

∞∑
εn=−∞

∑
p,σ

∫ ∞sε

εn

dω Tr
[
iσ̂zĜ

(σ )
ω (p,R)

]〉
sp

.

(48)

By using the relations (45) to (48), the free-energy func-
tional is expanded as a power series in the gradient ∇R and in
the AFM order parameter m and takes the form

f� = f�(qLO) + fm

= f�,(0) + f�,(2) + f�,(4) + . . . + f (2)
m + f (4)

m + . . . .

(49)

The concrete expression of each f�,(n) expressing the nth-
order term in the gradient is

f�,(0) =
〈 |�(R)|2

|g| − T
∑
εn>0

∑
p

ln

[{
ε2
n + [ε(p)]2 + |�p(R)|2 − I 2

}2 + 4ε2
nI

2{
ε2
n + [ε(p)]2 − I 2

}2 + 4ε2
nI

2

]〉
sp

,

f�,(2) =
〈
T

∑
εn>0

∑
p

[
a2

1 − b2
1(

a2
1 + b2

1

)2 |vp · ��p(R)|2 + 2

3

{2[ε(p)]2 − ε2
n + I 2 − |�p(R)|2}(a4

1 − 6a2
1b

2
1 + b4

1

) − 4a1b
2
1

(
a2

1 − b2
1

)
(
a2

1 + b2
1

)4

× [vp · ∇|�p(R)|2]2

]〉
sp

,

f�,(4) �
〈

2T

3

∑
εn>0

∑
p

[{
2[ε(p)]2 − ε2

n + I 2 − |�p(R)|2}(a4
1 − 6a2

1b
2
1 + b4

1

) − 4a1b
2
1

(
a2

1 − b2
1

)
(
a2

1 + b2
1

)4 |(vp · �)2�p(R)|2
]〉

sp

, (50)

respectively, where a1 = [ε(p)]2 + ε2
n + |�p(R)|2 − I 2, and b1 = 2εnI . On the other hand, the terms f (2)

m and f (4)
m describing the

mean field AFM ordering are expressed as

f (2)
m =

〈[
1

U
+ T

2

∞∑
εn=−∞

∑
p,σ

Tr

(
2∑

j=1

Aj âj Ĝ
(σ )
εn, (0)(p; R)b̂j Ĝ

(αj )
εn, (0)(p + Q0 + q; R)

)]
|m(R)|2

〉
sp

,

f (4)
m =

〈
T

4

∞∑
εn=−∞

∑
p,σ

Tr

(
5∑

j=1

A′′
j â

′′
j Ĝ

(σ )
εn, (0)(p; R)b̂′′

j Ĝ
(α′′

j )
εn, (0)(p + Q0 + q; R)ĉ′′

j Ĝ
(β ′′

j )
εn, (0)(p; R)d̂ ′′

j Ĝ
(γ ′′

j )
εn, (0)(p + Q0 + q; R)

)
|m(R)|4

〉
sp

,

(51)

and the coefficients Aj , αj , âj , b̂j , A′′
j , α′′

j , β ′′
j , γ ′′

j , â′′
j , b̂′′

j , ĉ′′
j ,

and d̂ ′′
j are represented in Tables IV and V.

Finally, the concrete expressions of the free energy f (2)
m and

f (4)
m in Eq. (51) are represented by

f (2)
m =

〈[
1

U
+ 2T

∑
εn>0

∑
p

(
2∑

j=1

AjV
(2)
m, j (p,q; R)

)]

× |m(R)|2
〉

sp

,

f (4)
m =

〈
T

∑
εn>0

∑
p

(
5∑

j=1

A′′
jV

(4)
m, j (p,q; R)

)
|m(R)|4

〉
sp

, (52)

where the details of V
(2)
m, j and V

(4)
m, j will be given in the

Appendix.

A. Results

Now, numerically obtained results on the phase diagram
will be explained in the following. Figures 4(a)–4(d) show
field versus temperature (H -T ) phase diagrams including the

TABLE IV. Coefficients αj , Aj , Bj in Eq. (51).

j αj Aj âj b̂j

1 −σ cos2 θ 1̂ 1̂
2 σ sin2 θ σ̂z σ̂z
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TABLE V. Coefficients α′′
j , β ′′

j , γ ′′
j , A′′

j , â′′
j , b̂′′

j , ĉ′′
j , d̂ ′′

j in Eq. (51).

j α′′
j β ′′

j γ ′′
j A′′

j â′′
j b̂′′

j ĉ′′
j d̂ ′′

j

1 −σ σ −σ cos4 θ 1̂ 1̂ 1̂ 1̂
2 σ σ σ sin4 θ σ̂z σ̂z σ̂z σ̂z

3 σ σ −σ 2 cos2 θ sin2 θ 1̂ σ̂z σ̂z 1̂
4 σ −σ σ 2 cos2 θ sin2 θ σ̂z σ̂z 1̂ 1̂
5 σ −σ −σ −2 cos2 θ sin2 θ 1̂ σ̂z 1̂ σ̂z

PPB-induced AFM and FFLO orders obtained at some fixed
angles and in the Pauli limit with no orbital pair breaking.
In each figure, the thick solid (black) curve denotes the
first-order Hc2 transition line, and the dotted (red) one denotes
the second-order transition line separating the FFLO phase
from the uniform SC (U) phase corresponding to the ordinary
Abrikosov lattice. For θ � 20◦, the AFM transition occurring
on the dashed (blue) curve is also of second order (see,
however, Fig. 7). The additional solid (green) curve lying
below the Hc2 line in (a) denotes a transition line separating
the two different AFM-FFLO coupled structures shown in
Fig. 1 from each other. As examined in Ref. 14, in the parallel
fields case shown in Fig. 4(a), AFM order tends to appear
just in the FFLO phase because AFM order is induced by

PPB effects and, in addition, is stabilized by taking a spatial
modulation commensurate to the FFLO modulation parallel
to the magnetic field. However, the relative phase between
the spatial modulations of AFM and FFLO may be changed
depending upon the field strength. As Fig. 4(a) shows, the AFM
order favors coexistence [i.e, the structure of Fig. 1(a)] with
the nonvanishing SC order in real space in higher fields, which
is a feature consistent with the NMR data,8 and a structural
transition is expected to occur on the additional solid (green)
curve with decreasing the field in the HFLT phase.

The resulting angular dependence of the AFM-ordered
region in this Pauli-limited model is similar to that in the
preceding section. With tilting the field away from the super-
conducting plane, the nesting condition for the AFM ordering
becomes gradually unsatisfactory because the magnetic field
component parallel to the AFM moment m ‖ c (Refs. 11, 12,
and 27) is increased by the tilt so that the incommensurate AFM
wave vectors for different spin components do not coincide
with each other when θ �= 0◦. Therefore, as shown in Fig. 4(b),
AFM order tends to be suppressed by the tilt even without
the orbital pair breaking. However, the primary origin of this
AFM order in the SC order, i.e., the PPB effect, is enhanced
with increasing the field. Due to a competition between this
field-induced enhancement of PPB and the above-mentioned
less complete nesting condition due to the field tilt, the
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FIG. 4. (Color online) Angular dependence of the H -T phase diagrams in the Pauli limit. In this calculation, the parameter values
Tc/U = 0.01597, t1/Tc = 15, t2/t1 = −1.5, t3/t1 = 0.65, t4/t1 = 0.5, and μ/t1 = 1.85 are used. In each of the four figures, the thin solid
(green) line in (a) denotes a structural transition on the relative configuration between the spatially modulated AFM order and the FFLO one
(see the text), while the remaining curves are defined in the same manner as those in Fig. 3. The uniform SC (U) phase corresponds to the
Abrikosov lattice (A) in Fig. 3, i.e., the case including the orbital pair breaking.
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resulting AFM phase is pushed down to lower fields within
the FFLO phase. Thus, the pure (nonmagnetic) FFLO state
appears between the AFM-ordered region and the Hc2 line.
In contrast to the GL approach in the preceding section, we
have not assumed an anisotropy of the g factor. For this
reason, the resulting Hc2 curve in Fig. 4 is independent of the
angle. A more realistic angular dependence of the H -T phase
diagram in the Pauli limit is trivially obtained by properly
changing the scale of the ordinate of the Figs. 4(b) to 4(d). It
is remarkable that, nevertheless, the real-space structure of the
AFM order is highly sensitive to the field tilt: The in-phase
structure, FFLO + AFM(1) in the figure (a), [i.e., Fig. 1(a)],
seen in the parallel field case is lost by a small tilt of the field,
and the resulting AFM order for θ �= 0◦ basically takes the
out-of-phase structure [FFLO + AFM(2)] defined in Fig. 1(b).
It seems that a weaker AFM ordering leads to the out-of-phase
structure in which the AFM order appears in the region where
the SC energy gap vanishes.

We need to stress that the out-of-phase configuration
[Fig. 1(b)] of the AFM order is realized in many situations
in the present Pauli limit in contrast to the fact that only the
in-phase configuration [Fig. 1(a)] is realized in Sec. II where
the orbital pair-breaking effect is also included. The origin of
such a difference in the AFM spatial configuration parallel to
H consists in the GL expansion in powers of � used in the
preceding section. The main contribution to the free-energy
density necessary for obtaining the PPB-induced AFM order
is Eq. (35) in the GL approach in Sec. II, or equivalently the
anomalous term in the susceptibility −χ (an) in Refs. 13 and 14.
We note that, in the Pauli limit in the present section, the
−χ (an) contribution is included in f (2)

m . Then, let us consider
such a coupling term corresponding to −χ (an) in the following
simplified form:

fcp(r) = −Ccp
|�(r)|2|m(r)|2
1 + Dcp|�(r)|2 , (53)

where the r-independent coefficients Ccp and Dcp are positive.
The GL approach is valid for small enough Dcp values. Then,
substituting Eqs. (11) and (14) into Eq. (53), it is readily
seen that the in-phase configuration [Fig. 1(a)] is more stable.
In contrast, in the situation deep in the SC state where the
GL approach is not effective, the coefficient Dcp may have
a substantial magnitude. For brevity, if considering the limit
of a large Dcp, the energy gain due to fcp in the in-phase
configuration is suppressed by an increase of the denominator
in Eq. (53), and the out-of-phase configuration is rather
stabilized. In this manner, it is understood why the in-phase
configuration is realized in higher fields near Hc2. Further,
since the field tilt destabilizes the AFM order closer to Hc2, it
is understood why the out-of-phase configuration of the AFM
order becomes more dominant in the HFLT phase with tilting
the field from the a-b plane.

Here, we discuss the angular dependence of the resulting
AFM wave vector consistent with the phase diagrams Fig. 4. In
a previous work14 focusing on the parallel field configuration
H ⊥ c, we have shown how the AFM wave vector insensitive to
the field11,12 is explained within the present approach. Below,
we explain how the AFM wave vector insensitive even to
the tilt angle27 follows from the present theory. To do this,
we present Fig. 5(a) showing the projection of the Fermi
surface (FS) onto the px-py plane. In the present case with a
component of the magnetic field parallel to the AFM momemt
(‖ c), a Zeeman splitting of the AFM wave vector occurs.
That is, the wave vector q↑ satisfying the nesting condition for
the up-spin quasiparticles is different from the corresponding
one q↓ for the down-spin quasiparticle. It is easily seen that
|q↑| > |q↓| (see Fig. 5). In Fig. 5(a), the solid red (blue) curve
denotes FS of up- (down-) spin quasiparticles, while the red
(blue) arrow represents Q0 − q↑ (Q0 − q↓) vector projected
onto the px-py plane, respectively. In Fig. 5(b), FSs projected
on the px(= py)-pz plane are indicated by the solid curves,
and the dashed red (blue) curve denotes the q↑ shift (q↓
shift) of each FS, and the red (blue) arrow there represents the
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FIG. 5. (Color online) Fermi surface (FS) of the px-py plane (a) and py(= px)-pz plane (b) obtained from the dispersion relation (41),
where the parameters t1/Tc = 15, t2/t1 = −1.5, t3/t1 = 0.65, t4/t1 = 0.5, and μ/t1 = 1.85 were used, and the c(= ẑ) axis was chosen as the
spin-quantization axis. The FS for up-spin and down-spin quasiparticles is described as a red solid and blue solid curve, respectively. The red
(blue) arrow in (a) represents the Q0 − q↑ (Q0 − q↓) vector projected in the px-py plane, while the red (blue) arrow in (b) represents the q↑
(q↓) vector projected in the py-pz plane. With increasing the Zeeman splitting, |q↑| (|q↓|) becomes smaller (larger).
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FIG. 6. Angular dependence of the incommensurate vector q
resulting from the FS at T/Tc = 0.05 and H/HP = 0.9. The decrease
of q by tilting the field is very small below θ = 20◦ and |q| is
seemingly independent of the angle. This feature is consistent with
the experimental fact (Ref. 27).

corresponding projection of q↑ (q↓), respectively. This figure
shows that the distortion of FS along the c direction does not
affect the direction of the incommensurate wave vector.

In this calculation, we find that the AFM structure with
lower free energy is reached by assuming that, reflecting the
difference in the density of states between the up-spin and
down-spin quasiparticles, Q0 − q↑ plays the role of the AFM
wave vector to be realized. Thus, hereafter the structure of the
AFM order will be discussed based on this choice of q. Figure 6
shows an example of the resulting angular dependence of the
incommensurate wave vector |q|. In general, we find that |q|
decreases as θ is larger. However, the extent of the decrease
is quite small in |θ | < 20◦ where the AFM order is realized.
Therefore, |q| is seemingly independent of the angle. We note
that, in the neutron diffraction measurements27 performed in
the tilted configuration, |q| has been insensitive to the tilt angle
of the magnetic field from the a-b plane. At this stage, however,
we can not exclude the possibility that this consistency with

the experimental data27 may be based largely on the local
approximation used in this work (see Sec. II).

We note that, in the present Pauli-limited model, the FFLO
order is not suppressed sufficiently by the field tilt. This
seemingly inconsistent behavior with experimental facts is a
result of our neglect in this model of the orbital pair-breaking
effect. As seen in the preceding section, inclusion of the orbital
pair-breaking effect recovers a tilt-induced reduction28–30 of
the FFLO-ordered region.

Before ending this section, the character of the AFM
transition in the HFLT phase will be discussed when θ �= 0◦.
As already mentioned, the nonmagnetic FFLO region with
no AFM order inevitably appears even in the parallel field
(θ = 0◦) case in the present approach neglecting the AFM
fluctuation, and the character of the resulting AFM transition
in the HFLT phase is of second order.13,14 As shown in
Fig. 7(a), this second-order character is maintained for a
smaller θ �= 0◦ and/or in the high-temperature side of the HFLT
phase. However, at low enough temperatures and/or at larger
tilt angles (θ > 20◦), this transition is nearly of first order, as
seen in Fig. 7(b). In fact, such a sharp vanishing of the AFM
moment at a higher field in the HFLT phase has been seen in
the recent NMR data in θ �= 0.30

IV. SUMMARY

In this paper, we have investigated, within the mean field
approximation, how the high-field low-temperature (HFLT)
SC phase found in CeCoIn5 in the parallel field configuration
is changed by rotating (or tilting) the field direction from the
basal plane. Since it is difficult at present to perform a complete
analysis incorporating various features of the ordered states
due to PPB effects on the same footing, we have examined two
models separately to obtain basic knowledge on the present
issue. In one model, we have incorporated the orbital pairing
breaking, i.e., the presence of the vortices, while, instead, the
GL expansion in the SC order parameter � has been assumed.
Due to the use of the GL expansion in �, the relative structure
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FIG. 7. (Color online) Field dependence of the coefficient of the quartic term in the AFM order parameter |m|, defined as the ratio f (4)
m /|m|4

at the reduecd temperature t = 0.02 (black), 0.01 (red), and 0.005 (blue) and for (a) θ = 20◦ and (b) 23◦. On each curve, the AFM transition
field is indicated by an arrow with the corresponding color by assuming the transition to be of second order. Thus, if, as in the figure (b),
f (4)

m /|m|4 is negative at the (assumed) AFM transition field, the real AFM transition should be a discontinuous or a nearly discontinuous one.
Although our results on this quantity suggest that the AFM transition in the HFLT phase tends to become of first order with tilting the field in
θ < 30◦, this does not necessarily imply the absence of a quantum critical behavior in H ‖ c.
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in real space between the resulting AFM order and the FFLO
modulation is found not to become consistent with the recent
experimental data.30 Instead, we have found such a feature
consistent with the experimental data28,29 that the field range
of the HFLT phase, identified with the FFLO state itself, in
the H -T phase diagram is significantly reduced with tilting
the field because the orbital pair breaking included in this
GL approach becomes more important, due to the uniaxial
crystalline anisotropy, with tilting the field.

On the other hand, to improve our understanding on the
details of the resulting AFM order in real space, we have
also examined the Pauli-limited model, in which � is uniform
in the plane perpendicular to the field due to the neglect of
the orbital pair breaking, while the GL expansion in � is
not assumed. Due to the neglect of the orbital pair breaking,
the FFLO ordering is overestimated in this model, and the
correct angular dependence of the FFLO region is not obtained.
Instead, reflecting higher-order couplings between the AFM
and SC order parameters which are absent in the GL approach
in Sec. II, both of the two different configurations, illustrated
in Fig. 1, of the AFM and FFLO structures parallel to the
field are obtained in the parallel field configuration with a field
dependence qualitatively consistent with the data.8

The main result in this work is the angular dependence of the
AFM-ordered region in the FFLO phase found commonly both
in our two models in the preceding two sections. Originally,
an increase of the magnetic field enhances PPB effects,
i.e., the present AFM ordering, while the c-axis component
of the magnetic field induced by tilting the field direction
from the basal plane makes the nesting condition for the AFM
unsatisfactory as far as the AFM moment is parallel to the c

axis.11,12,27 These two competitive roles of the tilted magnetic
field for the AFM ordering shift the field range, in which
the AFM ordering is maximal, to lower fields than Hc2(0).
Consequently, when tilting the field, the AFM order is first
lost in the high-field range just below the Hc2(T ) line. This
strikingly coincides with the feature seen through a NMR
measurement30 in the angular dependence of the AFM-ordered
region in the HFLT phase of CeCoIn5. In addition, this type
of reduction of the AFM order suggests that, at higher tilt
angles, a remaining AFM quantum critical point (AFM-QCP)
should lie at a slightly lower field than Hc2(0). This expected
position of the AFM-QCP seems to be consistent with the
experimental facts16,31 in H ‖ c which show an AFM-QCP
not coinciding with Hc2(0) but lying clearly below it. Further,
we have found, in the Pauli limit where the GL expansion
in � is not used, that inclusion of an effect suppressing the
AFM ordering in the FFLO state, such as the field tilt, results
in the formation of the AFM order close to the FFLO nodal
planes. It means that, as seen in Figs. 4(b)–4(d), a field tilt

from the in-plane field configuration results in the structure
illustrated in Fig. 1(b) in contrast to the high-field behavior in
the in-plane field configuration seen in Fig. 4(a). This change
on the AFM ordering by the field tilt has also been found
in recent NMR data on the angular dependence of the HFLT
phase of CeCoIn5.30

The present theory on the high-field AFM ordering in
superconductors with strong PPB is the first study on the
angular (θ ) dependence of the HFLT SC phase found in
CeCoIn5. Further, even if focusing on the parallel field case
with θ = 0, this is different from other works.23–25 First of
all, our works take account of correlation between the AFM
and the FFLO orders, while just the AFM order has been
considered as a consequence of PPB elsewhere.24,25 We stress
that the region with no AFM order in the HFLT SC phase has
been realized at least by the field tilt.30 Second of all, our works
explain coexistence of the AFM order and the nonvanishing
SC order parameter in real space which has been seen in the
higher half of the field range of the HFLT phase in θ = 0,8

while the picture in Ref. 23 requires the resulting AFM order
at any field-tilt angle to, as in Fig. 1(b), localize close to the
FFLO nodal plane.

Finally, we should comment on the local approximation
used to simplify our treatment. Effects of the FFLO order on
the AFM order are incorporated even in this approximation.
However, as explained in the text of Sec. II, in this local
approximation, the couplings between the AFM and the SC
orders of higher orders in the FFLO wave number |qLO |
are neglected. This higher-order coupling would describe
possible effects of the AFM order on the FFLO order and
thus, on the Hc2(T ) curve at low temperatures. In addition, as
mentioned in Sec. III, it is possible that the incommensurate
AFM wave vector insensitive to the angle of the applied field
might be largely due to the use of this approximation. Further
study including these higher-order couplings will be reported
elsewhere.
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APPENDIX

The GL free-energy functional in Eq. (21) can be obtained
simply by extending the previous analysis4,34 to the present
tilted case, and its each term is given by
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+ d3b1

[
ε2
n + I 2 − ε(p + Q0 + q)2 − 2ε(p)ε(p + Q0 + q) − |�p+Q0+q(R)|2 − 2�p(R)�∗

p+Q0+q(R)
]]

,

V
(4)
m, 4(p,q; R) = 2(

a2
1 + b2

1

)(
c2

4 + d2
4

) [c4
([

ε2
n + I 2 − ε(p)ε(p + Q0 + q) − �p(R)�∗

p+Q0+q(R)
]

× [
ε2
n − I 2 − ε(p)ε(p + Q0 + q) − �p(R)�∗

p+Q0+q(R)
] − ε2

n{[ε(p) + ε(p + Q0 + q)]2

+ |�p(R) + �p+Q0+q(R)|2} + I 2[ε(p)2 − ε(p + Q0 + q)2 + |�p(R)|2 − |�p+Q0+q(R)|2]

− |�p(R)ε(p + Q0 + q) − �p+Q0+q(R)ε(p)|2)
+ d4b1

[
ε2
n + I 2 − ε(p)2 − 2ε(p)ε(p + Q0 + q) − |�p(R) + �p+Q0+q(R)|2 + |�p+Q0+q(R)|2]],

V
(4)
m, 5(p,q; R) = 2(

a2
1 + b2

1

)(
a2

2 + b2
1

)([ε2
n − I 2 − ε(p)ε(p + Q0 + q) − �p(R)�∗

p+Q0+q(R)
]2 + b2

1

− (
ε2
n + I 2

){[ε(p) + ε(p + Q0 + q)]2 + |�p(R) + �p+Q0+q(R)|2}
− |�p(R)ε(p + Q0 + q) − �p+Q0+q(R)ε(p)|2)

with

a2 = ε2
n + ε(p + Q0 + q)2 + |�p+Q0+q(R)|2 − I 2,

c1 = a1a2 + b2
1, d1 = b1(a2 − a1),

c2 = a1a2 − b2
1, d2 = b1(a1 + a2), (A3)

c3 = a2
1 − b2

1, d3 = 2a1b1,

c4 = a2
2 − b2

1, d4 = 2a2b1.

Here, we assume the Q2D Fermi surface distorted along the c direction. It leads to an incommensurate wave vector of the AFM
order directed to [1,1,0] in the H ‖ ab case.
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