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Coherent diffraction of thermal currents in Josephson tunnel junctions
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We theoretically investigate heat transport in temperature-biased Josephson tunnel junctions in the presence of
an in-plane magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of
the heat flux through the junction displays coherent diffraction. Thermal transport is analyzed in three prototypical
junction geometries, highlighting their main differences. Notably, minimization of the Josephson coupling energy
requires the quantum phase difference across the junction to undergo π slips in suitable intervals of magnetic
flux. An experimental setup suited to detect thermal diffraction is proposed and analyzed.
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I. INTRODUCTION

The impressive advances achieved in nanoscience and
technology are nowadays enabling the understanding of one
central topic in science, i.e., thermal flow in solid-state
nanostructures.1,2 Control and manipulation3,4 of thermal
currents in combination with the investigation of the origin
of dissipative phenomena are of particular relevance at such a
scale where heat deeply affects the properties of the systems,
for instance, from coherent caloritronic circuits, which allow
enhanced operation thanks to the quantum phase,5–12 to more
developed research fields such as ultrasensitive radiation
detectors1,13 or cooling applications.1,14 In this context it has
been known for more than 40 years that heat transport in
Josephson junctions can be, in principle, phase dependent.15–20

The first ever Josephson thermal interferometer has been,
however, demonstrated only very recently,21–24 therefore
proving that phase coherence extends to thermal currents
as well. The heat interferometer of Ref. 23 might represent
a prototypical circuit to implement novel-concept coherent
caloritronic devices such as heat transistors,22 thermal splitters,
and rectifiers.12

In the present work we theoretically analyze heat transport
in temperature-biased extended Josephson tunnel junctions,
showing that the phase-dependent component of thermal flux
through the weak link interferes in the presence of an in-plane
magnetic field, leading to heat diffraction, in analogy to what
occurs for the Josephson critical current. In particular, thermal
transport is investigated in three prototypical electrically
open junctions geometries, showing that the quantum phase
difference across the junction undergoes π slips in order to
minimize the Josephson coupling energy. These phase slips
have an energetic origin and are not related to fluctuations as
conventional phase slips in low-dimensional superconducting
systems.25–27 We finally propose how to demonstrate thermal
diffraction in a realistic microstructure, and to prove such π

slips, exploiting an uncommon observable such as the heat
current.

The paper is organized as follows: In Sec. II we describe the
general model used to derive the behavior of the heat current
in a temperature-biased extended Josephson tunnel junction.
In Sec. III we obtain the conditions for the quantum phase
difference across an electrically open short Josephson junction

in the presence of an in-plane magnetic field, and the resulting
behavior of the phase-dependent thermal current. In particular,
we shall demonstrate the occurrence of phase slips of π ,
independently of the junction geometry, in order to minimize
the Josephson coupling energy. The phase-dependent heat
current in three specific junction geometries is further analyzed
in Sec. IV, where we highlight their main differences. In
Sec. V we suggest and analyze a possible experimental setup
suited to detect heat diffraction through electronic temperature
measurements in a microstructure based on an extended
Josephson junction, and to demonstrate the existence of π

slips. Finally, our results are summarized in Sec. VI.

II. MODEL

Our system is schematized in Fig. 1(a), and consists of
an extended Josephson tunnel junction composed of two
superconducting electrodes S1 and S2 in a thermal steady
state residing at different temperatures T1 and T2, respectively.
We shall focus mainly on symmetric Josephson junctions in
the short limit, i.e., with lateral dimensions much smaller
than the Josephson penetration depth [see Figs. 1(b)–1(d)],

L,W,R,r � λJ =
√

π�0
μ0ictH

, where �0 = 2.067 × 10−15 Wb is

the flux quantum, μ0 is vacuum permeability, ic is the critical
current areal density of the junction, and tH is the junction
effective magnetic thickness to be defined below. In such a case
the self-field generated by the Josephson current in the weak
link can be neglected with respect to the externally applied
magnetic field, and no traveling solitons can be originated. ti
and λi denote the thickness and London penetration depth of
superconductor Si , respectively, whereas d labels the insulator
thickness. We choose a coordinate system such that the applied
magnetic field (H ) lies parallel to a symmetry axis of the
junction and along x, and that the junction electrode planes
are parallel to the xy plane. Furthermore, the junction lateral
dimensions are assumed to be much larger than d so that we can
neglect the effects of the edges, and each superconducting layer
is assumed to be thicker than its London penetration depth (i.e.,
ti > λi) so that H will penetrate the junction in the z direction
within a thickness tH = λ1 + λ2 + d.28 For definiteness, we
assume T1 � T2 so that the Josephson junction is temperature
biased only, and no electric current flows through it. If T1 �= T2,
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FIG. 1. (Color online) (a) Cross section of a temperature-biased
extended S1IS2 Josephson tunnel junction in the presence of an in-
plane magnetic field H . The heat current JS1→S2 flows along the z

direction whereas H is applied in the x direction, i.e., parallel to a
symmetry axis of the junction. The dashed line indicates the closed
integration contour, Ti , ti , and λi represent the temperature, thickness,
and London penetration depth of superconductor Si , respectively, and
d is the insulator thickness. � denotes the magnetic flux piercing the
junction. Prototypical junctions with rectangular, circular, and annular
geometry are shown in (b)–(d), respectively. L, W , R, and r represent
the junctions geometrical parameters.

there is a finite electronic heat current JS1→S2 flowing through
the junction from S1 to S2 [see Fig. 1(a)] which is given by15–20

JS1→S2 (T1,T2,ϕ) = Jqp(T1,T2) − Jint(T1,T2) cos ϕ. (1)

Equation (1) describes the oscillatory behavior of the thermal
current flowing through a Josephson tunnel junction as a func-
tion of ϕ predicted by Maki and Griffin,15 and experimentally
verified in Ref. 23. In Eq. (1), Jqp is the usual heat flux carried
by quasiparticles,1,30 Jint is the phase-dependent part of the
heat current which is peculiar to Josephson tunnel junctions,
and ϕ is the macroscopic quantum phase difference between
the superconductors. By contrast, the Cooper pair condensate
does not contribute to heat transport in a static situation.15,20,23

The two terms appearing in Eq. (1) read15–20

Jqp = 1

e2RJ

∫ ∞

0
dεεN1(ε,T1)N2(ε,T2)[f (ε,T2) − f (ε,T1)]

(2)

and

Jint = 1

e2RJ

∫ ∞

0
dεεM1(ε,T1)M2(ε,T2)

× [f (ε,T2) − f (ε,T1)], (3)

where Ni(ε,Ti) = |ε|/
√

ε2 − �i(Ti)2�[ε2 − �i(Ti)2] is the
BCS normalized density of states in S

i
at tempera-

ture Ti (i = 1,2), Mi(ε,Ti) = �i(Ti)/
√

ε2 − �i(Ti)2�[ε2 −
�i(Ti)2], and ε is the energy measured from the
condensate chemical potential. Furthermore, �i(Ti) is
the temperature-dependent superconducting energy gap,
f (ε,Ti) = tanh(ε/2kBTi), �(x) is the Heaviside step function,
kB is the Boltzmann constant, RJ is the junction normal-state
resistance, and e is the electron charge. In the following

analysis we neglect any contribution to thermal transport
through the Josephson junction arising from lattice phonons.

III. RESULTS

In order to discuss the effect of the applied magnetic
field on the heat current we shall focus first of all on the
phase-dependent component. To this end we need to determine
the phase gradient ϕ(x,y) induced by the application of the
external magnetic flux. By choosing the closed integration
contour indicated by the dashed line depicted in Fig. 1(a), it
can be shown31,32 that, neglecting screening induced by the
Josephson current, ϕ(x,y) obeys the equations ∂ϕ/∂x = 0
and ∂ϕ/∂y = 2πμ0tHH/�0. The latter equation can be easily
integrated to yield

ϕ(y) = κy + ϕ0, (4)

where κ ≡ 2πμ0tHH/�0 and ϕ0 is the phase difference at
y = 0. The phase-dependent component of the heat current
can then be written as

JH (T1,T2,H ) =
∫∫

dxdyJA(x,y,T1,T2) cos(κy + ϕ0),

(5)

where the integration is performed over the junction area, and
JA(x,y,T1,T2) is the heat current density per unit area. We note
that the integrand of Eq. (5) oscillates sinusoidally along the y

direction with period given by �0(μ0tHH )−1. After integration
over x we can write Eq. (5) as

JH (T1,T2,H ) =
∫

dyJ (y,T1,T2)cos(κy + ϕ0)

= Re

{
eiϕ0

∫ ∞

−∞
dyJ (y,T1,T2)eiκy

}
, (6)

where J (y,T1,T2) ≡ ∫
dxJA(x,y,T1,T2) is the heat current

density per unit length along y. In writing the second equality
in Eq. (6) we have replaced the integration limits by ±∞ since
the thermal current is zero outside the junction. Equation (6)
for JH (T1,T2,H ) resembles the expression for the Josephson
current, IH (T1,T2,H ), which is given by31,32

IH (T1,T2,H ) = Im

{
eiϕ0

∫ ∞

−∞
dyI(y,T1,T2)eiκy

}

= sinϕ0

∫ ∞

−∞
dyI(y) cos κy, (7)

where I(y,T1,T2) is the supercurrent density integrated along
x, and the second equality in Eq. (7) follows from the
assumed junction symmetry, i.e., I(y,T1,T2) = I(−y,T1,T2).
In the actual configuration of an electrically open junction, the
condition of zero Josephson current for any given value of H

yields the solution ϕ0 = mπ , with m = 0, ± 1, ± 2 . . . . On
the other hand, the Josephson coupling energy of the junction
(EJ ) can be expressed as

EJ (T1,T2,H ) = EJ,0 − �0

2π
Re

{
eiϕ0

∫ ∞

−∞
dyI(y,T1,T2)eiκy

}

= EJ,0 − �0

2π
cos ϕ0

∫ ∞

−∞
dyI(y) cos κy, (8)
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where EJ,0 = �0Ic/2π , Ic is the zero-field critical supercur-
rent, and in writing the second equality we have used the
symmetry property of I(y,T1,T2). Minimization of EJ for any
applied H imposes the second term on the right-hand side of
Eq. (8) to be always negative, so that ϕ0 will undergo a π slip
whenever the integral does contribute to EJ with a negative
sign. As a result, the Josephson coupling energy turns out to
be written as

EJ (T1,T2,H ) = EJ,0 − �0

2π

∣∣∣∣
∫ ∞

−∞
dyI(y,T1,T2) cos κy

∣∣∣∣.
(9)

We also assume that the symmetry of the junction and of the
electric current density are reflected in an analogous symmetry
in the heat current, i.e., J (y,T1,T2) = J (−y,T1,T2). It there-
fore follows from Eq. (6) that JH can be written as

JH (T1,T2,H ) =
∣∣∣∣
∫ ∞

−∞
dyJ (y,T1,T2) cos κy

∣∣∣∣. (10)

Equation (10) is the main result of the paper.
The above results hold for symmetric Josephson junctions

under an in-plane magnetic field parallel to a symmetry axis,
and only occur without any electrical bias. The discussed phase
slips, however, exist for any arbitrary junction geometry. If the
junction does not have a symmetric geometry with respect
to the magnetic field direction, the constraints on vanishing
Josephson current and minimization of coupling energy are
translated in a more complex condition for the phase ϕ0. As
we shall demonstrate below, nevertheless the phase undergoes
a π slip as well. We choose the x axis of the coordinate system
parallel to the magnetic field [as in Fig. 1(a)]. For a junction
with arbitrary symmetry, we split I(y,T1,T2) in its symmetric,
Is(y), and antisymmetric part, Ia(y). We thus have

IH = Im

{
eiϕ0

∫ ∞

−∞
dyI(y)eiκy

}

= cos ϕ0

∫ ∞

−∞
dyIa(y) sin κy + sin ϕ0

∫ ∞

−∞
dyIs(y) cos κy

= cos ϕ0Ia + sin ϕ0Is, (11)

where we have denoted the symmetric and antisymmetric
integrals as Is and Ia , respectively. The case of symmetric
junctions has already been discussed above so that in the
following we shall focus on junctions with no symmetry,
i.e., with Is �= 0 and Ia �= 0. Notice that this already has
consequences on the values of ϕ0. In fact, if Is �= 0 and
Ia �= 0, we must have cos ϕ0 �= 0 and sin ϕ0 �= 0 to satisfy
the zero-current condition.

The Josephson coupling energy can be written as

EJ = EJ,0 − �0

2π

[
cos ϕ0

∫ ∞

−∞
dyIs(y) cos κy

− sin ϕ0

∫ ∞

−∞
dyIa(y) sin κy

]

= EJ,0 + �0

2π
[− cos ϕ0Is + sin ϕ0Ia]. (12)

To find the energy minima, we differentiate twice with respect
to ϕ0 and impose the condition ∂2EJ /∂ϕ2

0 > 0. We therefore

obtain

∂2EJ

∂ϕ2
0

= �0

2π
[cos ϕ0Is − sin ϕ0Ia] > 0. (13)

Assuming that Is �= 0, the condition of vanishing IH for any
applied H from Eq. (11) reads

sin ϕ0 = − cos ϕ0
Ia

Is

or tan ϕ0 = −Ia

Is

. (14)

By using the first of Eqs. (14), the condition to have minima
in Eq. (13) gives

∂2EJ

∂ϕ2
0

= �0

2π
cos ϕ0

(
Is + I 2

a

Is

)
= �0

2π

cos ϕ0

Is

(
I 2
s + I 2

a

)
> 0,

(15)

which depends on the signs of Is and cos ϕ0.
Now we turn to Eqs. (14) that impose a constraint on ϕ0 as a

function of Is and Ia . To simplify the discussion we denote as
φ0 = − arctan(Ia/Is), and consider only solutions within a 2π

variation from the latter. We have two solutions of Eqs. (14),
ϕ0,1 = π + φ0 and ϕ0,2 = φ0, which correspond to the cosine
function

cos ϕ0,1 = − cos φ0 = − 1√
1 + (

Ia

Is

)2
,

(16)

cos ϕ0,2 = cos φ0 = 1√
1 + (

Ia

Is

)2
,

where we have used the relation cos(arctan x) = 1/
√

1 + x2.
As we can see, the first solution gives a negative cos ϕ0,1 while
the second one corresponds to positive cos ϕ0,2. Going back
to inequality (15), if Is > 0, we need to choose the solution
ϕ0,2 = φ0 (for which cos ϕ0,2 > 0) to minimize the Josephson
coupling energy. By contrast, if Is < 0, we must choose the
solution ϕ0,1 = π + φ0 (for which cos ϕ0,1 < 0). Therefore,
we get that the superconducting phase must undergo a π slip to
minimize the Josephson coupling energy whenever the integral
Is changes sign as a function of the magnetic field.

We shall conclude by discussing the pure antisymmetric
junction case, i.e., Ia �= 0 and Is = 0. Because of the zero-
current condition, the only values that the phase ϕ0 can assume
are π/2 or 3π/2. Equation (13) implies that, if Ia > 0, ϕ0 =
3π/2, and, if Ia < 0, ϕ0 = π/2. Therefore, also in this case,
the phase ϕ0 undergoes a π slip when Ia changes sign.

We remark that the discussed phase slips differ from
those present in low-dimensional superconductors, caused
by thermal25 and quantum26,27 fluctuations. In those cases,
the phase slips are generated when, because of fluctuations,
the modulus of the complex order parameter goes to zero, the
phase becomes unrestricted, and might undergo jumps of 2π .33

By contrast, the phase slips discussed above have an
energetic origin and they occur when the system passes from
one energetically stable configuration to another one.34 This
transition takes place when the magnetic flux crosses one of
the critical points and therefore can be experimentally induced
by changing the magnetic flux. The different origin of the slips
is exemplified by the fact that the fluctuation-induced phase
slips are always of 2π while in the present case we have slips
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of π . The identification of this effect is possible only in the
electrically open junctions. In fact, the presence of an electric
current or a voltage bias would destroy or hide the original
effect.

IV. HEAT CURRENT IN JOSEPHSON JUNCTIONS
WITH DIFFERENT GEOMETRIES

With the help of Eq. (10) we can now determine the behavior
of JH (T1,T2,H ) for the three prototypical junction geometries
sketched in Fig. 1. In particular, we shall consider two well-
known examples such as the rectangular [see Fig. 1(b)] and
circular [see Fig. 1(c)] junction, and the more exotic annular
one [see Fig. 1(d)]. Annular junctions offer the possibility to
investigate fluxon dynamics due to the absence of collisions
with boundaries, yet they provide fluxoid quantization thanks
to their geometry which allows fluxon trapping. We assume
that the total phase-dependent heat current is characterized
by a uniform distribution, i.e., by a constant thermal current
areal density JA(x,y,T1,T2) in Eq. (5). JH can therefore be
calculated for the three considered geometries by following,
for instance, Refs. 31 and 32. In particular, for the rectangular
junction, the absolute value of the sine cardinal function is
obtained,

J rect
H (T1,T2,�) = Jint(T1,T2)

∣∣∣∣ sin(π�/�0)

(π�/�0)

∣∣∣∣, (17)

where Jint(T1,T2) = WLJA(T1,T2), � = μ0HLtH , L is the
junction length, and W its width. For the circular geometry
one gets the Airy diffraction pattern,

J circ
H (T1,T2,�) = Jint(T1,T2)

∣∣∣∣J1(π�/�0)

(π�/2�0)

∣∣∣∣, (18)

where Jint(T1,T2) = πR2JA(T1,T2), J1(y) is the Bessel func-
tion of the first kind, � = 2μ0HRtH , and R is the junction ra-
dius. Finally, for the annular junction,35,36 the phase-dependent
component of the heat current takes the form

J ann
H (T1,T2,�) = 2Jint(T1,T2)

1 − α2

∣∣∣∣
∫ 1

α

dxxJn(xπ�/�0)

∣∣∣∣, (19)

where Jint(T1,T2) = π (R2 − r2)JA(T1,T2), � = 2μ0HRtH ,
α = r/R, Jn(y) is the nth Bessel function of integer order,
R (r) is the external (internal) radius, and n = 0,1,2, . . . is the
number of n trapped fluxons in the junction barrier.

Figure 2 illustrates the behavior of JH for the three ge-
ometries. In particular, the curve displayed in Fig. 2(a) for the
rectangular case shows the well-known Fraunhofer diffraction
pattern analogous to that produced by light diffraction through
a rectangular slit. In such a case, the heat current JH vanishes
when the applied magnetic flux through the junction equals
integer multiples of �0. Furthermore, the heat current is
rapidly damped by increasing the magnetic field, falling
asymptotically as �−1.31 The behavior for a circular junction is
displayed in Fig. 2(b). Here, the flux values where JH vanishes
no longer coincide with multiples of �0, and JH falls more
rapidly than in the rectangular junction case, i.e., as �−3/2.31

Figure 2(c) shows JH for an annular junction. In particular, the
heat current diffraction pattern is strongly n dependent and,
differently from the rectangular and circular cases, JH decays
in general more slowly. It is apparent that annular junctions
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FIG. 2. (Color online) Normalized phase-dependent component
of the heat current JH vs magnetic flux � calculated for a
(a) rectangular, (b) circular, and (c) annular Josephson tunnel junction.
In the curves of (c) we set α = 0.9, and n indicates the number of
fluxons trapped in the junction barrier.

may provide, in principle, enhanced flexibility to tailor the heat
current response.

V. PROPOSED EXPERIMENTAL SETUP

A demonstration of diffraction of thermal currents could
be achieved in the setup shown in Fig. 3(a). It consists of two

FIG. 3. (Color online) (a) Possible experimental setup to demon-
strate heat diffraction in a temperature-biased rectangular Josephson
junction. Source and drain normal-metal electrodes are tunnel coupled
to one of the junction electrodes (S1). Superconducting tunnel
junctions operated as heaters and thermometers are connected to
the source and drain. A static in-plane magnetic field H is applied
perpendicular to the S1IS2 junction. (b) Thermal model describing the
main heat exchange mechanisms existing in the structure shown in (a).
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normal-metal source and drain electrodes tunnel coupled via
resistances Rt to one electrode (S1) of a Josephson junction
which, for the sake of clarity, is assumed to be rectangular.
An in-plane static magnetic field H is applied perpendicular
to the Josephson weak link. Furthermore, superconducting
probes tunnel coupled to both source and drain electrodes
either implement heaters or allow accurate measurement of
the electronic temperature in the leads.1 Intentionally heating
electrons in the source up to Tsrc yields a quasiparticle
temperature T1 > T2 in S1, therefore leading to a finite heat
current JS1→S2 , yet the latter can be modulated by the applied
magnetic field. Measurement of the drain electron temperature
(Tdr) would thus allow to assess heat diffraction.

The drain temperature can be predicted by solving a couple
of thermal balance equations accounting for the main heat
exchange mechanisms existing in the structure, according to
the model shown in Fig. 3(b). In particular, S1 exchanges
heat with source electrons at power Jsrc→S1 , with drain at
power JS1→dr, and with quasiparticles in S2 at power JS1→S2 .
Furthermore, electrons in the structure exchange heat with
lattice phonons residing at bath temperature Tbath, in particular,
at power Je-ph,S1 in S1, and at power Je-ph,src and Je-ph,dr in
source and drain electrodes, respectively. Finally, we assume
S2 to be large enough to provide substantial electron-phonon
coupling Je-ph,S2 so that its quasiparticles will reside at Tbath.
The electronic temperatures T1 and Tdr can therefore be
determined under given conditions by solving the following
system of thermal balance equations,

−Jsrc→S1 + JS1→S2 + JS1→dr + Je-ph,S1 = 0,
(20)

−JS1→dr + Je-ph,dr = 0,

for S1 and drain, respectively. In the above expressions,
JS1→S2 (T1,Tbath,�) = Jqp(T1,Tbath) − J rect

H (T1,Tbath,�), Jsrc→S1

(Tsrc,T1) = 1
e2Rt

∫ ∞
0 dεεN1(ε,T1) [f (ε,T1) − f (ε,Tsrc)],

JS1→dr(T1,Tdr) = 1
e2Rt

∫ ∞
0 dεεN1(ε,T1)[f (ε,Tdr)−f (ε,T1)],

and Je-ph,dr = drVdr(T 5
dr − T 5

bath),1 dr and Vdr being the
electron-phonon coupling constant and the volume of drain,
respectively. Furthermore,37

Je-ph,S1 = − S1VS1

96ζ (5)k5
B

∫ ∞

−∞
dEE

∫ ∞

−∞
dεε2 sgn(ε)ME,E+ε

×
[

coth

(
ε

2kBTbath

)
(fE − fE+ε) − fEfE+ε + 1

]
,

(21)

where fE(T1) = tanh(E/2kBT1), ME,E′(T1) =
N1(E,T1)N1(E′,T1)[1 − �2

1(T1)/EE′], S1 is the
electron-phonon coupling constant, and VS1 is the volume of
S1. As a set of parameters representative for a realistic
microstructure we choose Rt = 2 k�, RJ = 500 �,
Vdr = 10−20 m−3, dr = 3 × 109 W K−5m−3 (typical of
Cu),1 VS1 = 10−18 m−3, S1 = 3 × 108 W K−5m−3, and
�1(0) = �2(0) = 200 μeV, the last two parameters typical
of aluminum (Al).1 Finally, our thermal model neglects
both heat exchange with photons, owing to poor matching
impedance,5,38 and pure phononic heat conduction.15,23

The results of the thermal balance equations for drain
temperature are shown in Fig. 4.39 In particular, Fig. 4(a)
displays Tdr vs � for different values of Tsrc at Tbath = 250 mK.

FIG. 4. (Color online) (a) Drain temperature Tdr vs � calculated
at Tbath = 250 mK for several values of source temperature Tsrc for
a structure based on a rectangular Josephson junction. (b) Flux-to-
temperature transfer function T vs � calculated at 250 mK for a few
selected values of Tsrc. (c) Tdr vs � calculated for a few values of
Tbath at Tsrc = 1 K. (d) T vs � at a few selected Tbath calculated for
Tsrc = 1 K.

As expected, Tdr shows a response to magnetic flux resembling
a Fraunhofer-like diffraction pattern. The minima appearing
at integer values of �0 are the inequivocal manifestation
of the above-described phase slips. Increasing Tsrc leads
to a monotonic enhancement of the maximum of Tdr at
� = 0 which stems from an increased heat current flowing
into the drain electrode. Furthermore, the amplitude of Tdr

lobes follows a nonmonotonic behavior, initially increasing
with source temperature, being maximized at intermediate
temperatures, and finally decreasing at higher Tsrc values.
With the above-given structure parameters one would obtain
a maximum peak-to-valley amplitude exceeding ∼60 mK at
Tsrc ∼ 700 mK. By defining a figure of merit in the form
of a flux-to-temperature transfer coefficient, T = ∂Tdr/∂�,
we get that T as large as ∼90 mK/�0 could be achieved
at Tsrc = 600 mK in the present structure [see Fig. 4(b)].
Moreover, the transfer coefficient clearly demonstrates the
nonmonotonicity of the amplitude of drain temperature lobes
as a function of Tsrc.

The impact of bath temperature on the structure response
is shown in Fig. 4(c), where Tdr is plotted against � for a
few Tbath values at fixed Tsrc = 1 K. In particular, increasing
Tbath leads to a smearing of drain temperature joined with a
reduction of the lobes amplitude. This originates from both
a reduced temperature drop across the Josephson junction
and an enhanced electron-phonon relaxation in S1 and drain
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at higher Tbath. We notice that already at 550 mK the
temperature diffraction pattern is somewhat suppressed for a
structure realized according to the chosen parameters. The
drain temperature behavior as a function of Tbath directly
reflects on the transfer coefficient T (�) [see Fig. 4(d)] which
is calculated for a few selected values of Tbath.

We finally notice that the temperature diffraction patterns
shown in Fig. 4 implicitly assume the presence of the π

slips and, therefore, the same heat diffraction measure can
be considered as proof of the existence of such phase slips.

VI. SUMMARY

In summary, we have investigated thermal transport in
temperature-biased extended Josephson tunnel junctions under
the influence of an in-plane magnetic field. We have shown, in
particular, that the heat current through the junction displays
coherent diffraction, in full analogy with the Josephson
critical current. In an electrically open junction configuration,
minimization of the Josephson coupling energy imposes the
quantum phase difference across the junction to undergo π

slips at suitable magnetic flux intervals, the latter depending

on the specific junction geometry. Finally, we have proposed
and analyzed a hybrid superconducting microstructure, easily
implementable with current technology, which would allow
to demonstrate the diffraction of thermal currents. We wish
further to stress that the described temperature detection is
uniquely suited to reveal the hidden physical properties of
the quantum phase in electrically open tunnel junctions of
whatever geometry otherwise more difficult to access with
electric-type transport measurements. The effects predicted
here could serve to enhance the flexibility of master thermal
currents in emerging coherent caloritronic nanocircuitry.
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19E. Zhao, T. Löfwander, and J. A. Sauls, Phys. Rev. B 69, 134503
(2004).

20D. Golubev, T. Faivre, and J. P. Pekola, Phys. Rev. B 87, 094522
(2013).

21F. Giazotto and M. J. Martı́nez-Pérez, Appl. Phys. Lett. 101, 102601
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