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d-wave superconductivity and its coexistence with antiferromagnetism in the t– J–U model:
Statistically consistent Gutzwiller approach
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We discuss the coexistence of antiferromagnetism and d-wave superconductivity within the so-called
statistically consistent Gutzwiller approximation (SGA) applied to the t–J–U model. In this approach, the
averages calculated in a self-consistent manner coincide with those determined variationally. Such consistency
is not guaranteed within the standard renormalized mean-field theory. With the help of SGA, we show that for
the typical value J/|t | = 1

3 , coexistence of antiferromagnetism (AF) and superconductivity (SC) appears only
for U/|t | > 10.6 and in a very narrow range of doping (δ � 0.006) in the vicinity of the Mott insulating state,
in contrast to some previous reports. In the coexistent AF + SC phase, a staggered spin-triplet component of the
superconducting gap appears also naturally; its value is very small.
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I. INTRODUCTION: RATIONALE FOR t– J–U MODEL

High-temperature superconductivity in cuprates is often
described within the effective t–J model1,2 (for a preliminary
treatment of the topic cf. also Ref. 3). The model justifies a
number of experimental results, such as superconductivity’s
domelike shape on doping-temperature phase diagram,4

non-Fermi-liquid behavior of the normal state for underdoped
and optimally doped systems,5–7 the disappearance of the
pairing gap magnitude in the antiferromagnetic state (albeit
only at the doping δ = 0),7,8 and the doping dependence of
the photoemission spectrum in the antinodal direction.9,10

All of these features represent an attractive starting point for
further analysis (cf. Ref. 11).

In the effective t–J model, the value of the kinetic exchange
integral Jij does not necessarily coincide with the value
Jij = 4t2

ij /U obtained perturbationally from the Hubbard
model.2 Instead, it expresses an effective coupling between
the copper spins in mixed copper-oxygen 3d-2p holes.12

Therefore, one may say that the values of the hopping integral
tij and that of antiferromagnetic exchange Jij in that model
are practically independent. Typically, the ratio |t |/J ≈ 3 is
taken and corresponds to the value U/(8|t |) = 1.5 in the
context of the two-dimensional Hubbard model. However,
after introducing the bare bandwidth W = 8|t | in the tight-
binding approximation for a square lattice, we obtain the
ratio U/W = 1.5, which is not sufficiently large for the
transformation of the original Hubbard model into the t–J

model to be valid in the low order. In that situation, we
are, strictly speaking, not within the strong correlation limit
U/W � 1, in which the t–J model was originally derived.1,2

In order to account properly for the strong electronic
correlations (the bare Hubbard parameter U for Cu2+ ion
is 8–10 eV � W ≈ 2–3 eV), we can add the Hubbard term
U

∑
i n̂i↑n̂i↓ to the t–J model. In this manner, we consider the

exchange integral Jij in this still-effective single-band model
as coming from the full superexchange involving the oxygen
ions rather than from the effective kinetic exchange only (for
critical overview, cf. Ref. 13). This argument may be regarded

as one of the justifications for introducing the t–J–U model,
first used by Daul,14 Basu,15 and Zhang16 (cf. Ref. 17, where
comprehensive justification of the t–J–U is provided).

There is an additional reason for the t–J–U model appli-
cability to the cuprates. Namely, in the starting, bare configu-
ration of CuO2−

2 structural unit, the hybridization between the
antibonding 2pσ states due to oxygen and one-hole (3d9) states
due to Cu is strong, with the hybridization matrix element
|V〈im〉| ∼ 1.5 eV. Therefore, the hybridization contribution to
the hole state itinerancy, at least on the single-particle level,
is essential and hence the effective d–d (Hubbard) interaction
is substantially reduced. In effect, we may safely assume that
U � W instead U � W . In this manner, the basic simplicity
of the single-band model is preserved, as it provides not
only the description of the strongly correlated metallic state
close to the Mott insulating limit, but also reduces to the
correct limit of the Heisenberg magnet of spin 1

2 with strong
antiferromagnetic exchange integral J ≈ 0.1 eV in the absence
of holes (the Mott-Hubbard insulating state). Last but not least,
within the present model we can study the limit U → ∞ and
compare explicitly the results with those of canonical t–J

model.
Antiferromagnetism (AF) and superconductivity (SC) can

coexist in the electron-doped cuprates,18,19 but in the hole-
doped cuprates the two phases are usually separated (cf., e.g.,
the review of Dagotto4). However, in the late 1990s, reports of
a possible coexistence in the cuprates appeared, first vague [cf.
Ref. 20 (La2−xSrxCu1−yZnyO4)], then more convincing [cf.,
e.g., Ref. 21 (La2CuO4+y), Ref. 22 (YBa2Cu3O6.5), or Ref. 23
(YBa2(Cu0.987Co0.013)3Oy+δ)]. Other systems, where the co-
existence has been reported, are organic superconductors,24

heavy-fermion systems,25 iron-based superconductors such as
Ba(Fe1−xRux)2As2 (Ref. 26), Ba0.77K0.23Fe2As2 (Ref. 27),
Ba(Fe1−xCox)2As2 (Refs. 28 and 29), as well as graphene
bilayer systems (cf. Ref. 30).

Our purpose is to undertake a detailed analysis of the
paired (SC) state within the t–J–U model and its coexistence
with the two-sublattice antiferromagnetism in two dimensions.
Detailed studies of the t–J–U model have been carried out by
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Zhang,16 Gan,31,32 and Bernevig33 who described a transition
from gossamer34 and d-wave35,36 superconductivity to the
Mott insulator. However, the existence of AF order was not
considered in those studies. Some attempts to include AF order
were made by Yuan37 and Heiselberg,38 and very recently by
Voo39 and Liu,40 but in all those works one can question
the authors’ approach. Specifically, the equations used do
not guarantee self-consistency, i.e., the mean-field averages
introduced in a self-consistent manner do not match those
determined variationally.41 We show that the above problem
that appears in the renormalized mean-field theory (RMFT)
formulation can be overcome by introducing constraints that
ensure the statistical consistency between the two above ways
of determining mean-field values. This is the principal concept
of our statistically consistent Gutzwiller approach (SGA).42,43

Using SGA we obtain that the AF phase is stable only
in the presence of SC in a very narrow region close to
the Mott-Hubbard insulating state, corresponding to the
half-filled (undoped) situation. Additionally, in this AF-SC
coexisting phase, a small staggered spin-triplet component of
the superconducting gap appears naturally, in addition to the
predominant spin-singlet component.

The structure of the paper is as follows. In Sec. II, we define
the model and provide definitions of the mean-field parameters.
In Sec. III, we introduce the constraints with the corresponding
Lagrange multipliers to guarantee the consistency of the
self-consistent and the variational procedures of determining
the mean-field parameters. The full minimization procedure
is also outlined there. In Sec. IV, we discuss the numerical
results, as well as provide the values of the introduced
Lagrange multipliers. In Sec. V, we summarize our results
and compare them with those of other studies. In Appendix A,
we discuss the general form of the hopping amplitude and the
superconducting gap, as well as some details of the analytic
calculations required to determine the ground-state energy. In
Appendixes B and C, we show some details of our calculations.
In Appendix D, we present an alternative and equivalent proce-
dure of introducing the Lagrange multipliers to that presented
in the main text. In Appendix E, we list representative values
of the parameters calculated for different phases.

II. t– J–U MODEL AND EFFECTIVE SINGLE-PARTICLE
HAMILTONIAN

We start from the t–J–U model as represented by the
Hamiltonian16,31,32

Ĥ = t
∑

〈i j〉, σ
(ĉ†iσ ĉjσ + H.c.) + J

∑
〈i j〉

Ŝi · Ŝj + U
∑

i

n̂i↑n̂i↓,

(1)

where
∑

〈i j〉 denotes the summation over the nearest-
neighboring sites, t is the nearest-neighbor hopping integral,
J is the effective antiferromagnetic exchange integral, Ŝi is
the spin operator in the fermion representation, and U is the
onsite Coulomb repulsion magnitude.

One methodological remark is in place here. Usually, when
starting from the Hubbard or t–J models and discussing
subsequently the correlated states and phases, one neglects
the intersite repulsive Coulomb interaction ∼K

∑
〈ij〉 n̂i n̂j ,

where n̂i = ∑
σ n̂iσ is the number of particles on site i.

In the strong-correlation limit U � W , the corresponding
transformation to the effective t–J model provides2 the
effective exchange integral Jij = 4t2

ij /(U − K), and since
K ∼ U/3, we have a strong enhancement (∼30%) of the
kinetic exchange integral. Strictly speaking, the contribution
∼K should be then also added to the effective Hamiltonian (1).
However, this term has been neglected, as well as the similar
contribution ∼(J/4)

∑
〈ij〉 n̂i n̂j appearing in the full Dirac

exchange operator2 since we assume that the physically
meaningful regime is that with U � W � K so that any
charge-density-wave instability is irrelevant in this limit.

We study properties of the above Hamiltonian using the
Gutzwiller variational approach,44 in which the trial wave
function has the form34,37,38 |�〉 = P̂G|�0〉, where P̂G is
an operator specifying explicitly the configurations with
double onsite occupancies, and |�0〉 is an eigenstate of a
single-particle Hamiltonian (to be defined later). Since the
correlated state |�〉 is related to |�0〉, the average value of the
Hamiltonian Ĥ can be expressed as

〈�|Ĥ|�〉
〈�|�〉 = 〈�0|P̂GĤP̂G|�0〉

〈�0|P̂ 2
G|�0〉

≈ 〈�0|Ĥeff|�0〉

≡ 〈Ĥeff〉0, (2)

where 〈. . .〉0 means the average evaluated with respect to |�0〉,
and16,31,32,37,38

Ĥeff = gt t
∑

〈i j〉, σ
(ĉ†iσ ĉjσ + H.c.) + gsJ

∑
〈i j〉

Ŝi · Ŝj + Ud2

(3)

is the effective Hamiltonian resulting from the Gutzwiller
approximation44 (GA). In the above formula, d2 ≡ 〈n̂i↑n̂i↓〉0

is the double-occupancy probability, gt and gs are the so-
called Gutzwiller renormalization factors determined by the
statistical counting of configuration with given Nd2, Nw, and
Nr (cf. Refs. 45 and 46):

gt = n − 2d2

n − 2rw

⎛
⎝

√
(1 − w)(1 − n + d2)

1 − r
+

√
wd2

r

⎞
⎠

×
⎛
⎝

√
(1 − r)(1 − n + d2)

1 − w
+

√
rd2

w

⎞
⎠ , (4a)

gs =
(

n − 2d2

n − 2rw

)2

, (4b)

where n is the average number of electrons (occupancy) per
site. To discuss AF order, the lattice is divided into two
interpenetrating sublattices: A, where the majority of spins
are oriented ↑, and B, where the majority of spins are oriented
↓. For sublattice A, r ≡ 〈n̂i↑〉 = 1

2 (n + mAF) and w ≡ 〈n̂i↓〉 =
1
2 (n − mAF), where mAF is the antiferromagnetic (staggered)
spin polarization per site. For sublattice B, the definitions of
w and r are interchanged. Note that the Gutzwiller factor (4b)
has the same form for both 1

2 (Ŝx
i Ŝ

y

j + Ŝx
i Ŝ

y

j ) and Ŝz
i Ŝ

z
j parts of

Ŝi · Ŝj . In a refined approach, two distinct Gutzwiller factors
g

xy
s and gz

x may be considered (cf. Ref. 47). However, in
this paper it is assumed that g

xy
s = gz

x ≡ gs , which is broadly
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accepted (see, e.g., Refs. 16,31,32,37, and 38). The reason is
that the spin-singlet paired state is spin-rotationally invariant
and in the case of coexistent antiferromagnetic state we
limit ourselves to the mean-field-approach paradigm with the
resulting Néel state.

In order to evaluate 〈Ĥeff〉0, we define the average number
of electrons per site with spin σ as

niσ ≡ 〈ĉ†iσ ĉiσ 〉0 = 1
2 (n + σ eiQ·Ri mAF), (5)

with Q ≡ (π,π ), and with Ri denoting position vector of site
i and the following bare (nonrenormalized) quantities: the
hopping amplitude for the nearest neighbors 〈i,j 〉 as

χijσ ≡ 〈ĉ†iσ ĉjσ 〉0 = χAB, (6)

and the pairing order parameter in real space in the form

�ijσ ≡ 〈ĉiσ ĉj σ̄ 〉0 ≡ −τij (σ�S + eiQ·Ri �T ), (7)

where τij ≡ 1 for j = i ± x̂ and τij ≡ −1 for j = i ± ŷ (in
order to ensure the d-wave symmetry). In consequence, the
spin-singlet (�S) and the spin-triplet (�T ) components of the
gap are defined as

τij�S = 1
4 (〈ĉj∈B ↓ĉi∈A↑〉0 + 〈ĉi∈A ↓ĉj∈B↑〉0 + H.c.)

= 1
4τij (�A + �B + H.c.), (8a)

τij�T = 1
4 (〈ĉj∈B ↓ĉi∈A↑〉0 − 〈ĉi∈A ↓ĉj∈B↑〉0 + H.c.)

= 1
4τij (�A − �B + H.c.). (8b)

In some works (e.g., in Refs. 37 and 38), the triplet component
is disregarded. However, since �A represents an average
pairing for majority spins on nearest-neighboring sites and
�B an average pairing of minority spins (when AF order is
present, cf. Fig. 1), the real part of �A and �B might be
different (cf. also the work of Tsonis48 and Aperis49 regarding
the inadequacy of a single-component order parameter to
describe the SC phase). Therefore, in this paper, this more
comprehensive structure is introduced. Nonetheless, in order
to evaluate the significance of introducing the triplet term for

FIG. 1. (Color online) Schematic representation of the difference
between the pairing parameters for the majority-spin electrons (large
arrows) and the minority-spin electrons (small arrows) in the two-
sublattice system with AF order. Since for mAF = 0 there may be
that the real part of �A and �B might be different, and a spin-triplet
component of the superconducting order has to be considered [cf.
Eq. (8b)].

the SC gap, the results are compared also with those obtained
for the case when �T is set to zero.

Applying the Wick’s theorem to the Eq. (2), the expec-
tation value 〈Ĥeff〉0 ≡ W can be obtained in the form (see
Appendix A for details)

W

	
= 8gt tχAB + Ud2

− gsJ

(
1

2
m2

AF + 3χ2
AB + 3�2

S − �2
T

)
, (9)

where 	 is the number of atomic sites in the system. Note
that the total energy of this correlated system is composed
of three interdependent parts: (i) the renormalized hopping
energy ∼tgtχAB < 0, (ii) the correlation energy Ud2 > 0,
and (iii) the exchange contribution ∼gsJ lowering both the
energies of AF and SC states. This balance of physical
energies will be amended next by the constraints introducing
the statistical consistency into this mean-field system to
guarantee that the self-consistent and the variational proce-
dures will lead to the same single-particle states (this is the
so-called Bogoliubov principle for the optimal single-particle
states).

To summarize, the process of derivation of the effective
single-particle Hamiltonian (3) is fully justified by its
definition (2) which involves an averaging procedure over
an uncorrelated state |�0〉. This state is selected implicitly.
In general, it is the state with broken symmetry, i.e., with
nonzero values of mAF, �S , and �T . In other words, |�0〉
is defined through the values of order parameters to be
determined either self-consistently or variationally. This is the
usual procedure proposed originally by Bogoliubov50 in his
version of BCS theory and by Slater51 in the theory of itinerant
antiferromagnetism. Here, their simple version of mean theory
becomes more sophisticated since the renormalization factors
contain also the order parameters and in a singular formal form.
This last feature leads to basic formal changes in formulation
of the renormalized mean-field theory, as discussed next.

III. QUASIPARTICLE STATES AND MINIMIZATION
PROCEDURE FOR THE GROUND STATE

Following Refs. 41–43,52, and 53, we write the mean-field
grand Hamiltonian in the form

K̂ ≡ W −
∑

〈i j〉, σ

[
λ

χ

ijσ (ĉ†iσ ĉjσ − χijσ ) + H.c.
]

−
∑

〈i j〉, σ

[
λ�

ijσ (ĉiσ ĉj σ̄ − �ijσ ) + H.c.
]

−
∑
iσ

[
λn

iσ (n̂iσ − niσ )
] − μ

∑
iσ

n̂iσ , (10)

where μ is the chemical potential, and the Lagrange multipliers
{λ} are introduced for each operator whose average appears in
W [Eq. (9)]. The Lagrange multipliers can be interpreted as the
correlation-induced effective fields. We should underline that
the additional terms guarantee that the averages calculated in
a self-consistent manner coincide with those determined from
variational minimization principle of the appropriate free- or
ground-state energy functional. Due to the dependence of the
renormalization factors on the mean-field values, the two ways
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of their calculation do differ, but the introduced constraints en-
sure their equality. In this manner, as said above, the approach
is explicitly in agreement with the Bogoliubov theorem that
the single-particle approach represents the optimal formulation
from the principle of maximal-entropy point of view.42,43 Also,
the fields {λ} are assumed to have the same symmetry as
the broken-symmetry states, to which they are applied [cf.
Eqs. (5), (6), and (7)]. Namely,

λn
iσ = 1

2 (λn + σeiQ·ri λm), (11a)

λ
χ

ijσ = λχ, (11b)

λ�
ijσ = −τij (σλ�S

+ eiQ·ri λ�T
). (11c)

To solve Hamiltonian (10), space Fourier transformation
is performed first. Then, the Hamiltonian is diagonalized
and yields four branches of eigenvalues (details of the
calculations are presented in Appendix B). Next, we define the
generalized grand potential functional at temperature T > 0 as
given by

F = − 1

β
lnZ, with Z = Tr(e−βK̂ ), (12)

with β ≡ 1/kBT . Explicitly, F then has the following form
[cf. Eq. (B7)]:

F/	 = 8gt tχAB − gsJ

(
1

2
m2

AF + 3χ2
AB + 3�2

S − �2
T

)

+ 1

2
λn(n − 1) + 1

2
λmmAF

+ 8(λχχAB + λ�S
�S + λ�T

�T )

− 1

	β

∑
l,k

ln(1 + e−βElk ) + Ud2 − μ. (13)

The necessary conditions for the minimum of F subject to all
constraints are

∂F
∂ �A = 0,

∂F
∂�λ = 0, and

∂F
∂d

= 0, (14)

where the five mean-field parameters are labeled collectively
as �A, and the Lagrange multipliers as �λ [the full form of
Eqs. (14) is presented in Appendix C]. Note that five above
equations (∂F/∂ �A = 0) can be easily eliminated, reducing the
system of algebraic equations to be solved (cf. Appendix C and
discussion in Appendix D).

One should note one nontrivial methodological feature
of the approach contained in the grand Hamiltonian (10).
namely, the effective Hamiltonian (3) appears in it in the
form of expectation value W [cf. Eq. (9)], whereas the
constraints appear in Eq. (10) in the explicit operator form.
This is a nonstandard mean-field version of approach. The
correspondence to and main difference with the standard
renormalized mean-field approach is discussed in Appendix D.

As we are interested in the ground-state properties (T = 0),
we take the T → 0 limit. We have checked that taking β−1 =
kBT = 0.002 |t | is sufficient for practical purposes.54

IV. RESULTS: PHASE DIAGRAM AND MICROSCOPIC
CHARACTERISTICS

The stable phase is determined by the solution which has
the lowest physical free energy defined as minimal value of

F = F0 + μ	n, (15)

where F0 denotes the value of F obtained at the minimum [cf.
conditions (14)].

The minimum of F was obtained numerically using GNU
Scientific Library (GSL),55 and unless stated otherwise, all
calculations were made for t = −1, J = |t |/3, β|t | = 500 on
a two-dimensional square lattice of size 	 = 512 × 512 with
periodic boundary conditions.

A representative phase diagram on the Coulomb repulsion
U–hole doping δ plane is exhibited in Fig. 2. We find three
stable phases: SC, AF, and phase with coexisting SC and AF
order (labeled collectively as AF + SC). The pure AF stable
phase is found only for δ ≡ 1 − n = 0 and U/|t | > 10.6.
The region where the AF + SC appears is limited to a very
close proximity to the Mott insulating state [hole-doping range
δ ∈ (0, 0.006)]. Our results differ significantly from previous
studies (cf., e.g., Refs. 37,38, and 40), where a much wider
coexistence region was reported (dashed line in Fig. 2). The
previous results were an effect of the nonstatistically consisted
RMFT approach used, as also is explained below. Using our
method, such a consistency is achieved, and as a result a
much narrower coexistence regime appears. It squares with
recent experimental studies, where the region of AF + SC
was reported to be narrow {cf., e.g., Bernhard29 [study of
Ba(Fe1−xCox)2As2], where the coexistence region is not wider
than 0.02 (of the hole doping range)}.

For further analysis, we restrict ourselves to U/|t | = 12, as
marked by the dashed vertical line in Fig. 2. In Figs. 3 and 4,
we plot the doping dependence of the mean fields and the
correlation fields. The magnitude of �T is nonzero only in the
region with AF order (i.e., when mAF = 0).

FIG. 2. (Color online) Representative phase diagram for the t–J–
U model on the Coulomb repulsion–hole-doping plane. The phases
are labeled as follows: SC: superconducting phase, AF + SC: phase
with coexisting superconducting and antiferromagnetic orders. The
pure stable AF phase is found only for δ = 0 and for U > 10.6|t |.
The value U/|t | = 12 marked by the dashed vertical line is taken in
the subsequent analysis. The solid line is a our result. The dashed line
is the result of previous studies (Refs. 37,38, and 40).
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The correlated spin-singlet gap parameter in real space is
defined as

τij�
c
S = 1

4 (〈ĉi∈A ↓ĉj∈B↑〉 − 〈ĉi∈A↑ĉj∈B ↓〉 + H.c.), (16)

where the average is calculated using the Gutzwiller wave
function |�〉, instead of |�0〉. Approximately (within GA),
the correlated (physical) SC order parameters can be expressed
as37,38

�c
S = g��S, and �c

T = g��T , (17)
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where

g� = n − 2d2

2(n − 2rw)

[(√
(1 − w)(1 − n + d2)

1 − r
+

√
wd2

r

)2

+
(√

(1 − r)(1 − n + d2)

1 − w
+

√
rd2

w

)2]
. (18)

The AF order parameter and the renormalized hopping
parameter are defined in a similar manner, specifically

mc
AF = gm mAF, (19)

χc
AB = gt χAB, (20)

where gt is presented in Eq. (4a) and

gm = n − 2d2

n − 2wr
. (21)

The magnitude of �c
T is about 104 times smaller than the

magnitude of �c
S , so most probably, it may not be observable.

For δ � 1
3 the order parameter �c

S decreases exponentially.
Note a spectacular increase of the hopping probability χc

AB

with increased doping in Fig. 5, leading to an effective Fermi
liquid state for δ � 1

3 .
The nonzero correlated gap at n = 1 for low-U values

provides an evidence for a gossamer superconductivity. The
concept of gossamer superconductivity was introduced by
Laughlin34 and it describes the situation when the pure SC
phase is stable at the half-filling. For U/|t | ≈ 10.6 and n = 1,
where AF + SC phase sets in, the correlated gap �c

S vanishes.
Details of the transition are presented in Fig. 6 (cf. the bottom
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FIG. 5. (Color online) Order parameters of SC and AF states
in the correlated state versus doping δ and for U/|t | = 12. AF
disappears for δ ≈ 6 × 10−3. In the limit δ = 0 the state transforms
into an AF insulator. For δ � 0.1, the hopping amplitude χc

AB

increases substantially. Inset: dependence of �c
T in the vicinity of

the half-filling. Note that the value of �c
T is about 104 times smaller

than the value of �c
S .
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FIG. 6. (Color online) Profile of the correlated singlet gap �c
S for

selected values of U/|t | versus hole doping (top). The limiting values
of �c

S and d2 for n ≈ 1 are presented in the bottom panel.

panel). The critical U/|t | value for the disappearance of �S is
marked by the dotted vertical line.

In the sake of completeness, we have drawn for U = 12|t |
in Fig. 7 the components of the total energy [Eq. (13)] to
show that in the underdoped regime the effective hopping
energy Eχ ≡ 8gt |t |χAB , the total exchange contribution ES ≡
gsJ (m2

AF/2 + 3χ2
AB + 3�2

S − �2
T ), and the Coulomb energy

EU = Ud2 are all of comparable magnitude. This is the regime
of strong correlations.

The overall behavior of the obtained characteristics can be
summarized as follows. First, the coexistent AF + SC phase
appears only for the doping δ < 0.006 and transforms into the
pure Mott insulating state (AF) only at the half-filling δ = 0
and large U . The spin-triplet gap component is practically
negligible in the AF + SC phase. Introducing the molecular
fields λχ , λ�S

, and λm (where nonzero), and λn change the
phase diagram in a significant manner which means that the
influence of the consistency constraints on the single-particle
states is important. The spin-singlet d-wave superconductivity
vanishes exponentially for large δ. The optimal doping appears
in the interval δ ∼ 0.1–0.15 and is weakly dependent on U for
U � 12|t |.
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FIG. 7. (Color online) The optimized component energies com-
posing the total energy [Eq. (9), which represents T → 0 limit of
Eq. (13)]. For discussion, see main text.

V. CONCLUSIONS AND COMMENTS

Using the statistically consistent Gutzwiller approximation
(SGA), we have analyzed in detail the effective Hamiltonian
considered previously in Refs. 37,38, and 40. However, in
contrast to those papers, we have considered a more complete
structure of the SC gap (the components �S and �T ). Also, a
significantly narrower region of the coexistence of AF and
SC is obtained. Furthermore, the critical value of U for
AF + SC appearance is higher, and for J/|t | = 1

3 the value
is about 10.6|t |. We have checked that the bare amplitude
�T is about 103 times smaller than that of �S (similarly,
the order parameters ratio �c

T /�c
S ≈ 10−4). We have checked

that when the �T is omitted, the results do not change in
any significant manner. Therefore, the spin-triplet component
of the superconducting order is most probably not detectable
experimentally.

In previous studies (cf. Refs. 37,38, and 40), a much wider
coexistence region was reported. In this paper, we correct
those predictions (cf. Fig. 2). Namely, we show, that the
previous results were an effect of the nonstatistically consistent
RMFT approach used. Illustratively, in Ref. 37, a minimization
procedure is formulated by setting ∂Evar/∂m = 0, yielding
Eq. (21) in Ref. 37 for m which is different than that defining m

[cf. Eq. (16) in Ref. 37]. We claim that a more correct approach
is provided by SGA, where the Lagrange multipliers are
introduced for each operator for which the average appears in
the effective mean-field Hamiltonian. In other words, without
incorporating the multipliers, the free-energy functional F
is minimized in an overextended Fock space containing,
along with physical configurations, also those that lead to the
statistical inconsistency. Using the constraints introduced by
SGA, this space is limited to a subspace, in which such an
inconsistency does not appear. Hence, the energy obtained
in SGA can either be equal to or even higher than the
energy obtained using nonconsistent approaches. Obviously,
this circumstance should not be used as an argument against
SGA. Different formulations, where the model is solved in a
self-consistent manner, are also presented in Refs. 56 and 57.

As said above, in the SGA method, an effective single-
particle approach with conditions (14) is developed. In such
an approach the question of a pseudogap is not addressed.
This is because (i) the order parameter �S is assumed as
real (i.e., no phase fluctuation appears), and (ii) the collective
spin degrees of freedom are not separated from single-particle
fermionic correlations. In order to address that issue, one
would have to generalize the approach to include, e.g., the spin
sector of the excitations,58 even in the absence of AF order.
As the antiferromagnetism is built into the SGA approach
automatically, work on extension of this approach to include
magnetic fluctuations in the paramagnetic phase is in progress.

One should note that the definition of the Mott (or
Mott-Hubbard) insulator here complements that for the Hub-
bard model within the standard Gutzwiller approximation
(GA) which represents the infinite-dimension variant of the
approach.59 Namely, with an assumption that J = 0, we have
a gradual evolution of the antiferromagnetic order parameter
mAF → 1 with the increasing U , i.e., the system evolves
from the Slater to the Mott antiferromagnet. This is what is
also obtained in the saddle-point approximation within the
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slave-boson approach,60 which differs from the standard GA
by incorporating constraints, some of them of similar character
as those introduced here in SGA. In this respect, both SGA
and the saddle-point approximation to slave-boson approach
go beyond GA, albeit not in an explicitly systematic formal
manner.
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APPENDIX A: DEFINITIONS OF THE MEAN FIELDS
AND EVALUATION OF 〈Ĥeff〉0 ≡ W

In the main text, the uniform bond order parameter for i

and j sites indicating the nearest-neighboring sites is defined
as 〈ĉ†iσ ĉjσ 〉0 ≡ χAB . It was assumed that 〈ĉ†iσ ĉjσ 〉0 is real. Let
us consider in this appendix a more general form. Since the
sublattice A contains the sites where the majority spin is ↑ and
the sublattice B the sites where majority spin is ↓, the general
form can be written as

〈ĉ†i∈A↑ĉj∈B↑〉0 = 〈ĉ†j∈B↓ĉi∈A↓〉0 = 〈ĉ†i∈A↓ĉj∈B↓〉∗0 = χo−c,

(A1)

〈ĉ†i∈A↓ĉj∈B↓〉0 = 〈ĉ†j∈B↑ĉi∈A↑〉0 = 〈ĉ†i∈A↑ĉj∈B↑〉∗0 = χc−o,

(A2)

for i and j being the nearest neighbors, where χo−c is an
average of the operator describing the hopping of an electron
from a site, where the average spin is opposite to the spin of
the electron to the site where the average spin is congruent to
the spin of the electron. χo−c describes the opposite situation.
This results in the general expression that

χijσ ≡ 〈ĉ†iσ ĉjσ 〉0 = χAB + iσ eiQ·Ri δχAB, (A3)

where χAB ≡ 1
2 (χo−c + χc−o) and δχAB ≡ 1

2i
(χo−c − χc−o).

The electron-pairing order parameter for the nearest neigh-
bors is defined as

�ij↓ ≡ 〈ĉj ↓ĉi↑〉0 ≡
{

τij �̃A for i ∈ A,

τij �̃B for i ∈ B,
(A4)

where τij ≡ 1 for j = i ± x̂ and τij ≡ −1 for j = i ± ŷ (�ij↑
is defined in similar manner). For the staggered magnetic mo-
ment mAF = 0, one can assume that �̃A = �̃B . However, when
mAF = 0, the order parameter �̃A is a product of two operators,
both of which annihilate electrons whose spin is congruent to
the average spin of individual sites. On the contrary, �̃B is
a product of two operators that annihilate electrons whose
spin is opposite to the average spin of individual sites. Hence,
it may be that �̃A = �̃B . Also, similar as with the hopping
amplitude, �̃A and �̃B might be complex numbers. Let us
denote �̃A ≡ (�A, δ�A) and �̃B ≡ (�B, δ�B), where the
parameters in brackets are the real and imaginary parts of the
corresponding gaps, respectively.

The only nontrivial part of 〈Ĥeff〉0 [cf. Eq. (3)] can be
evaluated in the form

4〈Ŝi · Ŝj 〉0 ≈ −(〈ĉ†i↓ĉi↓〉0 − 〈ĉ†i↑ĉi↑〉0)2

− (〈ĉ†i↓ĉj↓〉0 + 2〈ĉ†i↑ĉj↑〉0)〈ĉ†j↓ĉi↓〉0

− (2〈ĉ†i↓ĉj↓〉0 + 〈ĉ†i↑ĉj↑〉0)〈ĉ†j↑ĉi↑〉0

− (−〈ĉi↑ĉj↓〉0 + 2〈ĉi↓ĉj↑〉0)〈ĉ†i↑ĉ
†
j↓〉0

− (2〈ĉi↑ĉj↓〉0 − 〈ĉi↓ĉj↑〉0)〈ĉ†i↓ĉ
†
j↑〉0, (A5)

where we have applied the Wick’s theorem and we have
assumed that 〈ĉ†i↑ĉi↓〉0 ≡ 0, 〈ĉi↑ĉi↓〉0 ≡ 0, and 〈ĉi↓ĉj↓〉0 =
〈ĉi↑ĉj↑〉0 ≡ 0. Using the notation introduced above and
Eq. (5), we have

4〈Ŝi · Ŝj 〉0 = −m2
AF − 6χ2

AB + 2(δχAB)2

− |�̃A|2 − |�̃B |2 − 4�̃A�̃B. (A6)

Since the above expression is invariant with respect to the
same rotations of both vectors �̃A and �̃B , one component of
the vectors can be assumed to be eliminated. With the choice
δ�A = 0, we have

�ijσ ≡ 〈ĉiσ ĉj σ̄ 〉0 ≡ −τij (σ�S + eiQ·ri �T )

− τij
1
2 i(σ − eiQ·ri )δ�B, (A7)

where �S ≡ �A + �B and �T ≡ �A − �B .
Therefore, the 〈Ĥeff〉0 ≡ W can be presented in the full

form

W

	
= 8gt tχAB + Ud2 − gsJ

(
1

2
m2

AF + 3χ2
AB − (δχAB)2

+ 3�2
S − �2

T + 1

2
(δ�B)2

)
. (A8)

Introduction of δχAB and δ�B affects the form of selecting
the correlated fields λ

χ

ijσ and λ�
ijσ , and the final set of

necessary conditions for a local minimum of the free energy
[cf. Eqs. (11b), (11c), and (14)]. However, it was found that
the state with the lowest energy (for the considered model)
has always been that with δχAB ≡ 0 and δ�B ≡ 0. Hence, it
is acceptable to neglect both terms and claim that �ijσ and χijσ

are both real. For simplicity and clarity it is how the averages
are presented in the main text. Finally, Eq. (A8) is reduced to
Eq. (9).

APPENDIX B: DETERMINATION OF THE GRAND
POTENTIAL FUNCTIONAL [EQ. (13)]

To diagonalize K̂ [Eq. (10)], we first perform the space
Fourier transform. The result can be rewritten in the following
4 × 4 matrix form:

K̂ = W +
∑

k

′
�̂

†
kM̃k�̂k + 1

2
	[λn(n − 1) + λmmAF]

−	μ + 8	λχχAB + 8	(λ�S
�S + λ�T

�T ), (B1)

where �̂
†
k = (ĉ†k↑,ĉ−k↓,ĉ

†
k+Q↑,ĉ−k+Q↓), the sum is evaluated

over the reduced (magnetic) Brillouin zone (|kx | + |ky | � π ),
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and

M̃k =

⎛
⎜⎜⎜⎝

−λχεk − 1
2λn − μ −λ�S

ηk − 1
2λm λ�T

ηk

−λ�S
ηk λχεk + 1

2λn + μ −λ�T
ηk − 1

2λm

− 1
2λm −λ�T

ηk λχεk − 1
2λn − μ λ�S

ηk

λ�T
ηk − 1

2λm λ�S
ηk −λχεk + 1

2λn + μ

⎞
⎟⎟⎟⎠ , (B2)

where for the square lattice

εk ≡ 2(cos kx + cos ky), (B3a)

ηk ≡ 2(cos kx − cos ky). (B3b)

Diagonalization of M̃k yields four branches of eigenvalues
with their explicit form

Elk ≡ E± ± k = ± 1
2

√
K1k ± 2

√
K2k, (B4)

where l = 1, . . . ,4, and

K1k ≡ 4ε2
kλ

2
χ + (λn + 2μ)2

+ 4η2
k

(
λ2

�S
+ λ2

�T

) + λ2
m, (B5a)

K2k ≡ [
4η2

kλ�S
λ�T

+ λm(λn + 2μ)
]2

+ 4ε2
kλ

2
χ

[
4η2

kλ
2
�T

+ (λn + 2μ)2
]
. (B5b)

The energies {Elk}l=1,...,4 represent quasiparticle bands after all
parameters (mean-field parameters, the Lagrange multipliers,
and d) are determined variationally.

The generalized grand potential functional at temperature
T > 0 is given by

F = − 1

β
lnZ, with Z = Tr(e−βK̂ ), (B6)

and β ≡ 1/kBT , thus,

F/	 = 8gt tχAB − gsJ

(
1

2
m2

AF + 3χ2
AB + 3�2

S − �2
T

)

+ 1

2
λn(n − 1) + 1

2
λmmAF

+ 8(λχχAB + λ�S
�S + λ�T

�T )

− 1

	β

∑
l,k

ln(1 + e−βElk ) + Ud2 − μ. (B7)

APPENDIX C: EXPLICIT FORM OF THE CONDITIONS
FOR THE MINIMUM OF F

The necessary conditions for the minimum of F , subject to
all constraints [introduced in Eq. (10)] are

∂F
∂ �A = 0,

∂F
∂�λ = 0, and

∂F
∂d

= 0, (C1)

where the five mean-field parameters are labeled collectively
as �A, the five Lagrange multipliers as �λ, and d2 is double-
occupancy probability. In explicit form, ∂F/∂ �A = 0 stands

for

λχ = −gt t + 3

4
gsJχAB, (C2a)

λ�S
= 3

4
gsJ�S, (C2b)

λ�T
= −1

4
gsJ�T , (C2c)

λn = −16tχAB

∂gt

∂n

− 2J

(
−1

2
m2

AF − 3χ2
AB − 3�2

S + �2
T

)
∂gs

∂n
, (C2d)

λm = 2gsJmAF − 16tχAB

∂gt

∂mAF

− 2J

(
−1

2
m2

AF − 3χ2
AB − 3�2

S + �2
T

)
∂gs

∂mAF
,

(C2e)

∂F/∂�λ = 0 can be evaluated as

1

	

∑
k,l

f (Elk) ∂λχ
Elk + 8χAB = 0, (C3a)

1

	

∑
k,l

f (Elk) ∂λ�S
Elk + 8�S = 0, (C3b)

1

	

∑
k,l

f (Elk) ∂λ�T
Elk + 8�T = 0, (C3c)

1

	

∑
k,l

f (Elk) ∂λn
Elk − 1

2
(1 − n) = 0, (C3d)

1

	

∑
k,l

f (Elk) ∂λm
Elk + 1

2
mAF = 0, (C3e)

and ∂F/∂d = 0 denotes

2Ud + 8tχAB

∂gt

∂d

+J

(
−1

2
m2

AF − 3χ2
AB − 3�2

S + �2
T

)
∂gs

∂d
= 0, (C4a)

where f (Elk) ≡ 1/(1 + eβElk ). Equations (C2a)–(C2e) can be
used to eliminate the parameters {λ} from the numerical so-
lution procedure, reducing the number of algebraic equations
to six. Consequently, we are left with Eqs. (C3a)–(C3e) (the
conditions ∂F/∂�λ = 0) and Eq. (C4a) (∂F/∂d = 0).
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APPENDIX D: AN ALTERNATIVE PROCEDURE
OF INTRODUCING THE CONSTRAINTS VIA

LAGRANGE MULTIPLIERS

In the main text, we work with the mean-field grand Hamil-
tonian K̂ , defined as K̂ ≡ W − ∑

ι[λι(Ôι − Oι) + H.c.] −
μN̂ , where W ≡ 〈Ĥeff〉0 [cf. Eqs. (3) and (9)], and {Ôι}
are those operators whose averages are used to construct
W . Lagrange multipliers λι are introduced to ensure self-
consistency of the solution, i.e., Oι ≡ 〈Ôι〉0 [cf. Eq. (10)].

Next, in order to find optimal (equilibrium) values of mean
fields, the grand potential functional F = −β−1 lnZ , where
Z = Tr(e−βK̂ ) [cf. Eq. (12)] is subsequently minimized with
respect to mean fields subject to constraints included in K̂ .

An alternative procedure to the one sketched above is to add
the self-consistency preserving constraints directly to ĤMF

eff ,
i.e., to the mean-field approximated Ĥeff . In this formulation,
we have again a separate Lagrange multiplier λ′

ι for each
mean-field average O ′

ι ≡ 〈Ô ′
ι〉0 present in ĤMF

eff . In effect, we
construct the effective mean-field Hamiltonian of the form
Ĥλ ≡ ĤMF

eff − ∑
ι[λ

′
ι(Ô

′
ι − O ′

ι) + H.c.] and the corresponding
mean-field grand Hamiltonian K̂ ′ ≡ Ĥλ − μN̂ . As a next
step, the functional F ′ is constructed (exactly as discussed
above). It should be noted that minimization of F ′ subject to
constraints included in Ĥλ leads to a set of equations different
than Eqs. (C2a)–(C4a). However, those two procedures are
equivalent, i.e., the optimal (equilibrium) values of the mean
fields, corresponding to the minimum of F and F ′ (subject
to the same constraints), coincide. A difference in the results
may occur only for the values of the Lagrange multipliers, but
this does not affect the equilibrium values of the calculated
physical quantities. Hence, the two approaches are formally
equivalent, which can be shown analytically and has also been
verified numerically.

Those two approaches differ also with respect to numerical
execution. Namely, within the first procedure, we can easily
find the functional dependence of Lagrange multipliers �λι on
mean fields Oι (as shown in Appendix C). As a result, the
number of equations to be solved numerically is reduced by
a factor of 2. In the second approach discussed here, the
corresponding equations for �λ′

ι are much more complicated
and it is not possible to solve them analytically. Therefore, one
can not reduce the effort and numerical cost of solving the

TABLE I. Values of the parameters obtained for the SC phase
(U/|t | = 5 and δ = 0.3) (example 1), for SC phase (U/|t | = 12
and δ = 0.03) (example 2), and for the AF + SC phase (U/|t | = 12
and δ = 0.001). The calculations were made for the lattice with
	 = 1024 × 1024 sites. The numerical accuracy is at the last digit
specified.

Variable SC (1) SC (2) AF + SC

χAB 0.1907587 0.1887189 0.1693210
�S 0.00027 0.138176 0.166906
�T 0 0 3.92 × 10−5

μ 0.5664 3.5570 3.37154
mAF 0 0 0.13194
d2 5.22266 × 10−2 8.16196 × 10−3 2.2406 × 10−4

λχ 0.9661403 0.327769 0.168074
λ�S

0 0.1258974 0.160777
λ�T

0 0 1.2595 × 10−5

λn −2.526087 −7.176836 −6.744724
λm 0 0 0.100911
W −1.150925 −0.33669191 −0.233031
gt 0.884438 0.1558210 4.97139 × 10−3

gs 1.713202 3.644549 3.85310
g� 0.884438 0.1558210 4.99912 × 10−3

gm 1.3088937 1.9090702 1.96293
χc

AB 0.1687143 2.94064 × 10−2 8.41761 × 10−4

�c
S 0.00024 2.15306 × 10−2 8.343884 × 10−4

�c
T 0 0 1.960 × 10−8

mc
AF 0 0 0.25900

model at the same time. So, even though the latter method
appears more intuitively appealing, as being more similar to
the standard mean-field approach, we have used the former
method in the discussion in the main text.

APPENDIX E: SUPPLEMENTARY INFORMATION

For the sake of completeness, in Table I we provide the
representative values of the parameters calculated for the
following phases: SC for (U/|t | = 5, δ = 0.1, and U/|t | =
12, δ = 0.03), and AF + SC (U/|t | = 12, δ = 0.001). The
energies in the columns should not be compared directly, as
they correspond to different sets of microscopic parameters.
Numerical accuracy is at the level of the last digit specified.
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42J. Jędrak and J. Spałek, Phys. Rev. B 81, 073108 (2010).
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