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Disordered Josephson junction chains: Anderson localization of normal
modes and impedance fluctuations
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We study the properties of the normal modes of a chain of Josephson junctions in the simultaneous presence
of disorder and absorption. We consider the superconducting regime of small phase fluctuations and focus on the
case where the effects of disorder and absorption can be treated additively. We analyze the frequency shift and
the localization length of the modes. We also calculate the distribution of the frequency-dependent impedance of
the chain. The distribution is Gaussian if the localization length is long compared to the absorption length, while
it has a power-law tail in the opposite limit.
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I. INTRODUCTION

For more than a decade now, one-dimensional chains of
Josephson junctions have been used as controlled electro-
magnetic environments in experiments on superconducting
nanocircuits. This includes their use as high-impedance
environments1–3 and, more recently, as superinductors.4–6

Indeed, depending on the ratio of the characteristic charging
energy EC and Josephson coupling energy EJ , Josephson
junction chains can be tuned into the insulating regime,
EC/EJ � 1, characterized by a highly resistive response, or
the superconducting regime, EC/EJ � 1, with a response
dominated by the total effective Josephson inductance.7–13

The use of chains made out of superconducting quantum
interference device (SQUID) loops makes it possible to tune
the ratio EC/EJ in situ experimentally by varying the applied
magnetic flux.9

In the superconducting regime, the fluctuations of the
superconducting phase difference across each junction in the
chain are small.13 The chain behaves as an effective trans-
mission line, sustaining propagating electromagnetic modes.
Details of the chain’s electromagnetic response depend on
the properties of these modes. In this paper, we focus on the
superconducting regime and consider disordered chains for
which the values of the parameters of the junctions forming
the chain vary randomly from one junction to the other.
Dyson14 was the first to analyze the frequency distribution
of the normal modes of disordered transmission lines. Later,
the spectral properties of random chains were investigated
in the framework of localization phenomena.15 These studies
neglected effects related to absorption. Absorption should be
taken into account in the case of Josephson junction chains,
as Josephson junctions are generally characterized by a finite
quality factor.16,17 Effects of absorption and disorder have been
studied in Refs. 18–23 for the one-dimensional Helmholtz
equation with spatially fluctuating dielectric constant.

In this paper, we analyze the effects of the simultaneous
presence of disorder and absorption on the electromagnetic
properties of Josephson junction chains in the superconducting
regime. Here, we consider the whole range of frequencies, and
only in the low-frequency limit can the Josephson junction
chain be effectively described by the Helmholtz equation.
Specifically, we study the properties of the normal modes
and calculate the localization length and frequency shift for

the case where absorption and disorder act additively. We
also study the statistics of the chain’s frequency-dependent
impedance and calculate its distribution. The corresponding
main results of the paper are presented by Eqs. (13), (14),
(21), and (22).

Our results are relevant in view of the aforementioned
experiments, in which uniform Josephson junction chains are
implemented as tunable environments in quantum circuitry.1–6

Disorder is inevitably present when fabricating Josephson
junction arrays and knowledge as to what disorder levels are
acceptable in order for the chains to be uniform enough for
applications is important. On the other hand, our results can
also be useful in the context of mode engineering. Indeed, using
intentionally induced disorder, certain modes will be localized,
thus suppressing the electromagnetic response of the chain at
the corresponding frequencies, which might be of interest for
applications of chains as electromagnetic environments.

The paper is organized as follows. We start by discussing
the model in Sec. II and present a qualitative discussion of
the main results in Sec. III. The detailed calculations are
presented in Secs. IV–VI. Determining the normal modes
for a disordered Josephson junction chain in the presence of
absorption corresponds to solving a non-Hermitian eigenvalue
problem, which we address in Sec. IV. The localization length
of the normal modes is calculated in Sec. V. The statistics
of the chain’s impedance is analyzed in Sec. VI. Section VII
contains our conclusions.

II. THE MODEL

The chain to be studied in the present paper is assumed to
consist of N superconducting islands, labeled by an integer
n = 1, . . . ,N . The Josephson junction between the islands
n and n + 1 is labeled by the half-integer n + 1/2. We
focus on small oscillations of the superconducting phase ϕn

of each island, so that the Josephson current through the
(n + 1/2)th junction, I c

n+1/2 sin(ϕn+1 − ϕn), can be linearized
as I c

n+1/2(ϕn+1 − ϕn). Here, I c
n+1/2 is the critical current

of the junction, related to the Josephson energy EJ
n+1/2 =

h̄I c
n+1/2/(2e). The observable quantity on which we focus in

the present paper is the complex impedance Z(ω) of the chain
at the frequency ω, defined as the ratio of the voltage Vω

on an external ac voltage source, connected to the first and
the last islands of the chain, to the current Iω through this
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FIG. 1. (Color online) (a) A schematic view of the Josephson
junction chain and its impedance measurement. (b) The transmission
line described by Eq. (2), equivalent to the chain shown in (a) for IN =
−I1 = Iω, I2, . . . ,IN−1 = 0, VN − V1 = Vω. (c) The circuit used to
define the impedance of a semi-infinite chain.

source, as shown in Fig. 1(a). The complex impedance is
in one-to-one correspondence with the reflection coefficient
of the equivalent transmission line, shown in Fig. 1(b), as
discussed in Appendix A.

For small oscillations, the superconducting phases of the
chain of N islands at frequency ω can be represented as

ϕn(t) = ϕn(0) + 2eVn

h̄

e−iωt

−iω
, (1)

where Vn is the ac voltage on the nth island, and e < 0 is the
electron charge. The voltages satisfy the following system of
linear equations:

Y3/2(V1 − V2) − iωC
g

1 V1 = I1,

Yn−1/2(Vn − Vn−1) + Yn+1/2(Vn − Vn+1) − iωCg
nVn

= In (1 < n < N ), (2)

YN−1/2(VN − VN−1) − iωC
g

NVN = IN .

The nth equation of this system is nothing but the first
Kirchhoff law (current conservation condition) at the nth

island. In represents an external current injected into the nth
island [actually, the setting shown in Fig. 1(a) corresponds
to only IN = −I1 being nonzero, but we include all In’s to
formally display the right-hand side of the linear system].
Each island is assumed to have some capacitance C

g
n with

respect to the ground, so −iωC
g
nVn is the displacement current

leaking to the ground through this capacitance. Yn+1/2 is the
admittance of the (n + 1/2)th junction, so Yn+1/2(Vn − Vn+1)
is the current leaving the nth island through this junction.
In accordance with the standard resistively and capacitively
shunted junction (RCSJ) model for Josephson junctions,16,17

the admittance includes three terms:

Yn+1/2(ω) = − 1

iωLn+1/2
− iωCn+1/2 + 1

Rn+1/2
. (3)

The first one represents the linearized Josephson contribution
I c
n+1/2(ϕn+1 − ϕn), by virtue of Eq. (1) and by the definition

of the Josephson inductance Ln+1/2 = −h̄/(2eI c
n+1/2). The

second term is the contribution of the capacitive electrostatic
coupling between the neighboring islands. Finally, 1/Rn+1/2

is the dissipative junction conductance due to the normal
current carried by quasiparticles. It is expected to vanish
(Rn+1/2 → ∞) at zero temperature, and approach the normal
state conductance as the critical temperature is approached.
The system (2) corresponds to the effective electric circuit
shown in Fig. 1(b).

For a weakly disordered Josephson junction chain, the
capacitances, inductances, and resistances of its elements can
be represented as

Cg
n = Cg(1 + ηn),

Ln+1/2 = L

1 + ζn

, (4)

Cn+1/2 = C(1 + ζn),

where the weak relative fluctuations ηn,ζn are independent
Gaussian random variables with zero average and〈

η2
n

〉 = σ 2
g ,

〈
ζ 2
n

〉 = σ 2
S . (5)

Here, the angular brackets denote the statistical average, and
variables with different n’s are uncorrelated. The assumption
of weak disorder implies σg,σS � 1. Note that the fluctuations
of Ln+1/2 and Cn+1/2 are not independent: the product
Ln+1/2Cn+1/2 ≡ 1/ω2

p is assumed to be constant, equal to
the inverse squared junction plasma frequency ωp. This is
because we assume that the fluctuations of L and C are due
to fluctuations of the junction sizes S. Typically, L ∼ 1/S,
whereas C ∼ S.

We do not consider the fluctuations of the normal resis-
tances, assuming Rn+1/2 = R. We are interested in the regime
of large R, when the average effect of the resistance (namely,
the absorption) is small; weak fluctuations of R acting on top
of this small average have a negligible effect on the statistics
of impedance, as compared to the fluctuations of inductances
and capacitances. This can be checked directly by repeating
the calculations of Sec. VI in the presence of fluctuations of R;
they are fully analogous but more cumbersome, and the result
is quite trivial. Thus we prefer to neglect the fluctuations of R

from the very beginning.
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III. QUALITATIVE DISCUSSION AND SUMMARY OF THE
MAIN RESULTS

We start by noting that the system (2) can be used to study
two, generally speaking, physically distinct problems. The first
one is the problem of free oscillations (eigenmodes), which
consists in finding nontrivial solutions for the voltages Vn when
all external currents In = 0. Such solutions exist only for some
special values of ω, which are, generally speaking, complex,
because of the dissipation induced by the resistors. Physically,
these solutions represent charge distributions that oscillate and
relax exponentially in time while maintaining their spatial
shape (which corresponds to a gedanken experiment, rather
than a real one). Mathematically, this corresponds to a non-
Hermitian quadratic eigenvalue problem, to be discussed in
detail in Sec. IV. In an infinite disorder-free chain, the solutions
are necessarily plane waves, Vn ∝ eikn, so the corresponding
frequencies define the dispersion relation �(k), which is a
complex function of a real argument k. This dispersion relation
can be represented as a curve in the complex plane of ω

(see Fig. 2). In a disordered system, the eigenmodes are no
longer plane waves, but are exponentially localized with some
localization length ξ . Strictly speaking, their frequencies do
not form a continuous curve in the complex plane of ω, but
rather represent a set of points. Still, when the disorder is
weak, so that the localization length ξ is sufficiently large, the
uncertainty in the wave vector 1/ξ � k, so the points lie in
the vicinity of the original dispersion curve of the disorder-free
chain (see Fig. 2). To the leading order in the disorder strength,
one can speak about the localization length ξ as a function of
the wave vector k.
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FIG. 2. (Color online) Complex plane of ω in the units of ωp ≡
(LC)−1/2. The solid line shows the dispersion curve �(k) for ωpRC =
104, Cg/C = 0.01. The symbols represent the frequencies of the
normal modes of a disordered chain with N = 500 islands and σ 2

S =
0.1, σ 2

g = 0. The condition ξ (ω) < N is fulfilled only for ω/ωp >

0.969 . . ., so most of the interval 0 < ω < ωp is occupied by modes
that are weakly perturbed by the disorder. However, most of the
modes (about 87%) lie in the narrow frequency interval with ξ (ω) <

N . Strong fluctuations of Im ω, seen as the vertical feature on the
right edge of the figure, occur for the modes whose frequencies lie
close to the band edge of the clean chain. Their localization lengh is
ξ ∼ 1, so the approach used in the present paper is not valid for their
description.

The second problem is that of forced oscillations, which
consists in finding the voltage profile Vn in the presence of
external currents In, oscillating at a real frequency ω. In
particular, the impedance of the chain Z(ω), introduced in
the beginning of the previous section (see Fig. 1), is found
from the solution of such a problem with the currents applied
to the two ends of the chain, while away from the ends
I2 = · · · = IN−1 = 0. Mathematically, the problem is just to
invert the matrix of the system (2). In the absence of disorder,
the voltage profile away from the ends is still represented
by plane waves. However, in the presence of dissipation, the
corresponding wave vector must be complex: Vn ∝ ei(k+iκ)n,
and k + iκ are determined by the solutions of the equation
�(k + iκ) = ω with real ω. Physically, this means that the ac
excitation penetrates the chain only within the distance ∼1/κ

from the ends, and at longer distances it decays because of the
absorption. Thus 1/κ can be called the absorption length. In
a disordered chain, the solution for Vn decays away from the
ends even in the absence of dissipation, due to the localization,
and the corresponding length scale is the localization length ξ .

When both dissipation and disorder are present, they both
contribute to the spatial decay of the solution (whose rate
is called Lyapunov exponent), and, generally speaking, their
effects are not easy to separate. For this reason, the notion
of the localization length as a function of frequency in the
complex plane is not very well defined in the presence of
dissipation. Still, in the limit of weak disorder and weak
dissipation the effects of localization and absorption can be
assumed to be additive. Namely, the Lyapunov exponent is
given by the sum κ + 1/ξ where κ is calculated for weak
dissipation and no disorder (that is, small 1/R and σ 2

g ,σ 2
S = 0),

while ξ is calculated for weak disorder and no dissipation (that
is, 1/R = 0 and small σ 2

g ,σ 2
S ). Indeed, the additive expression

κ + 1/ξ is nothing but the first (linear) term in the expansion
of the Lyapunov exponent in the small parameters 1/R,σ 2

g ,σ 2
S .

If this first term is not sufficient, localization and dissipation
cannot be assumed to enter additively.

For the particular case of the chain, shown in Fig. 1 and
described by Eq. (2), the dispersion relation of the disorder-
free chain is well-known in the absence of dissipation (R →
∞)5,13,24 and can be straightforwardly generalized to the case
of finite R:

�(k)

ωp

=
√

2εk

2εk + �−2
− ε2

k /Q
2

(2εk + �−2)2
− i

εk/Q

2εk + �−2
, (6)

where we have denoted

εk ≡ 2 sin2 k

2
, ωp ≡ 1√

LC
, �−2 ≡ Cg

C
, Q ≡ ωpRC.

(7)

Here, ωp is the plasma frequency of a single junction, which
is a convenient unit of frequency, Q is the quality factor of a
single junction, which is nothing but the resistance R in the
units of

√
L/C, and � is the screening length, so that �−2 is the

ground capacitance Cg in the units of C. The real wave vector
k varies from 0 to π for an infinite chain, while for a chain of
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N islands assumes N discrete values,

k = 0,
π

N
,
2π

N
, . . . ,

(N − 1)π

N
, (8)

the eigenmodes of the system being Vn ∝ cos k(n − 1/2). For
the low-frequency modes at small k � min{1,�−1},

Re �(k)

ωp

≈ k�,
Im �(k)

ωp

≈ − (k�)2

2Q
, (9)

so that their damping is weak, | Im �(k)| � | Re �(k)|, even
if the quality factor is not very high.

The inverse absorption length κ for the disorder-free chain
at real ω should be found as the solution of the equation �(k +
iκ) = ω, which is equivalent to

1 − cos(k + iκ) =  2�−2/2

1 −  2 − i/Q
,  ≡ ω

ωp

. (10)

The resulting expression for κ is rather lengthy, so we give
here the approximate expression, valid to the leading order in
1/Q � 1:

κ = 1

Q

 2�−1/2

(1 −  2)
√

1 −  2 −  2�−2/4
+ O(Q−2). (11)

Note that to the leading order in Q−1, we have κ =
− Im �(k)/(d Re �(k)/dk), which corresponds to the solution
of �(k + iκ) = ω perturbatively in the imaginary parts.

The impedance of a finite disorder-free chain [as defined
in Fig. 1(a)] can be represented as a sum over the eigenmodes
(see Sec. IV for details):

Z(ω) =
∑

k

[
iAk

ω − �(k)
+ iA∗

k

ω + �∗(k)

]
, (12a)

Ak = 1

N

4 cos2(k/2) sin2(kN/2)

Cg + εk[2C + i/�(k)R]
. (12b)

For a disordered chain, we have calculated the localization
length ξ in the limit of weak disorder and no dissipation (see
Sec. V for details). As discussed in the beginning of this
section, to the leading order in the disorder strength, one can
still label the eigenstates by their wave vector k, and speak
about the k-dependent localization length, which is given by

1

ξ
= σ 2

S + σ 2
g

2
tan2 k

2
=

(
σ 2

S + σ 2
g

)
 2�−2/8

1 −  2 −  2�−2/4
. (13)

Since σ 2
R,σ 2

g � 1, the inequality 1/ξ � k holds almost ev-
erywhere, except for a narrow region of k around k = π . At
ω → 0, the localization length diverges as 1/ω2. Such low-
frequency behavior is quite common for disordered bosonic
problems.15,25–27 In our case, the divergence is related to the
existence of the delocalized zero mode, i.e., an eigenmode
with ω = 0, Vn = const, when no currents flow in the system,
for any realization of the disorder. This is the Goldstone mode
related to the global gauge invariance of the system.

The case of short chains, N � ξ,1/κ , is the simplest
to analyze theoretically, and at the same time it is quite
relevant for experiments. Due to the condition N � 1/κ , the
spacing between eigenmode frequencies is larger than their
broadening, so the discrete modes are well resolved. The
condition N � ξ ensures that corrections to the eigenmode

profiles and frequencies are relatively small. The latter,
however, does not mean that the correction to the impedance of
the chain is small. Indeed, the impedance changes significantly
when the eigenmode frequency shift δωk due to disorder
is of the order of the broadening Im �(k), even if δωk is
small compared to the frequency Re �(k) itself. At the same
time, the disorder-induced corrections to the amplitude Ak

and to the broadening produce just small corrections to the
impedance. Thus we focus on the random shift δωk , calculated
perturbatively in Sec. IV. The average 〈δωk〉 = 0, and the
fluctuations are given by〈

δω2
k

〉
ω2

p

= 3

8

σ 2
S + σ 2

g

N

2εk �−4

(2εk + �−2)3
. (14)

When the chain is long compared to the inverse Lyapunov
exponent, N � (κ + 1/ξ )−1, the two ends of the chain are
effectively decoupled. Then the impedance of the chain Z(ω),
as defined in Fig. 1(a), equals to the sum of the impedances of
two semi-infinite chains, shown in Fig. 1(c). The impedance
of a semi-infinite chain in the absence of disorder, which we
denote by Z

(c)
∞ (ω), is given by

Z(c)
∞ (ω) = 1

2Y (ω)

(
− 1 +

√
1 − 4Y (ω)

iωCg

)
,

(15)

Y (ω) ≡ − 1

iωL
+ 1

R
− iωC.

When disorder is present, the two ends of a sufficiently long
chain feel two different realizations of disorder, so Z(ω) is
a sum of two impedances Z∞(ω), which are statistically
independent. Thus, to characterize the statistics of Z(ω), it
is sufficient to find the statistics of the impedance Z∞(ω) of a
semi-infinite chain. This impedance is given by the lower right
(i.e., N,N ) element of the inverse matrix of the system (2). So
far, we have made the assumptions of weak dissipation, which
implies k � κ , and of weak disorder, k � 1/ξ . Still, under
these assumptions, two possible regimes can be identified:
κ � 1/ξ and κ � 1/ξ . The difference in statistics of the
impedance in the two regimes can be understood from the
following qualitative arguments.

Let us focus on the real part of the impedance, which
determines the absorption. In terms of the complex eigen-
mode frequencies, which we write as �α = ±ωα − iγα , α =
1, . . . ,N − 1, absorption can be represented by a sum of
Lorentzians corresponding to the eigenmodes:

Re Z∞(ω) =
∑
α,±

γαAα

(ω ± ωα)2 + γ 2
α

(16)

(the imaginary parts of Aα have been neglected). Even though
the number of terms in the sum can be very large, only those
modes effectively contribute to the sum, which are located
within a distance ∼ξ from the end; for others, the coefficient
Aα is exponentially small. The typical distance between the
Lorentzians corresponds to the typical frequency spacing δξ

between the modes within one localization length ξ , while
the typical width of each Lorentzian is γ . Clearly, one can
imagine two regimes, depending on the relation between γ

and δξ . When δξ � γ , the Lorentzians overlap strongly, so the
fluctuations of Z∞(ω) are much smaller than its average [see
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FIG. 3. A schematic representation of different terms contributing
to Re Z∞ (a) at δξ � γ (strongly overlapping Lorentzians), and
(b) at δξ � γ (well-separated Lorentzians).

Fig. 3(a)]. When δξ � γ , the Lorentzians are well separated,
and, depending on the realization of the disorder, the frequency
ω may either fall near one of the peak centers ωα , which
gives a large absorption, or it may fall between the peaks, and
then the absorption will be small [see Fig. 3(b)]. Thus, in the
case δξ � γ , the fluctuation will be strong, so the disorder-
averaged impedance is not a very useful concept; rather, the
whole distribution function should be evaluated. Finally, we
recall the relation κ = γ /[d Re �(k)/dk], established earlier,
and note that the density of modes within the localization
length can also be evaluated using the disorder-free dispersion,
1/δξ = ξ dk/[2π d Re �(k)]. Thus the parameter controlling
the two regimes is precisely

γ

δξ

= κξ

2π
, (17)

and the mode group velocity d Re �(k)/dk drops out.
Based on this picture, one can make some estimates. Let us

assume that the main source of fluctuations of Z∞(ω) are the
random positions ωα . Let us choose an interval of frequencies,
centered at ω and having the width �, such that δξ ,γ � � �
ω. Let us count only those modes whose frequencies ωα fall
inside this interval; indeed, the modes whose positions ωα are
too far from ω (further than a few times γ ), contribute very
little to the sum in Eq. (16). Typically, there are Nξ = �/δξ

modes inside the interval. For all such modes, let us set all γα’s
equal to a constant γ , and all Aα = A (the smooth dependence
of A and γ on ω can be neglected due to the condition � �
ω). As for the peak positions ωα , let us assume them to be
uniformly and independently distributed over the interval (ω −
�/2,ω + �/2). Of course, such a Poisson distribution totally
neglects level repulsion, but for our quantitative estimate is
good enough. The average Re Z∞ is then given by

〈Re Z∞〉 =
∫ ω+�/2

ω−�/2

dω1

�
· · · dωNξ

�

Nξ∑
α=1

γA

(ω − ωα)2 + γ 2

= Nξ

�
πA = πA

δξ

. (18)

Let us now study the probability distribution of the dimension-
less impedance, relative to its average value, which we denote
by x:

P (x) =
∫ ω+�/2

ω−�/2

dω1

�
· · · dωNξ

�

× δ

⎡
⎣x −

Nξ∑
α=1

δξγ /π

(ω − ωα)2 + γ 2

⎤
⎦ . (19)

This probability distribution can be straightforwardly eval-
uated in the two limiting cases δξ � γ and δξ � γ (see
Appendix B for details).

For δξ � γ , we have

P (x) = √
γ /δξ e−(πγ/δξ )(x−1)2

. (20a)

The narrow Gaussian distribution arises naturally as a conse-
quence of the central limit theorem, since there are many terms
in the sum (16) that contribute to Re Z∞. For δξ � γ ,

P (x) = e−γ /(xδξ )

πx3/2
√

δξ /(πγ ) − x
, 0 < x <

δξ

πγ
, (20b)

and P (x) = 0 outside the indicated interval. The exponential
suppression of P (x) at small x comes from the fact that
an anomalously small x requires a region of frequencies of
the width �ω � δξ , free of Lorentzians. For the Poisson
distribution of ωα’s, assumed here, the probability to have such
a region vanishes as e−�ω/δξ ; if level repulsion is taken into
account, the suppression is even stronger. The weak singularity
at large x = δξ /(πγ ) is a consequence of the assumption
Aα = A, γα = γ , which implies that all Lorentzians have the
same height. In reality, a spread in the heights smears the
singularity.

In Sec. VI, we calculate the distribution function of Z∞ in
the regime of weak fluctutations (κξ � 1) using the Fokker-
Planck equation:

P (Z∞) ∝ exp

(
− κξ

4

∣∣Z∞ − Z
(c)
∞

∣∣2∣∣Z(c)
∞

∣∣2

)
, (21)

where κ , ξ , and Z
(c)
∞ (ω) are given by Eqs. (11), (13), and

(15), respectively. Keeping in mind the relation (17), we see
that the semiqualitative Eq. (20a) gives the correct functional
form (Gaussian), underestimating the fluctuations by a factor
of 2. The latter is not surprising, as in deriving Eq. (20a),
we completely ignored the fluctuations of the eigenmode
amplitudes and widths. Equation (21) has also been confirmed
by direct numerical sampling.28

In the regime of strong fluctuations, κξ � 1, we were
unable to solve the problem analytically, so we analyzed
it numerically (see Sec. VI). Our numerical results, indeed,
indicate that the distribution of Re Z∞ has a power-law tail
described by

P (Re Z∞) ≈ C
(κξ )0.5

Re Z
(c)
∞

(
Re Z

(c)
∞

Re Z∞

)1.5

, C ∼ 0.3–0.5, (22)

in agreement with Eq. (20b). This also agrees with the
distribution of the reflection coefficient, calculated for the
one-dimensional Helmholtz equation with spatially fluctuating
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dielectric constant in Ref. 19 (see Appendix A for the relation
between the impedance and the reflection coefficient).

IV. THE EIGENVALUE PROBLEM

To begin with, we note that the formal manipulations
performed in this section, in fact, are quite analogous to those
for the elementary damped harmonic oscillator. The latter is
discussed in Appendix C in order to make the present section
more transparent.

Let us write the system (2) in a compact form:

(L̂−1 − iωR̂−1 − ω2Ĉ)V = −iωI, (23)

where V and I are N -dimensional column vectors containing
the node voltages Vn and currents In, respectively, and
L̂−1, R̂−1, and Ĉ are real, symmetric, tridiagonal matrices.
Besides, they are positive-definite; indeed, for an arbitrary real
vector x,

xT L̂−1x =
N−1∑
n=1

(xn+1 − xn)2

Ln+1/2
� 0, (24a)

xT R̂−1x =
N−1∑
n=1

(xn+1 − xn)2

Rn+1/2
� 0, (24b)

xT Ĉx =
N−1∑
n=1

Cn+1/2(xn+1 − xn)2 +
N∑

n=1

Cg
nx2

n > 0.

(24c)

L̂−1 and R̂−1 have exactly one zero eigenvalue with the eigen-
vector x0 = (1 1 . . . 1)T /

√
N . At the same time, xT

0 Ĉx0 = Cg ,
the spatial average of the ground capacitance.

Thanks to these properties, one can define the matrix square
roots L̂−1/2,Ĉ1/2, as well as the inverse Ĉ−1/2, which are
also real, symmetric, and positive-definite matrices. Then the
system (23), quadratic in ω can be identically rewritten as

ωV −
(−iĈ−1/2R̂−1Ĉ−1/2 Ĉ−1/2L̂−1/2

L̂−1/2Ĉ−1/2 0

)
V

=
(

iĈ−1/2I
0

)
, V ≡

(
Ĉ1/2V

w

)
, (25)

where w is an auxiliary N -dimensional column vector. It
should be noted that while L̂−1, R̂−1, and Ĉ are tridiagonal
and thus are relatively easy to deal with numerically, their
square roots are nonlocal, so Eq. (25) is only convenient for
formal manipulations. The main advantage of Eq. (25) is that
its solutions can be expressed in terms of eigenvalues and
egenvectors of the 2N × 2N matrix

Â =
(−iĈ−1/2R̂−1Ĉ−1/2 Ĉ−1/2L̂−1/2

L̂−1/2Ĉ−1/2 0

)
. (26)

The matrix Â is non-Hermitian, so it may have less then 2N

eigenvectors if its eigenvalues are degenerate. In a disordered
system, all degeneracies can be assumed to be lifted, except
those which are protected by a symmetry and do not depend on
the disorder realization. The only special value of ω is ω = 0,
due to the gauge invariance, as discussed in Sec. III. For any

disorder realization, it is an eigenvalue with two eigenvectors:

V0± = 1√
2Cg

(
Ĉ1/2x0

±i
√

Cgx0

)
. (27)

Thus, with probability 1, the matrix Â has exactly 2N

eigenvectors, which form a complete set. Since it is symmetric,
ÂT = Â, different eigenvectors α and β are orthogonal as

VT
α Vβ = VT

α ĈVβ + wT
α wβ = δαβ. (28)

The matrix Â satisfies the property σzÂ∗σz = −Â, where
σz is the Pauli matrix acting in the 2 × 2 space of N × N

blocks. Thus if ω is an eigenvalue of A with the corresponding
eigenvector (Ĉ1/2V w)T , then −ω∗ is also an eigenvalue, and
the corresponding eigenvector is (Ĉ1/2V∗ − w∗)T . Since the
absorption is assumed to be weak, we neglect the possibility to
have purely imaginary eigenvalues, and count by α = 1, . . . ,N

the eigenvalues with Re ωα > 0. Then the unit 2N × 2N

matrix can be represented as

1̂ =
(

Ĉ1/2x0xT
0 Ĉ1/2/Cg 0
0 x0xT

0

)

+
N−1∑
α=1

(
Ĉ1/2VαVT

α Ĉ1/2 Ĉ1/2VαwT
α

wαVT
α Ĉ1/2 wαwT

α

)

+
N−1∑
α=1

(
Ĉ1/2V∗

αV†
αĈ1/2 −Ĉ1/2V∗

αw†
α

−w∗
αV†

αĈ1/2 w∗
αw†

α

)
(29)

and the resolvent of Â as

(ω − Â)−1 = 1

ω

(
Ĉ1/2x0xT

0 Ĉ1/2/Cg 0
0 x0xT

0

)

+
N−1∑
α=1

1

ω − ωα

×
(

Ĉ1/2VαVT
α Ĉ1/2 Ĉ1/2VαwT

α

wαVT
α Ĉ1/2 wαwT

α

)

+
N−1∑
α=1

1

ω + ω∗
α

×
(

Ĉ1/2V∗
αV†

αĈ1/2 −Ĉ1/2V∗
αw†

α

−w∗
αV†

αĈ1/2 w∗
αw†

α

)
. (30)

Eliminating the auxiliary vector w, we obtain

V =
(

x0xT
0

ωCg
+

N−1∑
α=1

VαVT
α

ω − ωα

+
N−1∑
α=1

V∗
αV†

α

ω + ω∗
α

)
iI, (31)

where the eigenvectors Vα should be normalized as

VT
α

(
Ĉ + ω−2

α L̂−1
)
Vα = 1, α = 1, . . . ,N − 1. (32)

The impedance of a finite chain as defined in Fig. 1(a), is now
given by

Z(ω) = i

N−1∑
α=1

[
(Vα1 − VαN )2

ω − ωα

+ (V ∗
α1 − V ∗

αN )2

ω + ω∗
α

]
. (33)
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In a disorder-free chain, the eigenmodes are plane waves [c.f.
Eq. (8)]:

Vkn = ak cos k(n − 1/2), k = 0,
π

N
, . . . ,(N − 1)

π

N
,

(34a)

where the amplitudes ak are determined by the normalization
condition (32):

1

a2
k �=0

= N

2
Cg + Nεk

(
C + 1

ω2
kL

)

= NCg + Nεk

(
2C + i

ωkR

)
. (34b)

Substitution of these expressions into Eq. (33) gives
Eqs. (12a) and (12b). Here and below, the following relations
prove useful:

N∑
n=1

cos2 k(n − 1/2) = N

2
,

N∑
n=1

cos4 k(n − 1/2) = 3N

8
,

(35)
N−1∑
n=1

[cos k(n + 1/2) − cos k(n − 1/2)]2 = Nεk,

N−1∑
n=1

[cos k(n + 1/2) − cos k(n − 1/2)]4 = 3N

2
ε2
k .

Let us determine the shift of an eigenvalue ωα due to a small
perturbation. If δÂ is a perturbation of Â, the shift is given by

δωα = VT
α δÂ Vα. (36)

Assuming that the perturbation is due to a fluctuation in the
capacitances and inductances and neglecting this fluctuation
when it is multiplied by a small quantity 1/R, we can write

δÂ =
(

0 δ(Ĉ−1/2L̂−1/2)

δ(L̂−1/2Ĉ−1/2) 0

)
, (37)

which gives

δωα = 1

ωα

VT
α

(
δL̂−1 − ω2

αδĈ
)
Vα. (38)

For the fluctuations given by Eq. (4), this becomes

δωα =
(

1

ωαL
− ωαC

) N−1∑
n=1

ζn(Vα,n+1 − Vα,n)2

−ωαCg

N−1∑
n=1

ηnV
2
α,n. (39)

For the eigenmodes (34a) the fluctuation 〈δω2
k〉 can be

evaluated using relations (35), which gives Eq. (14).

V. LOCALIZATION LENGTH OF THE NORMAL MODES

To determine the localization length ξ for the eigenmodes
of the system (2) in the absence of dissipation (R → ∞), we

rewrite it identically in the form

vn+1 = mn vn, (40)

where vn is two-component column

vn = √
Yn−1/2

(
Vn

Vn−1

)
, (41)

and mn is the transfer matrix

mn =
(

yn + 1/yn − iωC
g
n√

Yn−1/2Yn+1/2
−1/yn

yn 0

)
,

(42)

yn ≡
√

Yn+1/2

Yn−1/2
.

The localization length is calculated from the Lyapunov
exponent of the product mn . . . m1 at n → ∞ (see, e.g.,
Ref. 29).

We substitute the expressions from Eq. (4), expand to
second order, and omit products of uncorrelated fluctuations:

mn =
(

2(1 − ε)
(
1 + �2

n/2
) + εϒn −1 + �n − �2

n/2
1 + �n + �2

n/2 0

)
,

(43)

where we have denoted for brevity

�n = ζn − ζn−1

2
− ζ 2

n − ζ 2
n−1

4
, (44a)

ϒn = ζn + ζn−1 − 2ηn − ζ 2
n + ζ 2

n−1

2
, (44b)

and

ε = ω2LCg/2

1 − ω2LC
(45)

has the same meaning as in Sec. III: for such real values of
ω that 0 � ε � 2, the solution of the equation ε = 1 − cos k

determines the dispersion relation of the disorder-free chain.
This is precisely the range of frequencies we are interested in.

Let us switch to the basis in which the evolution of vn for
the disorder-free chain is trivial:

vn = Kn ṽn, Kn ≡
(

eikn e−ikn

eik(n−1) e−ik(n−1)

)
. (46)

The rotated transfer matrix m̃n = K−1
n+1 mn Kn is given by

m̃n = 1 + �2
n

2
+ �n

(
0 e−2ikn

e2ikn 0

)

+ ϒn

2i
tan

k

2

(
1 e−2ikn

−e2ikn −1

)
. (47)

In the disorder-free case, the two components of the vector
ṽn represent the amplitudes of the right- and left-travelling
waves. The product of the transfer matrices m̃n . . . m̃1 of
a disordered segment of length n determines the amplitude
reflection and transmission coefficients of this segment. The
Hermitian matrix

Mn = m̃n . . . m̃1 m̃
†
1 . . . m̃†

n (48)
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determines the intensity transmission coefficient. By noting
that Mn satisfies the constraints

Mn = M†
n, det Mn = 1, Mn = σxM

∗
nσx, (49)

where σx is the first Pauli matrix, and the last two constraints
follow from the same properties obeyed by m̃n, one can
parameterize the matrix Mn as

Mn =
(

cosh μn eiφn sinh μn

eiφn sinh μn cosh μn

)
, μn � 0.

(50)

The eigenvalues of Mn are e±μn , and the intensity trans-
mission coefficient of the disordered segment of n sites is
1/ cosh2(μn/2) (see Ref. 30). At n → ∞, it should decrease
exponentially as e−2n/ξ , where ξ is the localization length of
the envelope wave function. Thus ξ can be determined from
the relation

1

ξ
= 1

2
lim

n→∞
μn

n
. (51)

Note that statistical averaging is not needed here: μn is a self-
averaging quantity,29 as naturally follows from the fact that it
is a logarithm of the product of many independent factors.

The change of the matrix Mn upon one iteration is given by

Mn+1 = Mn + 2�n

(
cos ϕn sinh μn e−2ikn cosh μn

e2ikn cosh μn cos ϕn sinh μn

)

+ εϒn

sin k

( − sin ϕn sinh μn −ie−2ikn(cosh μn + eiϕn sinh μn)
ie2ikn(cosh μn + e−iϕn sinh μn) − sin ϕn sinh μn

)

+ 2�2
n

(
cosh μn e−2ikn cos ϕn sinh μn

e2ikn cos ϕn sinh μn cosh μn

)

+ εϒn�n

sin k

(
sin ϕn sinh μn −ie−2ikn(cosh μn + e−iϕn sinh μn)

ie2ikn(cosh μn + eiϕn sinh μn) sin ϕn sinh μn

)

+ ε2ϒ2
n (cosh μn + cos ϕn sinh μn)

2 sin2 k

(
1 −e−2ikn

−e2ikn 1

)
. (52)

where we denoted ϕn = 2kn + φn. Let us also denote
εϒn/ sin k = 2ϒ̃n. Then

μn+1 = μn + 2�n cos ϕn − 2ϒ̃n sin ϕn

+ 2(�n sin ϕn + ϒ̃n cos ϕn)2 coth μn

+ 2(�n sin ϕn + ϒ̃n cos ϕn)ϒ̃n, (53a)

φn+1 = φn − 2(�n sin ϕn + ϒ̃n cos ϕn) coth μn − 2ϒ̃n

+O
(
�2

n,ϒ̃
2
n ,�nϒ̃n

)
. (53b)

In fact, to determine the average growth rate of μn, we do
not need to know the dynamics of φn, because the phase ϕn

entering Eq. (53a) contains the term 2kn that varies more
rapidly than φn. Indeed, the evolution of φn is governed
by the disorder, and thus occurs on the typical length scale ξ ,
while for 2kn this scale is ∼1/k. As discussed in Sec. III, we
are interested in the weak-disorder limit, kξ � 1 (otherwise
the whole approach of this section is not valid). Thus
summation of many small increments (μn+1 − μn) + (μn+2 −
μn+1) + . . . + (μn+l − μn+l−1) for l � 1/k is equivalent to
averaging over ϕ (see Ref. 31, though).

It is important to note that �n,ϒn are not independent of
�n−1,ϒn−1. Because of this, it is not sufficient just to average
the right-hand side of Eq. (53a) over the disorder and over the
phase ϕn. Indeed, expressing φn in terms of φn−1 with the help
of Eq. (53b), we obtain (up to the second order in �,ϒ):

2�n cos ϕn − 2ϒ̃n sin ϕn

= 2�n cos(ϕn−1 + 2k) − 2ϒ̃n sin(ϕn−1 + 2k)

+ 2ϒ̃n−1[2�n sin(ϕn−1 + 2k) + 2ϒ̃n cos(ϕn−1 + 2k)]

+ [2�n sin(ϕn−1 + 2k) + 2ϒ̃n cos(ϕn−1 + 2k)]

× [2�n−1 sin ϕn−1 + 2ϒ̃n−1 cos ϕn−1].

The average of the last term over the phase ϕn−1 is not zero
and should be taken into account.

Finally, we assume μn � 1 and set coth μn → 1. Then, the
average increment of μn in one step is given by

2

ξ
= 〈

�2
n

〉 + 〈
ϒ̃2

n

〉 + 2〈�n�n−1 + ϒ̃nϒ̃n−1〉 cos 2k

+ 2〈�nϒ̃n−1 − ϒ̃n�n−1〉 sin 2k, (54)

which yields Eq. (13).

VI. IMPEDANCE FLUCTUATIONS

In order to calculate the probability distribution of the
impedance of a semi-infinite chain, defined in Fig. 1(c), let
us consider ZN (ω), the impedance of a chain with N − 1
junctions, but defined according to Fig. 1(c), instead of
Fig. 1(a). Upon adding one junction to the chain, its impedance
is transformed as

ZN+1 = 1

−iωC
g

N+1 + (ZN + 1/YN+1/2)−1
, (55)
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where

YN+1/2(ω) = − 1

iωLN+1/2
+ 1

RN+1/2
− iωCN+1/2 (56)

is the admittance of the added junction.
In the disorder-free chain, the recursive relation (55) has a

stationary point Z
(c)
∞ (ω), given by Eq. (15). In the vicinity of

this stationary point, the recursive relation can be linearized,

ZN+1 − Z(c)
∞ ≈ τ

(
ZN − Z(c)

∞
)
, (57)

with the eigenvalue τ given by

τ =
(

YZ
(c)
∞

YZ
(c)
∞ + 1

)2

= e2ik−2κ , (58)

where k,κ are defined as solutions of the equation 1 − cos(k +
iκ) = iωCg/[2Y (ω)], which is identical to Eq. (10). Thus the
effect of dissipation, κ > 0, is to squeeze the points ZN towards
the stationary point in the complex plane.

In the presence of a weak disorder, the recursive relation
becomes random. The effect of the randomness is to make
ZN perform a random walk in the complex plane, thereby
taking them away from the stationary point. Thus disorder
and dissipation are competing. At N → ∞ they balance
each other, and the probability distribution of ZN reaches a
stationary limit. If dissipation is strong enough compared to
disorder, the stationary distribution is concentrated near the
stationary point, where the linearized recursive relation (57) is
valid. Below we will calculate the stationary distribution for
this case analytically, and show that it is the Gaussian. This
case corresponds precisely to the limit κξ � 1 discussed in
Sec. III.

Let us take into account fluctuations of C
g

N+1 and YN+1/2,
determined by Eq. (4). They produce an additional stochastic
term in Eq. (57). To the second order in ηN+1,ζN , the linearized
recursive relation becomes

Y
(
ZN+1 − Z(c)

∞
) = e2ik−2κY

(
ZN − Z(c)

∞
) − eikηN+1

− e2ikζN + ie5ik/2ζ 2
N

2 sin(k/2)
− 2ie3ik/2

× sin
k

2

(
η2

N+1 + eikηN+1ζN + e2ikζ 2
N

)
,

(59)

where Y is the same as for the clean chain [i.e., defined
as in Eq. (56), but in terms of the nonfluctuating quantities
L,C,R]. We neglected κ in the coefficients at ηN+1,ζN , as
κ � 1 gives just a small correction to the diffusion produced
by the stochastic terms.

Let us write

Y
(
ZN − Z(c)

∞
) = i

√
ρN e2ikN+iφN . (60)

We calculate the increment ρN+1 − ρN to the first order in κ

and to the second order in ηN+1,ζN :

ρN+1 − ρN = −4κrN + √
ρN ηN+1 2 sin(2kN + φN + k)

+√
ρN ζN 2 sin(2kN + φN )

−√
ρN η2

N+1 4 sin
k

2
cos

(
2kN + φN + k

2

)

−√
ρN ηN+1ζN 4 sin

k

2
cos

(
2kN + φN − k

2

)

−√
ρN ζ 2

N 4 sin
k

2
cos

(
2kN + φN − 3k

2

)

+√
ρN ζ 2

N

cos(2kN + φN − k/2)

sin(k/2)

+ 2ηN+1ζN cos k + η2
N+1 + ζ 2

N, (61a)

φN+1 − φN = O(ηN+1,ζN ). (61b)

To determine the stationary distribution of ZN , we do not need
to know the dynamics of φN . Indeed, the main contribution
to the dynamics of the phase of ZN − Z

(c)
∞ comes from the

factor e2ikN that we have explicitly separated in Eq. (60).
The trigonometric factors cos(2kN + · · ·), sin(2kN + · · ·) in
Eq. (61a) average to zero after N ∼ 1/k steps31 (note that even
for k � 1, when this averaging length is large, the length of
the chain, N � 1/κ is still larger since κ � k). Hence, the
drift of ρN , determined by the average of the right-hand side
of Eq. (61a), is contributed to only by the first and the two
last terms of Eq. (61a). The diffusion is determined by the
average square of the right-hand side of Eq. (61a), so it is
contributed to by the second and the third terms, which are
linear in ηN+1 and ζN (all quadratic terms give a higher-order
contribution). Following the standard procedure,32 one arrives
at the Fokker-Plank equation for the probability distribution
PN (ρ):

∂P

∂N
= ∂

∂ρ
ρ

[
4κP + (

σ 2
S + σ 2

g

) ∂P

∂ρ

]
. (62)

From its solution,

PN (ρ) ∝ exp

[
−4κρ/

(
σ 2

S + σ 2
g

)
1 − e−4κ(N−N0)

]
, (63)

which in the stationary limit (N → ∞) reduces to Eq. (21), we
also extract the typical length, 1/(4κ), at which this stationary
limit is reached.

In the case κξ � 1, we were unable to obtain an analytical
solution. To treat the problem numerically, and in particular,
to analyze the power-law tail of the distribution of Re Z∞,

-10 -5 0 5 10-15
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0
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FIG. 4. (Color online) ln P (λ) for ω/ωp = 0.5, Cg/C = 0.01,
σ 2

S = 0.01, σ 2
g = 0, and the quality factor Q = 105,106,107 (the

dot-dashed, dashed, and solid curves, respectively), corresponding
to κξ = 4.6 × 10−2,4.6 × 10−3,4.6 × 10−4, respectively.
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FIG. 5. (Color online) ln P (λ) for ω/ωp = 0.8, Cg/C = 0.01,
and Q = 2 × 106. The three sets of symbols represent the distri-
butions for σ 2

S = 0.01, σ 2
g = 0 (circles), σ 2

S = 0.005, σ 2
g = 0.005

(squares), and σ 2
S = 0, σ 2

g = 0.01 (triangles), all corresponding
to κξ = 3.3 × 10−3. They collapse to one curve, showing that
the distribution is sensitive only to the combination σ 2

S + σ 2
g .

The solid curves represent the distributions for σ 2
g = 0 and σ 2

S =
0.05, 0.03, 0.003, 0.001 (the curves with the longer flat part cor-
responding to larger σ 2

S ) for which the parameter κξ = 6.6 ×
10−4, 1.1 × 10−3, 1.1 × 10−2, 3.3 × 10−2, respectively.

discussed in Sec. III, it is convenient to introduce the
logarithmic variable

λ = ln
Re Z∞(ω)

Re Z
(c)
∞ (ω)

, (64)

where Re Z
(c)
∞ (ω) is the impedance of a semi-infinite disorder-

free chain, introduced in Eq. (15), and used here as a convenient
unit of measure. If the ratio Re Z∞/ Re Z

(c)
∞ has a power-law

distribution,

P
(

Re Z∞/ Re Z(c)
∞

) = A

(
Re Z

(c)
∞

Re Z∞

)α

, (65)
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FIG. 6. (Color online) ln P (λ) for Cg/C = 0.05, Q = 105,
σ 2

S = 0.05,σ 2
g = 0, and ω/ωp = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 0.99. corresponding to κξ = 3.60 × 10−3, 3.65 × 10−3, 3.75 ×
10−3, 3.90 × 10−3, 4.12 × 10−3, 4.46 × 10−3, 4.98 × 10−3, 5.90 ×
10−3, 7.99 × 10−3, 1.57 × 10−2, respectively. The curves with the
longer flat part correspond to lower frequencies.

0.001 0.01

0.01

0.1

A

FIG. 7. (Color online) The coefficient A in Eq. (65) vs the
parameter κξ for the distributions shown in Figs. 4 (triangles), 5
(squares), and 6 (circles).

in some range of Re Z∞, the corresponding distribution of λ

is exponential, P (λ) = Ae−(α−1)λ. Thus, in the following, we
study numerically ln P (λ) and extract the exponent α and the
prefactor A from the slope and the offset of the dependence
ln P (λ) versus λ. Each distribution is obtained from about
106 − 107 realizations of the chain, and the convergence of
the limit N → ∞ is reached at N � (5–6) ξ .

For all curves ln P (λ) versus λ shown in Figs. 4–6,
one can see a flat part corresponding to a power-law tail,
being more pronounced for smaller κξ . For all curves, the
slope corresponds to α − 1 ≈ 0.5 (within a few percent),
in agreement with Eq. (22). The coefficient A in Eq. (65),
determined from the offset for all curves in Figs. 4,5,6, is
plotted in Fig. 7 versus the parameter κξ . The points are
reasonably close to a straight line corresponding to A ∝ √

κξ

with the coefficient between 0.3 and 0.5, as stated in Eq. (22).
However, we cannot exclude that the deviations from the
straight line are not just due to numerical reasons (insufficient
statistics, poor convergence, etc.) and signal the true invalidity
of single-parameter scaling in the strong fluctuation regime.

VII. CONCLUSIONS

In this paper, we analyzed the properties of the normal
modes of a chain of Josephson junctions in the supercon-
ducting regime, in the simultaneous presence of disorder
and absorption. We considered the limit where disorder
and absorption can be treated additively and computed the
frequency shift and the localization length of the modes. We
also calculated the distribution of the frequency-dependent
impedance of the chain. The statistics depend on the parameter
κξ , the ratio of the localization length and the absorption
length. If κξ � 1, the modes within one localization length are
much broadened by absorption and strongly overlap. This is the
regime of weak fluctuations; the distribution is Gaussian. In the
opposite limit of little broadening, the modes present within
one localization length are well separated in frequency and
fluctuations are strong; the distribution has a power-law tail.

The frequency-dependent impedance of Josephson junction
chains can be probed experimentally in principle, e.g., by
incorporating the chain in a resonator which is capacitively
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coupled to a co-planar wave guide (CPW).5 Microwave
transmission experiments on the CPW enable one to probe the
small oscillation modes of the chain directly. Alternatively,
one could include a weaker junction with a small Josephson
energy (a so-called black-sheep junction33) into the chain, and
measure its dc current-voltage characteristics. The low-voltage
dc response yields information about the ac impedance of
the chain at frequencies ∼2 eV /h̄, as discussed in detail in
Appendix D.

Finally, Josephson junction chains have been predicted
to constitute quantum phase-slip (QPS) elements.34 Recent
experiments have provided evidence for the occurrence of
QPS in Josephson junction chains.33,35,36 Phase-slip elements
are of interest for applications,37 e.g., as qubits for quantum
information processing38 and as a current standard for quantum
metrology.39 A typical quantum phase-slip event generally
excites the normal modes of the chain, therefore the QPS am-
plitude strongly depends on spectral properties of the modes.24

It would be interesting to calculate the QPS amplitude for
disordered Josephson chains. In the presence of disorder, the
phase-slip process could be decoupled from part of the modes,
a fact that might well result in an enhancement of the phase-slip
amplitude.
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APPENDIX A: RELATION BETWEEN IMPEDANCE AND
REFLECTION

To define the amplitude reflection coefficient of a Josephson
junction chain, one should consider the system (2) with all In =
0, replace the part of the chain to the left of the island n = N1

by an effective impedance Z∞, and assume the part of the
chain on the right to be disorder-free and dissipationless. Thus
the equation for n = N1 should be replaced by the effective
boundary condition(

− 1

iωL
− iωC

)
(VN1 − VN1+1) + VN1

Z∞
= 0, (A1)

and the solution of the system for n � N1 should be sought in
the form Vn = e−ik(n−N1) + reik(n−N1), where the wave vector
k is related to the frequency ω by the dispersion relation (6) at
Q → ∞. This gives

r = −1 + iωCgZ∞[εω + i
√

1 − (1 − εω)2]/(2εω)

1 + iωCgZ∞[εω − i
√

1 − (1 − εω)2]/(2εω)
, (A2)

where εω ≡ (ω2LCg/2)/(1 − ω2LC). If Z∞ is real, then |r| =
1. Otherwise,

1 − |r|2 = 2
√

1 − (1 − εω)2 ωCg Re Z∞√
1 − (1 − εω)2 ωCg Re Z∞ + εω − εωωCg Im Z∞ + |ωCgZ∞|2/2

. (A3)

The one-to-one correspondence between Z∞ and r , expressed
by Eq. (A2), implies that the numerical results of Sec. VI
for the distribution of Re Z∞ in the regime κξ � 1 can
be straightforwardly translated into the distribution of |r|2,
which turns out to have a power-law tail ∝ (1 − |r|2)−2.0, in
agreement with Ref. 19.

APPENDIX B: PROBABILITY DISTRIBUTION OF A SUM
OF LORENTZIANS

Instead of the probability distribution function, we first cal-
culate its Laplace transform called the characteristic function,

Q(s) ≡
∫ ∞

0
e−sxP (x) dx =

∫ �/2

−�/2

dω1

�
· · · dωNξ

�

× exp

⎛
⎝−

Nξ∑
α=1

sδξγ /π

ω2
α + γ 2

⎞
⎠ , (B1)

where we have shifted the integration variables by ω. The
Nξ -fold integral is factorised into a product of Nξ identical
integrals. Recalling that Nξ = �/δξ , we represent each such

integral as∫ Nξ δξ /2

−Nξ δξ /2

dω1

Nξδξ

exp

(
− sδξγ /π

ω2
1 + γ 2

)

= 1 − γ

Nξδξ

∫ ∞

−∞
dy

{
1 − exp

[
− sδξ /(πγ )

y2 + 1

]}
, (B2)

where we introduced the dimensionless variable y = ω1/γ

and used the fact that the exponential is different from unity
only for |ω1| ∼ √

sδξγ � Nξδξ , so one can extend the limits
of the last integral to infinity. Since this last integral no longer
depends on Nξ , the characteristic function can be represented
as

Q(s) =
(

1 − F(s)

Nξ

)Nξ

≈ e−F(s), (B3)

where we took the limit Nξ → ∞. The function F(s) can be
calculated exactly:

F(s) = γ

δξ

∫ ∞

−∞
dy

∫ sδξ /(πγ )

0

e−z/(y2+1)dz

y2 + 1

= πγ

δξ

∫ sδξ /(πγ )

0
e−z/2I0(z/2) dz

= s exp

(
− sδξ

2πγ

)[
I0

(
sδξ

2πγ

)
+ I1

(
sδξ

2πγ

)]
, (B4)
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where I0,I1 are the modified Bessel functions. This immedi-
ately gives us access to the moments of P (x):

〈1〉 = e−F(0) = 1, (B5a)

〈x〉 = F ′(0) = 1, (B5b)

〈x2〉 − 〈x〉2 = −F ′′(0) = δξ

2πγ
. (B5c)

The first two equations are trivial (recall that we have defined
x relative to the average value), but the last one already tells
us that the fluctuations become large when δξ /γ � 1.

To obtain the distribution function P (x), we have to perform
the inverse Laplace transform of e−F(s). Unable to do it for the
exact expression (B4), we use two asymptotic expressions:

F(s) =
{

s − s2δξ /(4πγ ), sδξ /γ � 1,√
4sγ /δξ , sδξ /γ � 1.

(B6)

The most important values of s for the reconstruction of P (x)
are those for which F(s) ∼ 1, that is, s ∼ max{1,δξ /γ }. Thus
the first expression from Eq. (B6) is good for the limit δξ � γ ,
while the second one is good when δξ � γ . One can check
the that the inverse Laplace transforms of e−F(s) for the two
expressions are given by

P (x) = √
γ /δξ e−(πγ/δξ )(x−1)2

, δξ � γ, (B7a)

P (x) = e−γ /(xδξ )√
π (δξ /γ )x3

, δξ � γ. (B7b)

For the first expression the check is straightforward, while for
the second one, we have (rescaling s → sγ /δξ )∫ ∞

0

e−1/y−sy√
πy3

dy = (y = e2t )

= 2√
π

∫ ∞

−∞
exp(−t − e−2t − se2t )dt

=
(

t → t − ln s

4

)

= 2s1/4

√
π

∫ ∞

−∞
e−t−2

√
s cosh 2t dt

= 4s1/4

√
π

∫ ∞

0
e−2

√
s cosh 2t cosh t dt

= (sinh t = u)

= 4s1/4

√
π

∫ ∞

0
e−2

√
s(2u2+1) du = e−√

4s .

(B8)

While Eq. (B7a) is good enough and coincides with
Eq. (20a), the distribution in Eq. (B7b) has all moments
divergent, as a consequence of the nonanalyticity of F(s) =√

4sγ /δξ at s → 0. This nonanalyticity is an artefact of the
asymptotic expression we have used, which loses its validity at
small s ∼ γ /δξ , while the exact F(x) from Eq. (B4) is always
analytic at s → 0. In terms of P (x), this means that the large-x
tail P (x) ∝ x−3/2 should be cut off at x ∼ δξ /γ .

The cutoff can be easily obtained directly from the
definition of P (x), Eq. (19), by noting that large x corresponds
to ω being close to one of the Lorentzians. Neglecting the

probability of overlap of two Lorentzians, and noting that any
of the Nξ Lorentizans can be close to ω, we obtain

P (x) = Nξ

∫ ∞

−∞

dω

�
δ

(
x − δξγ /π

ω2 + γ 2

)

= 1

πx3/2
√

δξ /(πγ ) − x
, (B9)

valid for x � γ /δξ (which is the typical value of x between
the Lorentzians). The previous expression, Eq. (B7b), is valid
for 0 < x � δξ /γ . Thus the two expressions are both valid in
the wide region γ /δξ � x � δξ /γ , where they both reduce to
1/

√
π (δξ /γ )x3. Combining the two, we arrive at Eq. (20b).

APPENDIX C: DAMPED HARMONIC OSCILLATOR

Consider the Hamiltonian equations for a damped harmonic
oscillator of the mass m and eigenfrequency ω0, subject to an
external force f (t):

dp

dt
= −mω2

0x − 2γp + f (t), (C1a)

dx

dt
= p

m
, (C1b)

2γ being the damping rate. Assuming the force to be
monochromatic and looking for the solutions ∝e−iωt , we
obtain the equation(

ω2
0 − 2iγ ω − ω2

)
p = −iωf, (C2)

which is the analog of Eq. (23). The analog of Eq. (25) is then(
ω − Â

)(
p

w

)
=

(
if

0

)
(C3)

with the matrix Â given by

Â =
(−2iγ ω0

ω0 0

)
. (C4)

The auxiliary variable w is nothing but w = −ix.
The matrix Â has two nondegenerate eigenvalues

−iγ ±
√

ω2
0 − γ 2,

except for the special case γ = ω0. In this case, there is one
doubly degenerate eigenvalue, and the matrix Â has only one
eigenvector. For γ < ω0 (weak damping), the two eigenvalues
can be denoted by ω1 and −ω∗

1. The normalization condition,
analogous to Eq. (32),

p2
1

(
1 + ω2

0

ω2
1

)
= 1, (C5)

determines the oscillator moblity b = p/f , which is analogous
to the impedance in Eq. (33):

b(ω) = ip2
1

ω − ω1
+ i(p∗

1)2

ω + ω∗
1

= iω

ω2 − 2iγ ω − ω2
0

, (C6)

which, of course, also follows directly from Eq. (C2).
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ϕ ϕϕ ϕ ϕ

FIG. 8. (Color online) A schematic view of the black-sheep
scheme of impedance measurement.

APPENDIX D: CURRENT-VOLTAGE CHARACTERISTIC
OF A BLACK-SHEEP JUNCTION COUPLED TO A

JOSEPHSON CHAIN

We consider a voltage-biased circuit (bias voltage V )
containing a black-sheep (BS) junction with capacitance
CBS and Josephson coupling energy EJ,BS in series with
a Josephson junction chain (see Fig. 8). In the absence of
quasiparticles, a small dc voltage bias V is expected to induce
a Cooper pair current I (V ). The necessary dissipation is
provided by the broadened modes of the Josephson junction
chain. For small EJ,BS , a perturbative calculation yields40

I (V ) = πeE2
J,BS

h̄
[P (2 eV ) − P (−2 eV )]. (D1)

Here, we defined the function P (E) as

P (E) = 1

2πh̄

∫
dt eJ (t)+iEt/h̄, (D2)

with

J (t) = 8
∫ ∞

0

dω

ω

Re[Ztot(ω)]

RK

×
{

[cos(ωt) − 1] coth
βh̄ω

2
− i sin(ωt)

}
, (D3)

where RK = h/e2. The chain is kept at the inverse temperature
β = 1/kBT ; the impedance Ztot is the total impedance “seen”
by the BS junction: a parallel arrangement of the junction
capacitance CBS and the impedance Z(ω) of the chain. Hence

Re[Ztot(ω)] = Re[Z(ω)]

|1 − iωCBSZ(ω)|2 . (D4)

An interesting case is the so-called weak-coupling limit,
where J (t) remains small on the relevant time scales, such
that

P (E) � 1

2πh̄

∫ +∞

−∞
dt eiEt/h̄ [1 + J (t)]. (D5)

This corresponds to the case where the BS junction exchanges
at most one photon with the chain. Indeed, the evaluation of
the integral over time in (D5) gives

P (E) � δ(E) + 8
∫ +∞

0

dω

ω

Re[Ztot(ω)]

RK

× [nωδ(E + h̄ω) + (nω + 1)δ(E − h̄ω)

− (2nω + 1)δ(E)], (D6)

where nω = 1/(eβh̄ω − 1) is the Bose-Einstein distribution
function. The last term represents elastic Cooper pair tun-
neling in the BS junction involving zero and one virtual
photon, respectively. The first two terms are related to the
process of absorption and emission of one real photon,
respectively.

As can be seen from Eq. (D1), the calculation of the current-
voltage characteristic involves the inelastic part of P (E) only,
given by

P (E) � 8
Re[Ztot(E/h̄)]

RK

1 + nE/h̄

E
. (D7)

Substituting Eq. (D7) into Eq. (D1) then yields the current-
voltage characteristic in the weak-coupling limit,

I (V ) � 4πE2
J,BS

h̄V

Re[Ztot(2 eV /h̄)]

RK

. (D8)

Note that the dc current at voltage V directly probes the
environmental impedance Ztot at frequency ω = 2 eV /h̄.
Specifically, at low frequencies, the chain tends to become
purely inductive, Re[Z(ω → 0)] � Nω2〈L2〉/R, where N is
the number of junctions, 〈L2〉 is the average squared Josephson
inductance of the chain, and R is the junction resistance.
Hence Re[Ztot(ω → 0)] � Nω2〈L2〉/R. As a result, at low
voltage, the current-voltage characteristic vanishes linearly
with V . At high frequencies, capacitive behavior takes over,
and for frequencies above the plasma frequency, the impedance
tends tend to zero again. Hence the current also vanishes
at high voltages. Between zero and the plasma frequency,
Re[Ztot(ω)] presents a series of N peaks, corresponding to
the chain’s modes. These will appear as current peaks in the
current-voltage characteristics.
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