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Possible charge analogs of spin-transfer torques in bulk superconductors
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Spin transfer torques (STTs) occur when electric currents travel through inhomogeneously magnetized systems
and are important for the motion of magnetic textures such as domain walls. Since superconductors are easy-plane
ferromagnets in particle-hole (charge) space, it is natural to ask whether any charge duals of STT phenomena exist
therein. We find that the superconducting analog of the adiabatic STT vanishes in a bulk superconductor with a
momentum-independent order parameter, while the superconducting counterpart of the nonadiabatic STT does
not vanish. This nonvanishing superconducting torque is induced by heat (rather than charge) currents and acts on
the charge (rather than spin) degree of freedom. It can become significant in the vicinity of the superconducting
transition temperature, where it generates a net quasiparticle charge and alters the dispersion and linewidth of
low-frequency collective modes.
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I. INTRODUCTION

Recent advances in spintronics1 have established an equa-
tion that captures the low-energy magnetization dynamics of
conducting ferromagnets with smooth magnetic textures:

˙̂� = Heff × �̂ + �̂ × ᾱ ˙̂� − vT ·∇�̂ − �̂ × β̄vT · ∇�̂,

(1)

where �̂ is the direction of magnetization, ˙̂� = ∂�̂/∂t , and
Heff is a sum of external, anisotropy, and exchange fields.
The gyromagnetic ratio has been absorbed into Heff so that
this quantity has energy units. Likewise, we set h̄ = kB = 1
throughout. The tensor ᾱ = αij is the Gilbert damping and vT

is the “spin velocity,” proportional to the drift velocity of the
quasiparticles under an electric field. When vT = 0, Eq. (1)
is known as the Landau-Lifshitz-Gilbert (LLG) equation.
Transport currents lead to vT �= 0 and influence the state of
noncollinear magnetic systems by exerting a spin transfer
torque (STT) on the magnetization. The expression vT · ∇�̂

is known as the adiabatic or Slonczewski STT that results
when the spins of current-carrying quasiparticles follow the
underlying magnetic landscape; �̂ × β̄vT · ∇�̂, where β̄ =
βij is a matrix, is known as the nonadiabatic STT.

Partly because of its promise for magnetoelectronic appli-
cations, and partly because the quantitative description of order
parameter manipulation by out-of-equilibrium quasiparticles
poses great theoretical challenges, the study of STT has
developed into a major research subfield of spintronics.

The objective of this paper is to translate some of the
aforementioned developments to the field of nonequilibrium
superconductivity. It has been long known2 that a supercon-
ductor can be characterized as an XY ferromagnet in charge
space, in which electron (hole) degrees of freedom play the
role of spin-up (spin-down). Although this analogy has been
fruitfully exploited,3 its emphasis has been placed on the
equilibrium properties.4 In fact, the field of nonequilibrium
superconductivity flourished, peaked, and was deemed under-
stood without reference to magnetism and before the advent of
spintronics and spin torques.5–7 In this paper, we propose the
existence of a direct analog of the adiabatic and nonadiabatic
STT in superconductors and extract some of its physical
consequences.

II. LANDAU-LIFSHITZ EQUATIONS FOR
SUPERCONDUCTIVITY

We begin from the effective Hamiltonian describing the
electronic states of a conventional s-wave superconductor near
the Fermi energy:8

H =
∑

k

�̂
†
k(ξkτ

z − 	τx)�̂k +
∑

q

uimp(q)ρ̂z
−q

− g

4

∑
q

(
ρ̂x

q ρ̂x
−q + ρ̂y

q ρ̂
y
−q

) + 1

2

∑
q

Vqρ̂
z
qρ̂

z
−q, (2)

where g is the short-range attractive interaction, Vq is
the long-range Coulomb repulsion (e.g., Vq = 4πe2/q2 and
Vq = 2πe2/q in three and two dimensions,9 respectively),
uimp is a random nonmagnetic disorder potential, �̂k =
(ψk↑,ψ

†
−k↓) is the Nambu spinor for spin-up electrons and

spin-down holes, ξk = k2/(2m) − μ is the kinetic energy
measured from the Fermi energy μ, 	 = g〈ψ↑ψ↓〉eq is the
mean-field (BCS) superconducting gap (chosen to be real and
spatially uniform), 〈. . .〉eq is the equilibrium expectation value,
and τ i (i ∈ {x,y,z}) are Pauli matrices. In addition,

ρ̂i
q =

∑
k

[�̂†
k−qτ

i�̂k − 〈�̂†
k−qτ

i�̂k〉eq] (3)

are the generalized density operators associated with am-
plitude and phase fluctuations of the superconducting order
parameter (ρ̂x and ρ̂y , respectively), as well as to charge
fluctuations (ρ̂z). Under a weak external perturbation V ext,
the density operators in Eq. (3) acquire an expectation value

δρi(q,ω) = χij (q,ω)V ext
j (q,ω), (4)

where ω and q are the frequency and wave vector of the
perturbation, and a sum over repeated indices is implied.
The many-body density response function χ can be con-
veniently evaluated via χ−1 = (χQP )−1 − U , where U =
diag(g/2,g/2, − Vq), and

χ
QP
jj ′ (q,ω) =

∑
nn′

(fn′ − fn)
〈n′|τ j eiq·r|n〉〈n|τ j ′

e−iq·r|n′〉
εn − εn′ − ω+

(5)
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is the quasiparticle (one-body) response function to the sum
of external and induced (Uδρ) perturbation. Here, εn and |n〉
are the eigenvalues and eigenvectors of the one-body part of
Eq. (2), and fn is the quasiparticle occupation factor. Also,
ω+ = ω + i0+. In the limit V ext → 0, the dynamics of order
parameter fluctuations follows from⎛
⎜⎝

χQP
xx − 2

g
0 0

0 χQP
yy − 2

g
χQP

yz

0 χQP
zy χQP

zz + 1
Vq

⎞
⎟⎠

⎛
⎝ δ	x

δ	y

eφ

⎞
⎠ = 0, (6)

where δ	x = (−g/2)δρx and δ	y = (−g/2)δρy are order
parameter amplitude and phase fluctuations, and eφ = Vqδρ

z

is the electrostatic potential energy. The dispersion ω(q)
of superconducting collective modes is determined from
det(χQP − U−1) = 0. In Eq. (2) we have set the equilibrium
supercurrent to zero. Consequently, amplitude fluctuations
are decoupled from phase and charge fluctuations in linear
response and are unimportant10 for ω 
 	.

In equilibrium (i.e., when fn is the Fermi distribution),
approximate expressions for χQP are known both in clean
(ωτ � 1)8 and disordered11,12 superconductors.

Near T = 0 and for (ω,qvF ) 
 	, the coupled phase and
charge fluctuations obey(

ω2

2	2 − 1
2	2

ns

n

v2
F q2

d
i ω

	

−i ω
	

2 + 1
N0Vq

) (
δ	y

eφ

)
= 0, (7)

where N0 is the density of states of the normal state at the
Fermi energy, d is the dimensionality of the sample, n is the
density of electrons, and ns is the T = 0 superfluid density
given by ns � n for 	τ � 1 and ns � nπ	τ for 	τ 
 1
(τ−1 is the disorder scattering rate). The collective mode is an
ordinary plasmon with ω±(q) = ±[2N0v

2
F Vqq

2(ns/nd)]1/2. In
three dimensions, |ω±(q)| � 2	 for all q, thus invalidating
Eq. (7). Plasmons with |ω±(q)| 
 2	 are present in lower
dimensions,13–15 where Vq diverges more slowly than q−2.

It is instructive to rewrite Eq. (7) as

iωδρy = −4	

g

(
Vq + 1

2N0

)
δρz,

(8)

iωδρz = g

2	
N0

ns

n

v2
F q2

d
δρy.

These equations can be viewed as the Landau-Lifshitz equa-
tions for a ferromagnet with “magnetization” 4	/g and an
equilibrium orientation along x. The right-hand side (r.h.s.) of
the first line is the z component of the anisotropy field;16

it originates from the energy cost associated with charge
fluctuations and diverges at q → 0 due to the long-range
character of Coulomb repulsion. The r.h.s. of the second
line is the (minus) exchange field, which corresponds to the
divergence of the supercurrent. The x and y components of the
anisotropy field vanish, as expected from the U (1) symmetry
of the order parameter. Damping terms are absent as well
because there are no quasiparticles for T → 0 and ω 
 2	.
Thus, a superconductor is akin to an insulating, easy-plane
ferromagnet.

The superconducting dynamics becomes richer when the
number of quasiparticles is significant. For T � Tc (where Tc

is the critical temperature) and (2	,τ−1) � ω � Dq2, Eq. (7)

is modified11 to(
ω2I−v2

F q2ns/(nd)
2	2 i ω

	
I

−i ω
	

I 2I + 2iDq2

ω
+ 1

N0Vq

) (
δ	y

eφ

)
= 0, (9)

where I = π	/(4T ) and D = v2
F τ/d is the diffusion con-

stant. The superfluid density near Tc satisfies ns/n �
7ζ (3)/(4π2)	2/T 2 for Tcτ � 1 and ns/n � (π/2)(	τ )	/T

for Tcτ 
 1.
In this case, the type of collective mode depends on the

magnitude of ω/(Dq2) relative to N0Vq. In three dimensions
(3D), ω/(Dq2) 
 N0Vq always and Eq. (9) yields the Carlson-
Goldman (CG) mode:17 ω±(q) � ±(v2

Gq2 − γ 2
G)1/2 − iγG,

where vG = vF [ns/(nId)]1/2 and γG = ns/(2nτ ) are the
velocity and damping of the mode. In two dimensions (2D),
ω/(Dq2) � N0Vq can be satisfied at small momenta and
therefore a gapless plasmon with ω(q) = ±(4πe2ns/m)1/2q1/2

emerges in the regime ω 
 γG. This mode is replaced by the
CG mode when ω � γG.

It is again instructive to write Eq. (9) in terms of δρi :

iωδρy = −4	

g

(
Vq + 1

2IN0
+ i

Dq2Vq

Iω

)
δρz,

(10)

iωδρz = g

2	
N0

ns

n

v2
F q2

d
δρy + 2N0Dq2Vqδρ

z.

The first line of Eq. (10) is essentially the Josephson relation
containing a damping term, which does not have the Gilbert
form. This is because inelastic scattering processes have been
ignored in the derivation of Eq. (10). If one incorporates
inelastic scattering in the damping term via11 ω → ω + iτ−1

E ,
where τ−1

E is the inelastic scattering rate, then in the limit
ω 
 τ−1

E the damping term becomes Gilbert-like with a
coefficient

αzz = 16

π

Vq

g
(T τE)Dq2τE. (11)

Remarkably, αzz is independent of momentum in 3D but
it vanishes for q → 0 in lower dimensions.18 There are
additional peculiarities of Eq. (11) compared to what is
customary in ferromagnetic metals. On one hand, although
inelastic scattering is acknowledged to be ultimately necessary
for magnetization relaxation in conducting ferromagnets, a
response function calculation with purely elastic disorder
suffices to produce a Gilbert damping term therein.19,20 This is
not the case in a superconductor, as evidenced by Eq. (10). On
the other hand, Eq. (11) is proportional to τ 2

E , which is neither
the conductivitylike nor resistivitylike scaling that one is
accustomed to in conducting ferromagnets. These differences
might be partly reconciled by building a microscopic theory
of magnetization damping for insulating ferromagnets near the
Curie temperature.

The second line of Eq. (10) is the current continuity
equation; its last term on the right-hand side is the divergence
of the quasiparticle current σ∇ · E, where σ = 2N0e

2D is the
conductivity and E = −∇φ is the electric field. In magnetic
language, σ∇ · E is a Bloch-like relaxation term. The reason
for αyy = 0 in the continuity equation can be explained
from the breathing Fermi surface picture of magnetism:21

the energy spectrum is invariant under spatially uniform
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changes of the phase of the order parameter. In contrast,
changing δρz (or φ) modifies the energy spectrum and produces
instantaneously-out-of-equilibrium quasiparticle populations,
which upon relaxation culminate in αzz �= 0.

III. SUPERCONDUCTING ANALOGS OF SPIN TORQUES

So far we have reinterpreted the known dynamics of the
superconducting order parameter from the point of view of
magnetism. The response functions discussed above involved
quasiparticles in equilibrium with the condensate. In magnets,
transport currents drift quasiparticle populations away from the
Fermi distribution, and the ensuing change in the spin response
function constitutes the microscopic mechanism for STT.22–24

Next, we search for a dual phenomenon in superconductors.
Departures of the quasiparticle distribution function from

equilibrium, denoted as δfk, can be classified according to
their parities25 under k → −k and under ξk → −ξk. Here
we concentrate on “transport perturbations,” for which δfk =
−δf−k. Neglecting O(T/μ) terms, transport perturbations that
are even (odd) in ξk induce electrical (heat) currents. The
change in the quasiparticle response function under such
perturbation, denoted as δχQP , is an odd power of q in
centrosymmetric superconductors.

We evaluate δχQP by replacing |n〉 and εn in Eq. (5) with the
eigenvectors and eigenvalues of the clean BCS Hamiltonian
in Nambu representation, and by shifting fn away from the
Fermi distribution. This approximate approach to the full
nonlinear response is believed19,24 to provide a semiquanti-
tative microscopic understanding of STT in magnets whose
mean free paths are larger than the order parameter coherence
length. Arguably, it only captures the effect of perturbing the
quasiparticle distribution function and overlooks the effect of
perturbing the quasiparticle eigenfunctions. However, the latter
has a parametrically different dependence on τ and should be
subdominant in superconductors with26 Tcτ � 1. Although
Tcτ � 1 is a rather restrictive condition, it is still relevant to
the dynamics of low-energy collective modes.

A straightforward but delicate computation (see Ap-
pendixes A and B) gives

δχ
QP
jj ′ (q,0) � δjyδj ′y

2πi

qvF

∑
k

δfk
|ξk|
Ek

[
δ

(
k̂ · q̂ − 2ξk

qvF

)

− δ

(
k̂ · q̂ + 2ξk

qvF

)]
(12)

as the leading nonequilibrium correction to the quasiparticle
response in the long-wavelength and low-frequency limit, with
Ek = (ξ 2

k + 	2)1/2. In Eq. (12), the factor multiplying δfk is
odd under ξk → −ξk. Consequently, to leading order in T/μ,
only transport perturbations that are odd under ξk → −ξk can
induce δχ

QP
jj ′ �= 0. In other words, perturbations that generate

electrical currents do not produce an analog of STT in particle-
hole symmetric superconductors, whereas perturbations that
generate thermal currents do. In direct duality, STT in
particle-hole symmetric magnets is induced by electric fields
and not by temperature gradients. Particle-hole asymmetries
enable thermally induced STT in magnets and form the
basis for spin caloritronics.27 Likewise, in a superconductor,

particle-hole asymmetry enables electrically induced analogs
of STT; nevertheless, this effect will be relatively very small.

For a uniform temperature gradient, the relaxation time
approximation25 yields

δfk � τ s
k
Ek

T

∂fk

∂Ek
vk · ∇T , (13)

where τ s
k = τEk/|ξk| and vk = ∂Ek/∂k = vF ξk/Ek. Upon

substituting Eq. (13) in Eq. (12), we have

δχQP
yy (q,0) � −iN0(q · vT )/T , (14)

where

vT = πD

4 cosh2(	/2T )

∇T

T
(15)

is the superconducting dual to the “spin velocity.” Illustrating
the fact that the superconducting STT emerges from the
interplay between the order parameter and quasiparticles,
vT ∝ exp(−	/T ) when T 
 	. At the same time, it will be
apparent below that the influence of vT on the superconducting
dynamics vanishes when T → Tc. Hence, T � 	 is the
optimal temperature to maximize the superconducting STT.
For T � 	, one has vT /vF ∼ (l/L)δT /T , where L is the
linear dimension of the sample, l is the elastic mean free path,
and δT is the temperature difference between the ends of the
sample. Taking δT /T � 0.01 and L � 103l, it follows that
vT � 10−5vF .

Equation (12) is unusual from the point of view of
magnetism. On one hand, δχQP

yz (q,0) = 0 implies that there
is no superconducting counterpart of the adiabatic STT. As
shown in Appendix A, this result emerges from a perfect
cancellation between interband and intraband contributions
[n �= n′ and n = n′ terms in Eq. (5), respectively], each of
which are nonzero in presence of a temperature gradient. Such
cancellation, which has not been found to occur in ordinary
ferromagnets, holds regardless of the temperature and crucially
relies on the momentum independence of the simple BCS gap.
For a momentum-dependent gap, we instead find

δχQP
yz (q,0) = 2i

∑
k

δfk
	k − 	k−q

E2
k − E2

k−q

− (q → −q), (16)

which implies that a superconducting analog of the adia-
batic STT can occur in superconductors. The evaluation of
Eq. (16) for different types of order parameters and transport
perturbations is a potentially interesting problem that will
be addressed elsewhere. For the remainder of this paper, we
restrict ourselves to a momentum-independent gap.

Another peculiarity of Eq. (12) is Im δχQP
yy (q,0) ∝ q · ∇T

and Im δχQP
zz (q,0) = 0, which means that a superconducting

analog of the nonadiabatic STT exists with βyy �= 0 and
βzz = 0. The presence of a nonadiabatic STT in absence of
an adiabatic STT is unheard of in ordinary ferromagnets.
Finally, Re δχ

QP
⊥⊥ (q,0) = 0 is a consequence of inversion

symmetry and has a well-understood correspondence in
magnetism: transport currents do not modify the anisotropy
field of centrosymmetric magnets. For a centrosymmetric
superconductor, the leading reactive (real) terms in δχQP

appear when ω �= 0 and are evaluated in Appendix C. These
contributions arise because the kinetic energy term in Eq. (2)
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acts like a momentum-dependent magnetic field. Analogous
terms in centrosymmetric magnets with spin-orbit interactions
are commonly neglected in the low-frequency and long-
wavelength expansion.

After taking Eq. (14) into account, and having verified (cf.
Appendix D) that amplitude fluctuations remain decoupled
from phase/charge fluctuations in the presence of a temperature
gradient, Eq. (9) is generalized to⎛
⎝ ω2I− v2

F
q2ns

nd

2	2 + δχQP
yy i ω

	
I

−i ω
	

I 2I + 2iDq2

ω
+ 1

N0Vq

⎞
⎠ (

δ	y

eφ

)
= 0.

(17)

The corresponding generalization of Eq. (10) is

iωδρy = −4	

g

(
Vq + 1

2IN0
+ i

Dq2Vq

Iω

)
δρz,

(18)

iωδρz = g

2	
N0

ns

n

v2
F q2

d
δρy + σ∇ · E + ∂δρz

∂t

∣∣∣∣
STT

.

The last term of Eq. (18),

∂δρz

∂t

∣∣∣∣
STT

= igN0
	

T
(q · vT )δρy, (19)

is a nonadiabatic torque induced by a combination of a super-
current and a temperature gradient [the superfluid momentum
is P = −(∇δ	y)/(2	) → ig q δρy/(4	)]. The idea that a
temperature gradient and a spatially uniform supercurrent can
conspire to generate a net quasiparticle charge (also known
as “quasiparticle charge imbalance”) is not new.28–31 Here we
have derived a dynamical version of a similar result from an
alternative viewpoint, without assuming a uniform equilibrium
supercurrent, and have identified it as a manifestation of the
superconducting STT.

Next, we evaluate the influence of the superconducting
STT on low-energy collective modes, which appears to
have remained unexplored in the literature. The magnetic
counterpart of this effect is known to be important.22 Since
we have calculated the STT term for ω → 0, it is legitimate
to question whether Eq. (12) is applicable to collective modes.
The answer is affirmative provided that ω 
 qvF , because
δχQP (q,ω) � δχQP (q,0) under this condition.32

With this proviso, let us begin from the CG mode, for which
both ω/(Dq2) 
 N0Vq and ω 
 qvF are readily satisfied.
When q � γG/vG ≡ qG, Eq. (17) yields ω±(q) � ±vGq −
iγG + δω±(q), where

δω±(q) � ±
(

1 + i
γG

qvG

)
π

4

	2

T 2

q · ∇T

q2
. (20)

For |∇T |/T = 103 m−1 (which should be achievable in meso-
scopic samples) and vF = 5 × 105 m/s, we obtain |Re δω±| �
(	/Tc)1/2Tcτ (qG/q) q̂ · n̂[GHz], where n̂ is the direction of
the temperature gradient. For Tcτ � 1 (which is the regime
for which we have calculated the superconducting STT), this
shift can exceed γG, and thus be observable. When vT = 0,
the ordinary CG mode becomes overdamped at q < qG.
However, vT �= 0 introduces a characteristic momentum, q∗ =
τ q̂ · ∇T , below which a propagating mode reappears33 with

an anomalous dispersion

ω(q) � 7ζ (3)

4π3

v2
Gq2

γG

q

q∗ , (q 
 |q∗|). (21)

Note that q∗ ∈ [−τ |∇T |, + τ |∇T |] as a function of the
angle between q and ∇T . When |∇T |/T = 103 m−1, q∗ �
103 Tcτ q̂ · n̂[m−1] can be of the order of qG. Because of
its q3 scaling, Eq. (21) is compatible with ω � Dq2 only
if Tc/	 � 10, i.e., exceedingly close to Tc.

The influence of the superconducting STT can also be
significant on the gapless plasmon modes that exist for ω 
 γG

in lower dimensional systems. For example, in a 2D supercon-
ductor, the modified plasmon dispersion at T � Tc reads

ω±(q) � ±
√

4πe2ns

m
q + i8πIN0e2D	

q̂ · ∇T

T
, (22)

where we have omitted a subleading term that originates from
Appendix C and changes the real part of the dispersion. In
this case, the requirement ω 
 (qvF ,γG) is rather restrictive:
Eq. (22) is applicable if e2N0ns/n 
 q 
 ns/(e2N0l

2n).
This condition is compatible with Tcτ > 1 only if
Tc[meV]ε[104]/vF [105 m/s] > 0.5, where ε is the dielectric
constant in units of the vacuum permittivity and we have
assumed that the effective electron mass agrees with its value
in vacuum. For a large dielectric constant14 of ε � 2 × 104 and
the aforementioned values of parameters, the bare plasmon
frequency of �0.3q1/2[m−1/2](	/Tc)[GHz] is accompanied
by a STT-induced linewidth of �0.5|q∗[m−1]|1/2(	/Tc)[GHz]
in Eq. (22). It follows that the 2D plasmon gets overdamped
at q � |q∗|.

In Ref. 14, the authors were able to measure the super-
conducting plasmon frequency with an accuracy of ±1 MHz.
With such a resolution,34 the STT-induced linewidth should
be observable in mesoscopic samples (where the total temper-
ature drop across the sample under |∇T |/T � 103 m−1 is a
small fraction of the sample temperature). In sum, perhaps
unexpectedly,35 the plasmon dispersion is affected in the
superconducting phase when the quasiparticles are driven out
of equilibrium by a temperature gradient. This is a genuinely
superconducting effect, as a similar calculation shows that the
nonequilibrium renormalization of the plasmon dispersion in
the normal state is relatively negligible.

When ω � vF q, the superconducting analog of the nona-
diabatic STT vanishes (much like the usual Landau damping
vanishes in the same regime) and δχQP

yz (q,ω) is no longer zero.
Therefore, in this case, the leading influence of a transport per-
turbation in the 2D plasmon dispersion originates from reactive
terms; the outcome is similar to the one described in Appendix
E for a clean superconductor (modulo replacing n by ns).

IV. DISCUSSION

The two lines of Eq. (17) coincide with the time-dependent
Ginzburg-Landau (TDGL) equations derived from the kinetic
theory approach,36 so long as one takes vT = 0 and 1/Vq = 0
in the former and ωτE � 1 in the latter. Neglecting 1/Vq
in Ref. 36 was appropriate for the study of low-energy
dynamics of 3D superconductors near Tc; however, it must
be retained in order to capture the gapless plasmon modes of
lower-dimensional systems.

094511-4



POSSIBLE CHARGE ANALOGS OF SPIN-TRANSFER . . . PHYSICAL REVIEW B 88, 094511 (2013)

Often, the regime of interest for applications of the TDGL
equations is ω 
 τ−1

E . Since we have neglected inelastic
scattering processes in χQP (except for a brief interlude in
the discussion of damping), we cannot make any rigorous
statements in this regime. However, we extrapolate Eq. (17)
to ωτE 
 1 according to the prescription of Ref. 11 and
immediately arrive at

− I

τE

(
eφ − iω

δ	y

2	

)
= ns

n

v2
F q2

d

δ	y

2	
+ i

	

T
(q · vT )δ	y,

(23)

−I

(
eφ − iω

δ	y

2	

)
= Dq2τEeφ,

having neglected 1/Vq in the second line. The combination
of the electrostatic potential and the time derivative of the
superconducting phase appearing on the left-hand side of
Eq. (23) is variously referred to as the gauge-invariant potential
or the condensate chemical potential. Near Tc it approximately
coincides with the difference between the quasiparticle and
condensate electrochemical potentials, which in turn is pro-
portional to the quasiparticle charge imbalance.37 The second
line in Eq. (23) yields the steady-state penetration depth of an
electric field into a superconductor; it remains unchanged in the
presence of a transport perturbation. In sum, Eq. (23) agrees
with the appropriate version of Ref. 36, insofar as vT = 0.
Thus, the superconducting STT term in Eq. (23) appears to
modify the existing TDGL theory, somewhat like the STT
terms in Eq. (1) modify the LLG equations.

Nonetheless, it must be mentioned that a term similar
to the STT in the first line of Eq. (23) has been derived
using the kinetic theory approach, both in the clean and dirty
limits.38 This term was discussed only for the steady state and
for a spatially uniform supercurrent; no observations were
made about its influence in the dynamics (e.g., collective
modes). A possible reason for this is that the effect of the
superconducting STT in the collective modes is small for
macroscopic superconductors. Additionally, at the time of
Ref. 38 it was unfeasible to contemplate connections between
superconductivity and spin torques.

In Ref. 39, an additional term proportional to P · E was
proposed phenomenologically for the first line of Eq. (23).
As shown in Appendix B, our theory indicates that the
coefficient multiplying such term is nonzero only due to
particle-hole asymmetry. Finally, to the best of our knowledge,
the conventional equations of motion for nonequilibrium
superconductivity do not include an analog of the adiabatic
STT, which according to Eq. (16) can exist in superconductors
with a momentum-dependent gap.

Why does the adiabatic torque vanish (via a nontrivial can-
cellation) in a superconductor with a momentum-independent
order parameter? In the presence of an adiabatic STT, the
instantaneous quasiparticle charge imbalance would follow
P · ∇T adiabatically. However, this would be unphysical
unless there was a relaxation mechanism for the charge
imbalance. It turns out that in the absence of inelastic
scatterers, magnetic impurities, and equilibrium supercurrents,
a momentum-dependent gap (in conjunction with elastic
disorder) is the only way to relax the quasiparticle charge
imbalance.40 This, we speculate, may be behind the cancella-
tion of the adiabatic STT in our approach.

V. CONCLUSIONS

Motivated by recent advances in the understanding of
spin torques in magnetic systems, we have revived a known
mathematical correspondence between ferromagnetism and
superconductivity in order to reinterpret the dynamics of a
superconducting order parameter from a “spintronics point of
view.” This approach has enabled us to suggest a nonequilib-
rium superconducting effect that is dual to the nonadiabatic
spin transfer torque (STT) of magnetic systems. This “torque”
acts on the charge degree of freedom, is induced mainly by
temperature gradients, and has its largest magnitude in the
vicinity of the transition temperature. In contrast, the adiabatic
STT of ferromagnets appears to have a superconducting coun-
terpart only if the order parameter is momentum dependent [cf.
Eq. (16)]. These results have been derived from linear response
theory with respect to the transport steady state. Although
less accurate and general than the full nonlinear response
theory, our approach is considerably simpler and is expected to
provide the correct qualitative picture in clean superconductors
at frequencies that exceed the inelastic scattering rates.

The superconducting torque we have identified is behind
a known thermoelectric effect, and leads to previously
unpredicted changes in the dispersion of collective modes. It
remains to be seen whether the superconducting torque will be
effective in altering the configuration of inhomogeneous order
parameter textures (such as vortices and phase-slip centers) at
the meso- and nanoscale. It will also be useful to explore the
spin torque analogs in Josephson junction arrays, as well as in
unconventional superconductors with and without inversion
symmetry.
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APPENDIX A: SUPERCONDUCTING ANALOG OF THE
ADIABATIC STT

As indicated in the main text, in order to evaluate the
change of the quasiparticle response functions under a trans-
port perturbation, we compute Eq. (5) using the eigenstates
and eigenvalues of a clean superconductor, and shift the
quasiparticle distributions away from equilibrium. The eigen-
values are Ek+ = (ξ 2

k + 	2)1/2 ≡ Ek and Ek− = −Ek, and
the corresponding eigenvectors read

|k+〉 =
(− sin θk

2

cos θk
2

)
; |k−〉 =

(
cos θk

2

sin θk
2

)
, (A1)

where cos θk = −ξk/Ek.
The adiabatic STT appears at first order in q [i.e., the first

spatial derivative, cf. Eq. (1)] and zeroth order in ω. Hence we

094511-5



ION GARATE PHYSICAL REVIEW B 88, 094511 (2013)

concentrate on the small-momentum expansion of

χQP
yz (q,0) =

∑
kαβ

(fk+qα − fkβ)

× 〈k + qα|τ y |kβ〉〈kβ|τ z|k + qα〉
Ekβ − Ek+qα − i0+ . (A2)

Noting that 〈k′α|τ y |kβ〉〈kβ|τ z|k′α〉 is purely imaginary, we
write

χQP
yz (q,0) = −

∑
kαβ

fkα

[ 〈kα|τ y |k − qβ〉〈k − qβ|τ z|kα〉
Ekα − Ek−qβ + i0+

−
(

0+ → 0−

q → −q

)]
. (A3)

Then,

Re χQP
yz (q,0) = iπ

∑
kαβ

fkα[〈kα|τ y |k − qβ〉〈k − qβ|τ z|kα〉

× δ(Ekα − Ek−qβ) + (q → −q)]. (A4)

The quantity inside the square brackets is even under q →
−q, which implies that it is even under k → −k as well.
Accordingly, the real part of χQP

yz (q,0) remains zero in
presence of a transport perturbation.

Hereafter we focus on the imaginary part,

Im χQP
yz (q,0)

= −
∑
kαβ

fkα

[
Im[〈kα|τ y |k − qβ〉〈k − qβ|τ z|kα〉]

Ekα − Ek−qβ

− (q → −q)

]
. (A5)

Let us separate the intraband and interband contributions as
ImχQP

yz = Imχ intra
yz + Imχ inter

yz . First, we consider the intraband
part:

Imχ intra
yz (q,0)

� −
∑
kα

fkα

[
Im[〈kα|τ y |k − qα〉〈k − qα|τ z|kα〉]

vkα · q − 1
2 (q · ∇k)2Ekα

− (q → −q)

]
, (A6)

where vkα = ∂Ekα/∂k. Although the second term in the
denominator is of higher order in q than the first term, it
cannot be neglected because it eventually makes a ∼O(q)
contribution to Imχ intra

yz .
Making a long wavelength expansion of the overlap matrix

elements, and noting that 〈kα|τ y |kα〉 = 0, we have

Imχ intra
yz (q,0)

� −2
∑
kα

fkαIm

[ 〈kα|τ yq · �∇k|kα〉〈kα|q · ←∇kτ
z|kα〉

vkα · q

+ 1

2

〈kα|τ y(q · �∇k)2|kα〉〈kα|τ z|kα〉
vkα · q

− 1

2

(q · �∇k)2Ekα

(vkα · q)2
〈kα|τ yq · �∇k|kα〉〈kα|τ z|kα〉

]
, (A7)

with �∇k = ∂/∂k acting on the right and
←∇ k = ∂/∂k acting on

the left. Computing the matrix elements, we get

Imχ intra
yz (q,0) = −1

2

∑
k

(fk+ + fk−)
cos θk(q · �∇k)2θk

vk · q
,

(A8)

where we have used vk+ = −vk− = ∂Ek/∂k ≡ vk. In addi-
tion, we have relied on ξk−q � ξk − q · vF , and have verified
that the omission of the q2/(2m) term does not change
the final results. Evidently Imχ intra

yz (q,0) = 0 in equilibrium.
For transport perturbations, one has δfk,+ = δfk,− ≡ δfk.
For example, the charge and heat quasiparticle currents are
given by

je =
∑
kα

qkαvkαδfkα =
∑

k

e(ξk/Ek)2vF (δfk+ + δfk−)

= 2
∑

k

e(ξk/Ek)2vF δfk,

jh =
∑
kα

vkαEkαδfkα =
∑

k

vF ξk(δfk+ + δfk−)

= 2
∑

k

vF ξkδfk, (A9)

where we have used qkα = 〈kα|eτ z|kα〉 = eξk/Ekα as the
quasiparticle charge. Incidentally, these expressions reflect the
fact that, in the presence of particle-hole symmetry, a transport
perturbation that is even (odd) under ξk → −ξk generates an
electric (heat) current.

Consequently,

Imχ intra
yz (q,0) = −2

∑
k

δfk
ξk	

E4
k

vF · q. (A10)

To order O(T/μ), only transport perturbations that are odd
under ξk → −ξk contribute to Imδχ intra

yz .
Next, we compute the interband contribution:

Imχ inter
yz (q,0)

= −
∑

k,α �=β

fk,α

[
Im[〈kα|τ y |k − qβ〉〈k − qβ|τ z|kα〉]

Ekα − Ek−qβ

− (q → −q)

]
. (A11)

Expanding the denominator to leading order in q,

Imχ inter
yz (q,0)

� −
∑

k,α �=β

fkα

Im[〈kα|τ y |k − qβ〉〈k − qβ|τ z|kα〉]
Ekα − Ekβ

×
(

1 − vkβ · q
Ekα − Ekβ

)
− (q → −q) ≡ A + B, (A12)

where

A ≡ −
∑

k,α �=β

fkα

Im[〈kα|τ y |k − qβ〉〈k − qβ|τ z|kα〉]
Ekα − Ekβ

− (q → −q) (A13)
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and

B ≡
∑

k,α �=β

fkα

Im[〈kα|τ y |k − qβ〉〈k − qβ|τ z|kα〉]
(Ekα − Ekβ)2

× vkβ · q − (q → −q). (A14)

Expanding the matrix elements,

A � 2
∑

k,α �=β

fkα

[
Im(〈kα|τ yq · �∇k|kβ〉〈kβ|τ z|kα〉)

Ekα − Ekβ

+ Im(〈kα|τ y |kβ〉〈kβ|q · ←∇ kτ
z|kα〉)

Ekα − Ekβ

]
, (A15)

and thus

A � −
∑

k

(fk+ + fk,−)
cos θk(q · �∇kθk)

2Ek

=
∑

k

δfk
ξk	

E4
k

vF · q. (A16)

Similarly,

B � 2
∑

k,α �=β

fkα

Im(〈kα|τ y |kβ〉〈kβ|τ z|kα〉)
(Ekα − Ekβ)2

vkβ · q

=
∑

k

δfk
ξk	

E4
k

vF · q, (A17)

and hence

Imχ inter
yz (q,0) = 2

∑
k

δfk
ξk	

E4
k

vF · q. (A18)

Remarkably, the interband transitions perfectly cancel the
intraband contribution, regardless of the temperature, and we
are left with

ImχQP
yz (q,0) = 0. (A19)

Even though this result has been calculated to linear order in
q so as to highlight the delicate cancellation that nullifies the
superconducting version of the adiabatic STT, it is feasible
to obtain a concise analytical expression for ImδχQP

yz (q,0) to
arbitrary order in q. The outcome reads

Im δχQP
yz (q,0) � 2

∑
k

δfk
Ek sin θk − Ek−q sin θk−q

E2
k − E2

k−q

− (q → −q)

= 2
∑

k

δfk
	k − 	k−q

E2
k − E2

k−q

− (q → −q),

(A20)

where we have allowed for a generic momentum dependence in
the superconducting order parameter. For every value of k (i.e.,
for every quasiparticle), the numerator of Eq. (A20) contains
the difference in the x component of the effective “magnetic”
field (i.e., Ek sin θk), before and after the quasiparticle scatters
from k to k − q. A change in the x component of the effective
field during the quasiparticle scattering process indicates a
change in the rate of precession of the order parameter. When
induced by a current, this change is the adiabatic STT.

In sum, the superconducting analog of the adiabatic STT is
nonzero only if the order parameter is momentum dependent.
With the exception of Eq. (A20), we have limited ourselves
to a momentum-independent order parameter throughout this
paper.

APPENDIX B: SUPERCONDUCTING ANALOG OF THE
NONADIABATIC STT

In ferromagnets, the nonadiabatic STT term appearing in
Eq. (1) emerges from the changes in Im χ

QP
⊥⊥ (q,0) (⊥= y,z)

that occur under transport currents, to first order in q. The
starting expression for a clean superconductor is

Imδχ
QP
⊥⊥ (q,ω)

= π
∑
k,α,β

δfkα

[
|〈kα|τ⊥|k − qβ〉|2δ(Ekα − Ek−qβ + ω)

−
(

q → −q
ω → −ω

)]
. (B1)

In general, a proper theory of nonadiabatic STT would have
to incorporate disorder vertex corrections along with transport
perturbations. This task, which remains to be completed in
the magnetism community, is beyond the scope of the present
work. Here we include the finite quasiparticle lifetime only
through a shift in the quasiparticle distributions, which is
expected to be a reasonable approximation for Tcτ > 1.

For ω 
 	 (which is the regime of interest in the present
work), only intraband (α = β) transitions contribute. Thus

Imδχ
QP
⊥⊥ (q,0) = π

∑
kα

δfkα[|〈kα|τ⊥|k − qα〉|2

× δ(Ekα − Ek−qα) − (q → −q)]. (B2)

The Dirac δ can be manipulated as

δ(Ekα − Ek∓qα) = δ
(√

ξ 2
k + 	2 −

√
(ξk ∓ qvF cos ϕ)2 + 	2

)
= Ek

|ξk|qvF

[
δ(cos ϕ) + δ

(
cos ϕ ∓ 2ξk

qvF

)]
,

(B3)

where ϕ is the angle between vF and q. The first term can be
ignored because it eventually gives a vanishing contribution.
Accordingly,

Imδχ
QP
⊥⊥ (q,0) � π

∑
kα

δfkα

Ek

|ξk|qvF

[
|〈kα|τ⊥|k − qα〉|2

× δ

(
cos ϕ − 2ξk

qvF

)
− |〈kα|τ⊥|k + qα〉|2

× δ

(
cos ϕ + 2ξk

qvF

)]
. (B4)

Let us first discuss ImδχQP
zz (q,0). We immediately see that

it vanishes, because

lim
cos ϕ→ 2ξk

qvF

〈kα|τ z|k − qα〉 = lim
cos ϕ→− 2ξk

qvF

〈kα|τ z|k + qα〉 = 0.

(B5)
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Note that these relations follow from the exact eigenstates,
without expanding in q. An expansion in q would be inappro-
priate in this case, because the δ function pins cos ϕ to ∼1/q.

Next, we focus on ImδχQP
yy (q,0). In this case,

lim
cos ϕ→ 2ξk

qvF

|〈kα|τ y |k − qα〉|2 = lim
cos ϕ→− 2ξk

qvF

|〈kα|τ y |k + qα〉|2

= ξ 2
k

E2
k

(B6)

and thus

ImδχQP
yy (q,0) = π

∑
kα

δfkα

ξ 2
k

E2
k

Ek

|ξk|vF q

[
δ

(
cos ϕ − 2ξk

qvF

)

− δ

(
cos ϕ + 2ξk

qvF

)]

= 2π
∑

k

δfk
ξ 2

k

E2
k

Ek

|ξk|vF q

[
δ

(
cos ϕ − 2ξk

qvF

)

− δ

(
cos ϕ + 2ξk

qvF

)]
. (B7)

Since the expression multiplying δfk is odd under ξk → −ξk,
a temperature gradient is required in order to obtain a nonzero
result. For such a perturbation, we plug in Eq. (13) and arrive
at

ImδχQP
yy (q,0) � 4πN0τvF

q̂ · ∇T

T

1

(qvF )2

∫ qvF
2

− qvF
2

dξξ 2 ∂f

∂E

� −πN0D
q · ∇T

T

1

4T cosh2 	
2T

. (B8)

Although this equation has been derived for three dimensions,
we have verified by explicit calculation that the final result is
valid for two dimensions as well. In the 2D case, one must use∫ qvF /2

−qvF /2
dξξ 2 qvF√

q2v2
F − 4ξ 2

� π

16
(qvF )3. (B9)

In this Appendix, as in the previous one, we have
used ξk−q = ξk − k · q/m + q2/(2m) � ξk − vF · q. It can be
shown that keeping the q2 term in this expansion (which
amounts to breaking particle-hole symmetry) will result in
small (∝ q/kF ) nonzero values for Imδχ⊥⊥ in the presence
of a transport perturbation that is even under ξk → −ξk. For
example, we find that a uniform electric field E leads to

ImδχQP
yy (q,0) ∝ N0

qvF

T

elq̂ · E
μ

, (B10)

which is O(T/μ) smaller than Eq. (B8) for a fixed strength of
the perturbation.

APPENDIX C: TRANSPORT-INDUCED CHANGES IN THE
DYNAMICAL ANISOTROPY FIELD

In the simplest toy models for itinerant magnets, where
intrinsic spin-orbit coupling is ignored, the real part of χ

QP
⊥⊥

does not change under a transport perturbation. However, even
the simplest toy model for superconductivity has some intrinsic
“pseudospin-orbit coupling,” because the kinetic energy of
electrons acts as a momentum-dependent magnetic field in

particle-hole (Nambu) space. With this in mind, we evaluate
χQP

yy and χQP
zz with shifted quasiparticle distribution functions.

The starting point is

Re δχ
QP
⊥⊥ (q,ω) = −

∑
kαβ

δfkα

[ |〈kα|τ⊥|k − qβ〉|2
Ekα − Ek−qβ + ω

+ |〈kα|τ⊥|k + qβ〉|2
Ekα − Ek+qβ + ω

]
. (C1)

Let us begin from the intraband contributions for ⊥⊥= zz:

Re δχ intra
zz (q,ω)

� −
∑
kα

δfkα

[|〈kα|τ z|k − qα〉|2 − (q → −q)]

vkα · q + ω

− 1

2

∑
kα

δfkα

(q · �∇k)2Ekα

(ω + vkα · q)2
[〈kα|τ z|k − qα〉|2

+ (q → −q)]. (C2)

Expanding the terms inside the square brackets to lowest order
in momentum and recalling that δfk+ = δfk−, we arrive at

Re δχ intra
zz (q,ω) � 4

∑
k

δfk
ωvF · q

ω2 − (vk · q)2

× ω2

ω2 − (vk · q)2

	2ξk

E4
k

. (C3)

Next, let us look at the interband contribution. In the low-
frequency and long-wavelength expansion,

Reδχ inter
zz (q,ω) � −

∑
kα �=β

δfkα

|〈kα|τ z|k − qβ〉|2
Ekα − Ekβ

×
[

1 − ω + vkβ · q
Ekα − Ekβ

]
+

(
q → −q
ω → −ω

)

� −4
∑

kα �=β

δfkα

ω + vkβ · q
(Ekα − Ekβ)2

×〈kα|τ z|kβ〉〈kα|τ zq · ∇k|kβ〉, (C4)

where we have used δfk = −δf−k. Computing the matrix
elements, we get

Re δχ inter
zz (q,ω) �

∑
k

δfk
ω(q · vF )

E2
k

ξk	
2

E4
k

. (C5)

One may compute ReδχQP
yy following identical steps. The

final result is

Re δχQP
yy (q,ω) � 2

∑
k

δfk
ω(q · vF )

(vk · q)2 − ω2

ξk	
2

E4
k

(q · vF )2

E2
k

,

(C6)

where we have neglected the interband contribution (which is
parametrically smaller) and have also ignored terms that are
∼O(	2/T 2) smaller. Although ReδχQP

yy is of higher order in
q than ReδχQP

zz , it can make a contribution of the same order
to the collective mode frequency [the reason being that the yy

sector of the response function is ∼O(q2,ω2), while the zz sec-
tor contains a term that does not vanish at ω → 0 and q → 0].

Once again we observe that only transport perturbations
that are odd under ξk → −ξk (e.g., a temperature gradient)
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will lead to a nonzero Re δχ
QP
⊥⊥ . In addition, the above expres-

sions indicate that the transport correction to the dynamical
anisotropy field contains two distinct regimes: ω � vF q and
ω 
 qvF . In the regime ω � qvF , we obtain

Re δχQP
zz (q,ω) � 4

∑
k

δfk
q · vF

ω

	2ξk

E4
k

� − 8

π
N0ID

q · ∇T

ωT
, (C7)

whereas the contribution from ReδχQP
yy to the collective mode

dispersion can be safely neglected. In the opposite regime,
ω 
 qvF , we have

ReδχQP
yy (q,ω) � 1

6
N0D

q · ∇T

T 2

ω

	
, (C8)

whereas the contribution from ReδχQP
zz to the collective mode

dispersion can be safely neglected.

APPENDIX D: AMPLITUDE FLUCTUATIONS REMAIN
DECOUPLED WHEN ∇T �= 0

In the main text we have discussed how the phase-charge
fluctuations are altered by transport perturbations. This change
is the superconducting analog of the spin transfer torque.
Ignoring small departures from particle-hole symmetry, we
have found that perturbations leading to an electrical current
do not change the phase-charge coupling, while perturbations
leading to a heat current do change it. One may have the
concern that applying a temperature gradient could result in
the coupling between amplitude and phase/charge fluctuations.
Here we show that not to be the case.

We begin determining χQP
xy in the presence of drifted

quasiparticle factors:

χQP
yx (q,ω) = −

∑
kαβ

(fkα − fk−qβ)

× 〈kα|τ y |k − qβ〉〈k − qβ|τ x |kα〉
Ekα − Ek−qβ + ω + i0+ . (D1)

Recognizing that 〈kα|τ y |k − qβ〉〈k − qβ|τ x |kα〉 is purely
imaginary,

χQP
yx (q,ω) = −

∑
kαβ

fkα

⎡
⎣ 〈kα|τ y |k − qβ〉〈k − qβ|τ x |kα〉

Ekα − Ek−qβ + ω + i0+

−
⎛
⎝ 0+ → −0+

ω → −ω

q → −q

⎞
⎠

⎤
⎦ . (D2)

First, the real part reads

Re χQP
yx (q,ω) = iπ

∑
kαβ

fkα[〈kα|τ y |k − qβ〉〈k − qβ|τ x |kα〉

× δ(Ekα − Ek−qβ) + (q → −q)]. (D3)

Because the term inside the square is even under k → −k,
ReχQP

yx (q,ω) remains unchanged (i.e., zero) under a transport
perturbation. Next, consider the imaginary part. The leading
order contribution comes from

ImχQP
yx (q,0)

= −
∑
kαβ

fkα

[
Im[〈kα|τ y |k − qβ〉〈k − qβ|τ x |kα〉]

Ekα − Ek−qβ

− (q → −q)

]
, (D4)

which may be calculated exactly in the same way as
ImχQP

yz (q,0); the only difference comes from the overlap
matrix elements. The final result is

ImχQP
yx (q,0) �

∑
k

δfk
1

ξ 2
k

q · vF . (D5)

Because the factor multiplying δfk is even under ξk →
−ξk, a temperature gradient will not lead to any change
in Imχ intra

yx (q,0) (i.e., it will remain zero). In contrast, a
transport perturbation that is even under ξk → −ξk (i.e., a
perturbation that creates an electrical current) would lead to
Imχ intra

yx (q,ω) �= 0.
A straightforward evaluation of χQP

zx leads to an iden-
tical conclusion, namely, that a temperature gradient does
not induce a coupling between amplitude and charge/phase
fluctuations irrespective of the temperature of the system. It
is interesting that an electric current couples amplitude fluc-
tuations with charge/phase fluctuations but does not directly
alter the coupling between charge and phase fluctuations (i.e.,
it induces no STT), whereas a heat current does exactly the
opposite.

APPENDIX E: COLLECTIVE MODES IN ULTRACLEAN
SUPERCONDUCTORS

In the main text we have shown the influence of the
superconducting STT in the response functions of disordered
superconductors with τ−1 � ω. For completeness, here we
discuss clean superconductors, where ω � τ−1, even though
in practice this condition is difficult to satisfy at subgap fre-
quencies. For uniform temperature, the charge/phase response
of a 3D superconductor near Tc reads8

(
ω2

2	2 I − 1
2	2

ns

n

v2
F q2

3 + iImχQP
yy /N0 i ω

	

ns

n

−i ω
	

ns

n
2 + 1

N0Vq
+ iImχQP

zz /N0

) (
δ	y

eφ

)
= 0, (E1)

where I = π	/(4T ) and Vq = 4πe2/q2. In the derivation of this result we have used∫
dξ

(−∂f

∂E

) ∫
d�k

4π

(vk · q)2

(vk · q)2 − ω2
�

∫
dξ

(−∂f

∂E

)∫
d�k

4π

(vF · q)2

(vF · q)2 − ω2
�

∫
dξ

−∂f

∂E
, (E2)
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where we have recognized that −∂f/∂E = 1/[4T cosh2

(E/2T )], which for T � Tc (i.e., T � 	) limits the main
contribution of the integrand to ξ � T . (Note that the ξ 
 E

regime is depleted by the factor v2
k in the numerator.) Conse-

quently, vk = (ξk/Ek)vF � vF . Moreover, we have anticipated
that ω 
 vF q.

Without the damping terms, the collective mode dispersion
reads

ω±(q) = ±
√

ns

3In
vF q = ±

(
7ζ (3)

3π3

	

T

)1/2

vF q. (E3)

Note that this mode is essentially a phase-only mode, in which
the phase-charge coupling has been neglected. Since ω < vF q,
one needs to consider the Landau damping. On one hand,

ImχQP
yy (q,ω) = π

∑
k

(fkα − fk−qα)|〈kα|τ y |k − qα〉|2

× δ(Ekα − Ek−qα + ω) � πN0
vF q

4T

ω

4	
,

(E4)

where we have used qvF 
 	 
 T . Due to Eq. (E4), the
above collective mode becomes overdamped and thus hardly
observable. Incidentally, the Landau damping term of the
charge sector, ImχQP

zz (q,ω) ∝ ω/(qvF ), plays no role in the
dispersion of the collective mode.

In the presence of a temperature gradient, the influence of
the nonadiabatic STT term is to modify the Landau damping. A
priori, there is the intriguing possibility that the STT term may
cancel the Landau damping (first along the direction of mo-
mentum q that is parallel or antiparallel to ∇T ) and thus render
a propagating collective mode. However, for experimentally
reasonable temperature gradients, the STT term is parametri-
cally smaller than the Landau damping term (due to vF � vT )
and thus the collective mode will remain overdamped.

For 2D superconductors, the ∇T = 0 response function
obeys(

ω2

2	2 I − 1
2	2

ns

n

v2
F q2

2 i ω
	

I

−i ω
	

I 2
(
I − v2

F q2

2ω2

) − q

2πe2N0

) (
δ	y

eφ

)
= 0.

(E5)

In the derivation of this equation we have used

∫
dξ

	2

E2

(−∂f

∂E

) ∫ 2π

0

dϕ

2π

(vF · q)2

(vF · q)2 − ω2

� −v2
F q2

2ω2

∫
dξ

	2

E2

(−∂f

∂E

)
� −v2

F q2

2ω2

(
I − ns

n

)
,

where in the first equality we have anticipated that ω =
cq1/2 � vF q at q 
 2πe2N0 [for q � 2πe2N0 one simply
recovers the 2D version of Eqs. (E3) and (E4)], and in the
second equality we have referred to Ref. 8. In this regime, the
Landau damping is absent. Consequently, the collective mode
dispersion is

ω±(q) = ±
√

2πe2N0v
2
F q = ±

√
4πe2nq/m, (E6)

i.e., the ordinary 2D plasmon of metals. (Note the difference
with respect to the disordered case discussed in the main
text, where the plasmon frequency contained ns instead
of n.)

A temperature gradient modifies the 2D plasmon. However,
Eq. (12) is not accurate for the evaluation of the collective mode
dispersion in the ω � vF q regime. In this frequency regime,
the nonadiabatic STT vanishes (for the same phase space
reason for which the Landau damping vanishes). However,
there is a nonvanishing transport contribution that originates
from the interband part of δχQP

yz (the intraband part is depleted
in this regime) as well as from the dynamical anisotropy
field (cf. Appendix C). Using Eqs. (A19) and (C7), we
arrive at

ω±(q) = −δω ±
√

4πe2nq/m + δω2, where
(E7)

δω = 8e2N0ID
q̂ · ∇T

T
.

Hence, for a 2D plasmon with ω � qvF , the real part of
the dispersion is changed by driving BCS quasiparticles out
of equilibrium. It must be noted that the contributions from
Eqs. (A19) and (C7) partly cancel each other; however, we
have not found a perfect cancellation.
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