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Kerr rotation in the unconventional superconductor Sr2RuO4
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The interpretation of Kerr rotation measurements in the superconducting phase of Sr2RuO4 is a controversial
topic. Both intrinsic and extrinsic mechanisms have been proposed, and it has been argued that the intrinsic
response vanishes by symmetry. We focus on the intrinsic contribution and clarify several conflicting results in
the literature. On the basis of symmetry considerations and detailed calculations, we show that the intrinsic Kerr
signal is not forbidden in a general multiband system but has a rich structure in the near-infrared regime. We
distinguish different optical transitions determined by the superconducting gap (far infrared) and the interorbital
coupling of the normal state (near infrared). We argue that the low-frequency transitions do not contribute to the
Hall conductivity, while only the interorbital transitions in the near-infrared regime contribute. Finally, we discuss
the difficulties to connect the calculations for the optical Hall conductivity to the experimental measurement of
the Kerr angle. We will compare different approximations which might lead to conflicting results.
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I. INTRODUCTION

The measurements of the finite Kerr rotation angle in the
superconducting phase of Sr2RuO4 (Refs. 1 and 2) attracted
a large interest since they are believed to hold the decisive
proof for time-reversal-symmetry (TRS) breaking in this
unconventional superconductor. The experimental observation
generated an enormous body of theoretical work trying to
explain the findings qualitatively and even quantitatively. In the
beginning, the work was focused on intrinsic mechanisms,3–8

neglecting effects arising from impurity scattering. These stud-
ies referred to various mechanisms such as collective modes
and finite size of the laser spot or were proven to be incorrect
later on. A common feature between all these approaches was
the restriction to single-band models. Subsequently, it was
argued by several authors that the Kerr effect has to be zero
in the intrinsic and homogeneous superconductors, which is
the crucial point we want to address here. Those arguments
are correct for single-band models, but we will contend
that for multiorbital systems the general arguments do not
hold. Only recently, two groups9,10 showed that in multiband
models an intrinsic effect can exist indeed and is of the order
of magnitude as the experimentally found value.1 Almost
immediately, these results were criticized by Mineev.11 He
argued, on the basis of symmetry arguments, that the intrinsic
Kerr effect has to vanish even in a multiorbital approach.
We will address this criticism in detail. Finally, despite the
fact that both groups9,10 performed calculations based on very
similar models, their findings are surprisingly different. The
considered major contributions are in a significantly different
frequency range. We will highlight these discrepancies and
show what caused them. Here, we analyze both approaches
and compare the results in detail.

A quite different route to explain the experiments is based
on impurity scattering.12–14 These approaches turned out to
be as successful in describing the experiment as the intrinsic
mechanism. However, whether the experiments are caused by
an intrinsic or an extrinsic mechanism can hardly be decided
on the basis of the existing data. It will be crucial to predict

features relying on one or the other mechanism which can be
proven experimentally. In the following, we will concentrate
on the intrinsic mechanism.

This paper will be organized in six major sections. After
this introduction, we start with the description of our nu-
merical approach to calculate the Kerr rotation angle based
on the evaluation of the optical conductivity tensor. In the
following section, we will introduce the three-orbital and
three-dimensional model for the superconducting state of
Sr2RuO4 in detail.15 The numerical results will be presented
in Sec. IV. Finally, we compare our results to the approach of
Ref. 9 and show its similarities and differences. This discussion
will include arguments why the criticism of Mineev11 does
not apply to the considered models. In the last section, we
are going to make contact to the experimental observation
of the Kerr angle and highlight the uncertainties in reliable
predictions.

II. THEORETICAL METHOD

In our approach,10 we follow the analysis of Capelle,
Gross, and Györffy16,17 for the magneto-optical dichroism
in superconductors. We will only discuss their main results
relevant for our numerical implementation and the following
discussion. The frequency-dependent Kerr angle is given
by14

θK = 1

ε0ω
Im

σxy(ω)

n(ω)[n2(ω) − 1]
, (1)

where n(ω) is the complex refraction coefficient and σxy(ω) is
the complex optical Hall conductivity. In general, the existence
or the absence of the dichroic signal is determined by σxy(ω)
and so we focus on that quantity in the following. However,
for quantitative predictions of the Kerr angle in comparison
to experiments, the knowledge of the complex refraction
coefficient is needed as well. We will comment on different
approximations later. According to Refs. 16 and 17, the real
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and imaginary parts of the optical Hall conductivity can be
expressed as

Im[σxy(ω)]

= πe2

2ωV m2

∑
n,n′,k

f (Enk) [1 − f (En′k)]

× (|〈�n′k|H †
I (εL)|�nk〉|2 − |〈�n′k|H †

I (εR)|�nk〉|2)

× δ(En′k − Enk − h̄ω), (2)

Re[σxy(ω)]

= e2h̄

V m2

∑
n,n′,k

f (Enk) [1 − f (En′k)]

× (|〈�n′k|H †
I (εL)|�nk〉|2 − |〈�n′k|H †

I (εR)|�nk〉|2)

(En′k − Enk)2 − h̄2ω2
,

(3)

where the interaction Hamiltonian for the absorption of the
electromagnetic wave H

†
I (εL/R) is given by

H
†
I (εL/R) = 1

i

(
ε∗

L/R · p̂ 0
0 −ε∗

L/R · p̂∗

)
. (4)

Here, p̂ is the momentum operator h̄/i∇r and εL/R = (1, ±
i,0)/

√
2. If we consider −p̂∗ = p̂, this leads us to

H
†
I (εL/R) = 1

i

(
ε∗

L/R · p̂ 0
0 ε∗

L/R · p̂

)
. (5)

The wave functions 〈r|�nk〉 = eikr [unk(r),vnk(r)] T are
Bloch-type solutions of the Bogoliubov–de Gennes (BdG)
equations(

Ĥk(r) 	̂(r)
	̂†(r) −Ĥ ∗

−k(r)

) (
unk(r)
vnk(r)

)
= Enk

(
unk(r)
vnk(r)

)
(6)

with the k-dependent lattice periodic normal-state Hamilto-
nian Ĥk = e−ikrĤ (r)eikr. If we apply the identity p̂/m = v̂ =
eikr∇kHk/h̄e−ikr in Eq. (4), we get

H
†
I (εL/R) = 1

i
eikr m√

2h̄

(
Ĥ x

k ∓ iĤ
y

k

)
e−ikr (7)

with

Ĥ
x,y

k =
(

∂kx,y
Ĥk(r) 0
0 ∂kx,y

Ĥk(r)

)
. (8)

Combining Eqs. (2) and (7), we can express the optical
conductivity in terms of the periodic part of the Bloch function
〈r|nk〉 = [unk(r),vnk(r)]T :

Im[σxy(ω)]

= πe2

2ωVh̄2

∑
n,n′,k

f (Enk) [1 − f (En′k)] δ(En′k − Enk − h̄ω)

×Im[〈n′k|Hx
k |nk〉〈nk|Hy

k |n′k〉
− 〈n′k|Hy

k |nk〉〈nk|Hx
k |n′k〉]. (9)

This looks like the expression used in Ref. 10 but is crucially
different. The first point is that Ĥk(r) is the k-dependent
Hamiltonian but not the tight-binding Hamiltonian. More
crucially, Hx,y

k is a diagonal matrix with two equivalent entries

in contrast to Ref. 10 where the lower entry had opposite sign
to the upper term. This will cause large differences in the
numerical results, namely, no low-frequency contributions. In
the following, we will rewrite the expression in terms of the
tight-binding Hamiltonian under consideration.

A fairly general expansion of the Bloch wave function in a
superconductor takes the form

〈r|�nk〉 =
∑
L,R

eikR
(

un(k)
vn(k)

)
L

�L(r − R), (10)

where L represents the local orbital quantum number within
the unit cell, while R refers to the site within the periodic
lattice. Exploiting this expansion, we can rewrite the BdG
equation (6) as(

H (k) 	̂(k)
	̂†(k) −H ∗(−k)

)(
un(k)
vn(k)

)
= Enk

(
un(k)
vn(k)

)
, (11)

where all entries in the operator on the left-hand side are
matrices in the local orbital space which were included in the
expansion (10). Accordingly, the eigensolutions are vectors in
the orbital space. The matrix elements can be expressed as

HL,L′(k) =
∑

R

eikR
∫

UC

d3r �∗
L(r)H (r)�L′(r − R), (12)

	L,L′(k) =
∑

R

eikR
∫

UC

d3r �∗
L(r)	(r)�L′(r − R). (13)

The integration runs over one unit cell (UC) only. These
are standard results using the onsite approximation, i.e.,
no overlapping of neighboring basis functions

∫
d3r �∗

L(r −
R′)�L′(r − R) = δRR′δLL′ . Now, we need to express the
interaction Hamiltonian of Eq. (5) in terms of the tight-binding
basis, which gives the result

〈n′k|H †
I (εL/R)|nk〉 = ε∗

L/R

i

m

h̄

(
un′ (k)
vn′(k)

)†

×
(∇kH (k) 0

0 ∇kH (k)

) (
un(k)
vn(k)

)
.

(14)

To derive that formula, we used p̂ = −i m
h̄

[r̂Ĥ − Ĥ r̂], the
completeness relation

∑
L,R �L(r − R)�∗

L(r′ − R) = δ(r −
r′), and most importantly the assumption of a vanishing dipole
moment within the unit cell∫

d3r �∗
L(r − R) r̂ �L′(r − R′) = RδLL′δRR′ . (15)

To summarize this derivation, it needs to be said that Eq. (14)
is very similar to the one derived in Ref. 10. However, it
is crucially different since it omits the minus sign in front
of the lower k derivative of the k-dependent tight-binding
Hamiltonian. In the following, we will show that for the
low-frequency region of the optical conductivity this implies
dramatic changes.

III. TIGHT-BINDING MODEL FOR Sr2RuO4

The results for the optical Kerr effect in the superconducting
phase of Sr2RuO4, which we are going to present in Sec. IV, are
based on a three-orbital and three-dimensional tight-binding
model. This model was introduced in the literature15,18,19
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already and relies on the following main facts. First, it de-
scribes accurately the experimentally found three-sheet Fermi
surface20,21 and the cyclotron masses.22 Second, it is a minimal
model in the interaction parameters which reproduces the
experimentally found specific heat15,23 quantitatively. Finally,
and following from the previous point, it includes horizontal
line nodes of the gap function and reproduces the superfluid
density.15,18

Most importantly, we do not enter the long-standing
debate of the underlying mechanism for the superconducting
state.18,24–27 The controversy focuses on the origin of the
superconductivity from either the quasi-two-dimensional xy

band or the quasi-one-dimensional xz/yz bands. However,
this is not the scope of this paper where we rather focus
on the controversy concerning the general existence and
magnitude of the intrinsic Kerr effect in Sr2RuO4. Our model
parameters are derived from experimental observations and
the gap for all three bands is of similar order.15,18 This is
determined by the observed single-transition temperature of
the superconducting state which suggests significantly coupled
bands. Our semiphenomenological model does account for
these experimental findings but is not addressing the origin of
the superconductivity.

Here, we will only state the final structure of the model, with
slight adjustments of the interaction parameters to account for
the improved numerical accuracy. In the following, we will
apply this model, without any further changes, to calculate the
optical Kerr effect, finally comparing it to the experimental
observations. As mentioned already, our model is based on
three Ru 4d orbitals (dxy , dxz, dyz) which in the following we
will denote as (a, b, c), respectively. For the proper description
of the normal-state electronic band structure, we consider

Haa(k) = εa + 2t(cos kx + cos ky) + 4t ′ cos kx cos ky,

Hbb(k) = εb + 2
(
txb cos kx + t

y

b cos ky

)
+ 8t⊥b cos

kx

2
cos

ky

2
cos

kz

2
c,

Hcc(k) = εc + 2
(
txc cos kx + tyc cos ky

)
+ 8t⊥c cos

kx

2
cos

ky

2
cos

kz

2
c,

Hab(k) = 8t⊥ab cos
kx

2
sin

ky

2
sin

kz

2
c,

Hac(k) = 8t⊥ac sin
kx

2
cos

ky

2
sin

kz

2
c,

Hbc(k) = 4tbc sin kx sin ky + 8t⊥bc sin
kx

2
sin

ky

2
cos

kz

2
c.

For symmetry reasons, we can impose the following conditions
on the introduced parameters:

εb = εc, tyc = txb , txc = t
y

b , t⊥c = t⊥b , and t⊥ab = t⊥ac,

which reduces the number of parameters to 10. Using this
set of parameters, we are able to fit the experimentally
found cyclotron masses,22 Fermi-surface areas,20 and the
most pronounced corrugations found in the z direction.21 The
in-plane lattice constant is set to one and the out-of-plane
lattice constant is c = 3.279. For the superconducting state,

the minimal model takes the explicit form

	↑↓
aa (k) = ηx

aa sin kx + ηy
aa sinky,

	
↑↓
bb (k) = ηx

bb sin
kx

2
cos

ky

2
cos

kz

2
c

+ η
y

bb cos
kx

2
sin

ky

2
cos

kz

2
c,

	↑↓
cc (k) = ηx

cc sin
kx

2
cos

ky

2
cos

kz

2
c (16)

+ ηy
cc cos

kx

2
sin

ky

2
cos

kz

2
c,

	
↑↓
bc (k) = ηx

bc sin
kx

2
cos

ky

2
cos

kz

2
c

+ η
y

bc cos
kx

2
sin

ky

2
cos

kz

2
c,

where the order parameters are given by

ηx
aa = U

∑
n

∫
d3k{u↑

a,n(k)[v↓
a,n(k)]∗ + u↓

a,n(k)[v↑
a,n(k)]∗}

× sin kx [1 − 2f (T ,En)],

ηx
bb = 4U ′ ∑

n

∫
d3k{u↑

b,n(k)[v↓
b,n(k)]∗ + u

↓
b,n(k)[v↑

b,n(k)]∗}

× sin
ky

2
cos

ky

2
cos

kz

2
c [1 − 2f (T ,En)],

ηx
cc = 4U ′ ∑

n

∫
d3k{u↑

c,n(k)[v↓
c,n(k)]∗ + u↓

c,n(k)[v↑
c,n(k)]∗}

× sin
ky

2
cos

ky

2
cos

kz

2
c [1 − 2f (T ,En)],

ηx
bc = 4U ′ ∑

n

∫
d3k{u↑

b,n(k)[v↓
c,n(k)]∗ + u↓

c,n(k)[v↑
b,n(k)]∗}

× sin
ky

2
cos

ky

2
cos

kz

2
c [1 − 2f (T ,En)].

In combination with a set of symmetry-induced relations for
the order parameters

ηy
aa = i ηx

aa, η
y

bb = i ηx
cc, ηy

cc = i ηx
bb, η

y

bc = −i ηx
bc,

and the gap function

	
↑↓
ji (k) = 	

↓↑
ij (k),

this fully determines the gap function entering the BdG
equation (11). The actual parameters used for the following
calculations are summarized in Table I and are essentially
equivalent to those introduced in the literature.18 It should be
mentioned that due to an improved numerical accuracy it was
necessary to slightly adjust the interaction parameters U and
U ′ to fix the transition temperature at 1.5 K. For numerical
calculations, solving the BdG equations self-consistently and
for the optical conductivity, we used a very dense k-point
mesh with 480 × 480 × 48 points along the Brillouin zone
basis vectors (1,0,1/c), (0,1,1/c), and (0,0,2/c).

IV. NUMERICAL RESULTS

After we have set up the theoretical background in Sec. II
and defined the actual model in Sec. III, we will now
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TABLE I. The numerical parameters for the tight-binding model of Sr2RuO4 and the interaction parameters describing the superconducting
phase in units of meV.

εa εb t t ′ tx
b t

y

b t⊥
b t⊥

ab t⊥
ac tbc t⊥

bc U U ′

−131.8 −132.22 −81.62 −36.73 −109.37 −6.56 0.262 −1.05 −1.05 −8.75 −1.05 37.63 50.69

discuss the numerical results for the optical conductivity.
To set a framework for the following discussion, Fig. 1
shows the quasiparticle band structure at T = 0 K along
high-symmetry lines. We have three bands dominantly related
to the orbital character dxy , dxz, and dyz. The contributions
to the optical conductivity which will be discussed in the
following can be viewed as transition between the positive
and negative solutions of the quasiparticle spectrum separated
by the opening of the superconducting gap. The two energy
scales for possible transitions conserving the crystalline
momentum k are set by the superconducting gap of the order
of 2	bb[k = (2π,0,0)] = 7.6 × 10−4 eV and the interorbital
hopping between xz and yz orbitals tbc = 0.9 × 10−2 eV.
Since the first one is related to transitions between electron and
hole bands of the same predominant orbital character, we will
refer to them as intraorbital transitions while we label the latter
one as interorbital transitions. The interorbital transitions can
be further separated into three distinct transitions according
to xy → xz, xy → yz, and xz → yz of which xy → yz

are lowest in energy. The energies and frequencies of the

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 M Γ  X  P  H 

 E
ne

rg
y 

[e
V

]

 dxy

 dyz

 dxz

-3

0

4×10

-4×10

-2×10

2×10

-3

 2Δ

-2

0

-2

tbc

3tbc

5tbc

FIG. 1. (Color online) Quasiparticle band structure of the con-
sidered three-band model for the superconducting phase of Sr2RuO4

along high-symmetry lines. As insets we highlight different possible
transitions between electron and hole bands. The order of magnitude
for the energies of transitions between the same orbital character is set
by the gap approximately as 2	bb = 7.6 × 10−4 eV which is in the
far-infrared frequency regime. Transitions between different orbital
characters are given by tbc ≈ 0.009 eV (xy → yz), 5tbc = 0.044 eV
(xz → yz), and 3tbc = 0.026 eV (xz → yz), respectively

intraorbital and interorbital transitions are separated by two
orders of magnitude, connected to the far-infrared and near-
infrared spectrum, respectively. In Fig. 2, we present our results
for the real and imaginary parts of the optical conductivity
according to Eqs. (3) and (2). The figure shows the near-
infrared frequency region since the signal is zero below the
onset around 0.008 eV. It corresponds to the energy scale given
by the interorbital transitions as introduced above. Both real
and imaginary parts show a rich structure with pronounced
features between 0.01 and 0.1 eV. The vanishing of the
far-infrared (low-energy) signal is distinct from the findings in
a previous publication of some of the authors.10 This is related
to the different signs discussed in relation to the interaction
Hamiltonian of Eqs. (8) and (9) in this work. The inset of
Fig. 2 shows the frequency range around 0.8 eV where the
experimental effect was observed.1 The imaginary part almost
vanishes in that regime, while the real part remains finite and
becomes Re[σxy(ω = 0.8 eV)] = 3.4 × 10−8e2/(h̄d).

For a numerical validation of the applied method, we
performed Kramers-Kronig transformations for both the imag-
inary and the real parts. We compare these in Fig. 3 to the
direct calculations. Clearly, the agreement is very good owing
to the fact that the numerical precision and stability of the
calculations are satisfactory.

In the following section, we will compare our ap-
proach and the numerical results to other approaches which
show conflicting results at the first glance. We will point
out the reasons for the discrepancies and resolve the
contradictions.

-14.0

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

0.00 0.05 0.10 0.15 0.20

σ x
y 

[1
0-6

e2 /(
- hd

)]
 

-hω [eV]

Im[σxy(ω)]
Re[σxy(ω)]

 0.0 

-1×10-1

-5×10-2

5×10-2

1×10-1

 0.6  0.8  1.0 

σ x
y [

10
-6

e2 /(- h
d)

]

-hω [eV]

FIG. 2. (Color online) The real and imaginary parts of the optical
conductivity according to Eq. (2). The inset shows the high-frequency
results in the range of the experiments (ωexpt = 0.8 eV) (Ref. 1). The
conductivities are given in units of e2/h̄/d , where d = 6.37 Å is the
c-axis interlayer spacing.
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-14.0

-12.0

-10.0
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-4.0
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4.0

6.0
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σ x
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[1
0-6
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2 /(
- hd

)]
 

-hω [eV]

Im[σxy]
Re[σxy]

Im[σxy]=KKT[Re[σxy]]
Re[σxy]=KKT[Im[σxy]]

FIG. 3. (Color online) The real and imaginary parts of the optical
conductivity according to Eqs. (2) and (3) in comparison to the
same quantities as obtained from the Kramers-Kronig transformation.
The very good agreement validates the numerical accuracy of the
calculations.

V. DISCUSSION 1: COMPARISON TO
EXISTING APPROACHES

Almost at the same time when some of the authors published
their original work for the Kerr effect in Sr2RuO4,10 another
group presented a very similar approach leading to quite
different results. Taylor and Kallin9 found a finite signal using
a two-dimensional two-band model which, according to their
results, showed a finite signal only in the near-infrared region.
This work was criticized by Mineev11 who argued about the
vanishing intrinsic Kerr signal in Sr2RuO4 even for a two-band
model.

We will start the comparison of our results with Taylor and
Kallin.9 The corresponding model was based on the dxz(b) and
dyz(c) orbitals only and was limited to two dimensions, i.e.,
no interlayer coupling and kz = 0. In addition, compared to
Eq. (16), they neglected the inter-orbital gap 	

↑↓
bc (k), set t

y

b =
txc = 0 and η

y

bb = ηx
cc = 0. This simplified model does not fully

describe the normal-state Fermi surface, the cyclotron masses,
nor the experimentally observed specific heat accurately.
The model has no line nodes in the gap function and therefore
will have an exponential specific heat for low temperature
in contradiction to the quadratic dependence found in the
experiment.15,23 Despite these differences, it is illustrative to
analyze this model in more detail. In Fig. 4, we show the
corresponding two-dimensional quasiparticle band structure
using exactly the same model parameters as introduced in
Ref. 9. Comparing this to our three-dimensional model as
shown in Fig. 1, the overall bandwidth is much larger. This
is caused by parameters fitted to density functional theory
(DFT) calculations in contrast to our fit to experimental results.
It is well known that typical DFT calculations overestimate
the bandwidth drastically.20 The orders of magnitude for the
different transitions are set by 2	x

2d = 3.0 × 10−4 eV and
2t ′ = 0.12 eV.

In the following, we use the Taylor and Kallin model9

to calculate the optical conductivity according to Eq. (2)
and compare the results to our full three-dimensional model.
This comparison is shown in Fig. 5 for the near-infrared,

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 M Γ  X 

 E
ne

rg
y 

[e
V

]

 2t’2d

 dyz

 dxz

10-3

100

10-3

 2Δ2d

FIG. 4. (Color online) Quasiparticle band structure of the reduced
two-dimensional and two-band model for the superconducting phase
of Sr2RuO4 as applied by Taylor and Kallin (Ref. 9). Possible
transition between electron and hole bands of the same orbital
character separated by 2	 = 4.0 × 10−4 eV and the different orbital
character (xz, yz) separated by 0.12 eV are marked in the inset and
the main figure, respectively.

high-frequency, region. The results are very similar with only
a shift in frequencies. This is caused by the significantly
larger bandwidth of the two-dimensional model as pointed
out above. Here, we would like to highlight two further
important points. First, the pronounced positive feature at

-14.0

-12.0

-10.0

-1.6

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

0.00 0.05 0.10 0.15 0.20

 Im
[σ

xy
]  

[1
0-6

⋅ e
2 /(
- hd

)]
 

-hω [eV]

3-band and 3-dim. model  
2-band and 2-dim. model9

FIG. 5. (Color online) The imaginary part of the optical con-
ductivity according to Eq. (2) comparing the three-dimensional and
three-orbital model of the current work to the two-dimensional
and two-orbital model as used by Taylor and Kallin (Ref. 9) The
qualitative agreement is reasonable accounting for the fact that in
both models at least the dominant xz/yz interorbital coupling is
included. The three-band model has a much richer structure due to
the existence of many more possible transitions (Ref. 18).

094504-5
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FIG. 6. The imaginary part of the optical conductivity for the two-
band and two-dimensional tight-binding model of superconducting
Sr2RuO4 according to Taylor and Kallin (Ref. 9). The black solid line
shows the result applying Eq. (2) of the current work while the gray
broken line uses Eq. (11) of Ref. 9.

around h̄ω = 0.015 eV in the three-band model is determined
by transitions between xy and yz orbitals which do not exist in
the reduced model. Second, the original discrepancy between
both approaches9,10 concerning the existence of low-frequency
contributions of the order of the gap function is resolved in
this work. There is no optical signal in the far-infrared region.
Overall, both models lead to qualitatively similar results. Our
numerical finding concerning the presence of transitions due
to interorbital couplings between the xy/xz and xy/yz was
discussed qualitatively by the same authors.28 We show that
these transitions determine the onset of the Kerr signal and
are smaller but not negligible in comparison to the transitions
induced by the xz/yz interorbital coupling.

To show the equivalence of our numerical solution of Eq. (2)
and the derivation of Ref. 9, we show this comparison in Fig. 6.
The gray broken line shows the result according to Eq. (11)
of Ref. 9 while the black solid curve is the solution of Eq. (2)
in this work but using the same tight-binding model as Taylor
and Kallin.9 The agreement is perfect.

With that we turn our attention to even more crucial results
in literature, arguing that the intrinsic optical conductivity
vanishes in translational-invariant superconductors.11 The ar-
guments were based on fairly general symmetry considerations
for the structure of the gap function. In his work Mineev11

focused on the model as used in Ref. 9 and derived two crucial
statements: (1) A two-dimensional representation of the gap
function is essential to correctly describe the symmetry of
the system. (2) Using the adequate two-dimensional repre-
sentation leads inevitably to a vanishing optical conductivity.
However, in his second argument his considerations were not
accurate. The expressions for the gap functions which he was
using had the form

	
↑↓
bb (k) = (

ηx
bb sin kx + η

y

bb sin ky

)

and

	↑↓
cc (k) = (

ηx
cc sin kx + ηy

cc sin ky

)
,
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FIG. 7. (Color online) The imaginary part of the optical conduc-
tivity according to Eq. (2) using our general model in comparison
to a calculation artificially obeying condition (17). The inset shows
the same comparison including one further condition, namely, t⊥

ab =
t⊥
ac = 0, which decouples the xy orbitals from the xz and yz orbitals.

In that case, the imaginary part vanishes in accordance to Ref. 11.

where the order parameter amplitudes ηx
bb, η

y

bb, ηx
cc, and η

y
cc

were determined by the free-energy expansion. The crucial
condition he was using are the equalities∣∣ηx

bb

∣∣ = ∣∣ηy

bb

∣∣
and ∣∣ηx

cc

∣∣ = ∣∣ηy
cc

∣∣. (17)

However, this is not valid in general since interactions of
dxz orbitals in the x and y directions are not related by any
symmetry arguments at all. In fact, solving the BdG equations
self-consistently, we find the corresponding terms to differ by
one order of magnitude. This disproves his argument since it
was based on a subtle cancellation of different contributions
which fails if the equalities above do not hold. To underline
this finding once more, we performed an artificial calculation
where we fixed the model to obey the above conditions (17).
The result is shown in Fig. 7 in comparison to our self-
consistent model. Evidently, the optical conductivity almost
vanishes imposing conditions (17). Only at the onset of the
signal, created via the transitions between xy and yz orbitals
a small contribution remains. However, the dxy orbitals were
neglected in Ref. 11 so could not contribute at all. Here, the
signal is created via the normal-state hopping between xy,
xz and xy, yz orbitals with distinct gap parameters. In a
two-dimensional (single-plane) model there is no dxy to dyz

(dxz) hopping by symmetry, but in three dimensions this is
possible. For that reason, the subtle cancellation does not take
place and we find a finite optical conductivity. To confirm
this argument we provide as inset of Fig. 7 the result of
a calculation where we omit, in addition to condition (17),
the normal-state coupling between xy and xz (yz) orbitals,
t⊥ab = t⊥ac = 0. Including this further assumption, the optical
conductivity vanishes identically which is reassuring and
agrees with the result of Mineev.11 Concluding this section,
we would like to stress once more that the arguments for
a vanishing intrinsic Kerr effect4,11 are strictly valid for a
single-band model. However, in a more general multiband
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system, a finite Kerr can be observed if time-reversal symmetry
or inversion symmetry are broken.

VI. DISCUSSION 2: COMPARISON TO
EXPERIMENTAL RESULT

The final part of this paper is dedicated to the comparison
with experimental results.1 This is not as straightforward
as it seems due to the fact that the measured quantity
is the Kerr angle in contrast to the optical conductivity
we discussed so far. To make contact between both, we
need to evaluate Eq. (1) with the so far unknown complex
refraction coefficient n(ω) = √

ε(ω). The permeability can be
expressed as

ε(ω) = ε∞ + i

ω

σxx(ω)

ε0
, (18)

which leaves us with the unknown complex longitudinal
optical conductivity σxx(ω) and ε∞. In the literature, various
approaches were proposed and tested to derive these num-
bers from the existing experiments.1,9,10,14,29 However, these
attempts were relying on more or less accurate approximation
of the experimentally found longitudinal optical conductivity
by a Drude model. In general, this would read as

σxx(ω) = − ε0ω
2
pl

i(ω + iγ )
, (19)

where the scattering rate γ would be in principle frequency
dependent. Both γ and the plasma frequency ωpl have to be
approximated. Here, we would like to show that these approxi-
mations are good enough to roughly estimate the magnitude of
the possible Kerr angle but are by no means reliable to predict
an accurate quantitative result. One of the problems is the fact
that the frequency of the experiment deriving the Kerr angle is
actually close to the plasma frequency of the system. Despite
that it is questionable how reliably the optical response of this
multiband metal/superconductor can be described by a general
Drude model at all. In Fig. 8, we compare different approaches
to address that point. The three lines in Fig. 8 refer to existing
approaches based on Eq. (19) exploiting different sets of
parameters derived from an experimental work.29 However,
all these approaches are based on the assumption that it is
reasonable to describe the longitudinal optical response by
means of a Drude model. Even though these approaches are
very similar, the figure shows that slight variations in the
parameters can drastically change the estimated Kerr angle. To
avoid this difficulty, we derived the real and imaginary parts
of the refraction index n(h̄ω = 0.8 eV) from the experiment29

explicitly. Here, we used the connection between the reflec-
tivity and the refraction index R = |(n − 1)/(n + 1)|2. We
took the real part of the optical conductivity from Fig. 1 of
Ref. 29 to be Re[σxx(h̄ω = 0.8 eV) ≈ 800 �−1 cm−1 and
the reflectivity R(h̄ω = 0.8 eV) ≈ 0.6. From these numbers
the real and imaginary parts of n can be derived to be
Im[n(h̄ω = 0.8 eV) ≈ 7.43 and Re[n(h̄ω = 0.8 eV) ≈ −6.09.
The resulting Kerr angle is �K (h̄ω = 0.8 eV) = 12 nrad. It is
similar in magnitude to the other approximations but reduces
the uncertainty about the values of the necessary parameters.
Nevertheless, all these approaches remain rough approxima-
tions, and thorough experimental and theoretical work on the

 0.0 
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θ k
 [n
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FIG. 8. (Color online) The estimated Kerr angle using the optical
Hall conductivity as shown in the inset of Fig. 2 and different
approximations for the permeability ε(ω). The solid red curve is
based on Eq. (19) using the parameters ε∞ = 10, h̄ωpl = 2.9 eV,
and γ = 0.4 derived in Refs. 9,14, and 29. The broken black line
is exploiting the same model but using γ = 0.2. The dotted blue
line uses the assumption of ωpl/

√
ε∞ � ω and h̄ωpl = 4.5 eV as

discussed in Ref. 10. Finally, the black circle is derived from the
experimental data presented in Ref. 29 leading to parameters for
the permeability as Re[ε(h̄ω = 0.8 eV)] = −6.09 and Im[ε(h̄ω =
0.8 eV)] = 7.43 as discussed in the text. The resulting Kerr angle is
12 nrad. The experimental Kerr angle at h̄ω = 0.8 eV is in the range
of 60 to 90 nrad.

complex valued longitudinal conductivity are highly desirable.
These findings are in line with a discussion by Taylor and
Kallin28 who analyzed a similar two-dimensional model.

VII. SUMMARY

In conclusion, we have presented a thorough analysis of
the mechanism and the theoretical and numerical description
of the optical Kerr effect in superconducting Sr2RuO4. We
clarified the principle of the existence or not of the intrinsic
effect and point to the crucial ingredients for any model
describing the problem. Furthermore, we resolve various
contradictions between earlier works especially about the
existence of low-frequency contributions to the spectrum
and the magnitude of the effect. Due to the fact that our
full three-band description takes care of the experimentally
observed line nodes in the superconducting state, accurately
describes the measured Fermi-surface properties, and is able to
account for many quantities such as specific heat and superfluid
density quantitatively, we are reassured that the quantitative
estimation of the Kerr angle is reasonable. However, the
comparison to the Taylor and Kallin model suggests that
the presence or absence of gap nodes is not essential to
the Kerr signal. Finally, we argue that further theoretical
as well as experimental investigations are crucial to make
further quantitative contact between theory and experiment.
Of special importance is here the proper description of the
longitudinal component of the optical conductivity which was
treated so far by approximations relying on the applicability
of the generalized Drude model. Ultimately, measurements of
the Kerr angle for a larger frequency range are important to be
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GRADHAND, WYSOKINSKI, ANNETT, AND GYÖRFFY PHYSICAL REVIEW B 88, 094504 (2013)

able to make a final conclusion about the intrinsic or extrinsic
nature of the observed optical Kerr effect.
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19K. I. Wysokiński, G. Litak, J. F. Annett, and B. L. Györffy, Phys.
Status Solidi 236, 325 (2003).

20A. P. Mackenzie, S. R. Julian, A. J. Diver, G. J. McMullan, M. P.
Ray, G. G. Lonzarich, Y. Maeno, S. Nishizaki, and T. Fujita, Phys.
Rev. Lett. 76, 3786 (1996).

21C. Bergemann, S. R. Julian, A. P. Mackenzie, S. NishiZaki, and
Y. Maeno, Phys. Rev. Lett. 84, 2662 (2000).

22A. P. Mackenzie, S.-i. Ikeda, Y. Maeno, T. Fujita, S. R. Julian, and
G. G. Lonzarich, J. Phys. Soc. Jpn. 67, 385 (1998).

23S. Nishizaki, Y. Maeno, and Z. Mao, J. Phys. Soc. Jpn. 69, 572
(2000).

24M. E. Zhitomirsky and T. M. Rice, Phys. Rev. Lett. 87, 057001
(2001).

25S. Raghu, A. Kapitulnik, and S. A. Kivelson, Phys. Rev. Lett. 105,
136401 (2010).

26J.-w. Huo, T. M. Rice, and F.-c. Zhang, Phys. Rev. Lett. 110, 167003
(2013).

27Q. H. Wang, C. Platt, Y. Yang, C. Honerkamp, F. C. Zhang,
W. Hanke, T. M. Rice, and R. Thomale, arXiv:1305.2317.

28E. Taylor and C. Kallin, J. Phys.: Conf. Series 449, 12036 (2013).
29T. Katsufuji, M. Kasai, and Y. Tokura, Phys. Rev. Lett. 76, 126

(1996).

094504-8

http://dx.doi.org/10.1103/PhysRevLett.97.167002
http://dx.doi.org/10.1088/1367-2630/11/5/055060
http://dx.doi.org/10.1088/1367-2630/11/5/055060
http://dx.doi.org/10.1007/BF01151804
http://dx.doi.org/10.1007/BF01151804
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.98.087003
http://dx.doi.org/10.1103/PhysRevB.76.212501
http://dx.doi.org/10.1103/PhysRevB.77.144516
http://dx.doi.org/10.1103/PhysRevB.77.144516
http://dx.doi.org/10.1103/PhysRevB.77.174513
http://dx.doi.org/10.1103/PhysRevLett.108.157001
http://dx.doi.org/10.1103/PhysRevLett.108.077004
http://dx.doi.org/10.1103/PhysRevLett.108.077004
http://dx.doi.org/10.1143/JPSJ.81.093703
http://dx.doi.org/10.1103/PhysRevLett.100.227003
http://dx.doi.org/10.1103/PhysRevLett.100.227003
http://dx.doi.org/10.1103/PhysRevB.78.060501
http://dx.doi.org/10.1103/PhysRevB.80.104508
http://dx.doi.org/10.1103/PhysRevB.80.104508
http://dx.doi.org/10.1103/PhysRevB.66.134514
http://dx.doi.org/10.1103/PhysRevB.66.134514
http://dx.doi.org/10.1103/PhysRevLett.78.3753
http://dx.doi.org/10.1103/PhysRevLett.78.3753
http://dx.doi.org/10.1103/PhysRevB.58.473
http://dx.doi.org/10.1103/PhysRevB.58.473
http://dx.doi.org/10.1140/epjb/e2003-00348-3
http://dx.doi.org/10.1140/epjb/e2003-00348-3
http://dx.doi.org/10.1002/pssb.200301672
http://dx.doi.org/10.1002/pssb.200301672
http://dx.doi.org/10.1103/PhysRevLett.76.3786
http://dx.doi.org/10.1103/PhysRevLett.76.3786
http://dx.doi.org/10.1103/PhysRevLett.84.2662
http://dx.doi.org/10.1143/JPSJ.67.385
http://dx.doi.org/10.1143/JPSJ.69.572
http://dx.doi.org/10.1143/JPSJ.69.572
http://dx.doi.org/10.1103/PhysRevLett.87.057001
http://dx.doi.org/10.1103/PhysRevLett.87.057001
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1103/PhysRevLett.110.167003
http://dx.doi.org/10.1103/PhysRevLett.110.167003
http://arXiv.org/abs/1305.2317
http://dx.doi.org/10.1088/1742-6596/449/1/012036
http://dx.doi.org/10.1103/PhysRevLett.76.126
http://dx.doi.org/10.1103/PhysRevLett.76.126



