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We carry out a numerical study of the bipartite entanglement entropy in the gapped regime of two paradigmatic
quantum spin chain models: the Ising chain in an external magnetic field and the antiferromagnetic XXZ model.
The universal scaling limit of these models is described by the massive Ising field theory and the SU (2)-Thirring
(sine-Gordon) model, respectively. We may therefore exploit quantum field theoretical results to predict the
behavior of the entropy. We numerically confirm that in the scaling limit, corrections to the saturation of the
entropy at large region size are proportional to a modified Bessel function of the first kind, K0(2mr), where m is a
mass scale (the inverse correlation length) and r the length of the region under consideration. The proportionality
constant is simply related to the number of particle types in the universal spectrum. This was originally predicted
by J. L. Cardy, O. A. Castro-Alvaredo, and B. Doyon [J. Stat. Phys. 130, 129 (2008)] and B. Doyon [Phys.
Rev. Lett. 102, 031602 (2009)] for two-dimensional quantum field theories. Away from the universal region our
numerics suggest an entropic behavior following quite closely the quantum field theory prediction, except for
extra dependencies on the correlation length.
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I. INTRODUCTION AND DISCUSSION

Entanglement is a fundamental property of the state of
a quantum system. In the context of quantum computation,
it is a crucial resource.1 Conceptually, it characterizes the
structure of quantum fluctuations in a more universal way than
other widely studied objects such as correlation functions.
Developing theoretical measures of entanglement is therefore
important to further understand the structure of quantum states,
a problem of particular interest and difficulty for quantum
many-body systems. A popular measure of entanglement is the
bipartite entanglement entropy. It measures the entanglement
between two complementary sets of observables in a quantum
system.2 Interestingly, the entanglement entropy exhibits
universal behavior near quantum critical points: It has features
which do not depend on the details of the model but rather
on its universality class. In the last decade, this property has
made the study of the entanglement entropy a very active field
of research.

A fertile testing ground for these ideas is the study of quan-
tum spin chains. A quantum spin chain is a one-dimensional
array of particles with spin degrees of freedom and, for our
purposes, with nearest- (or few-nearest-) neighbor interactions
(this is a local spin chain). Quantum spin chains have been
realized in experiments.3 They provide ideal toy models for the
study of a whole range of physical phenomena, as they describe
interacting many-body systems yet are simple enough to allow
for the computation of many quantities. This is especially true
for integrable spin chains, since integrability gives rise to the
complete characterization of the energy spectrum and states
through techniques such as the coordinate and algebraic Bethe
ansatz (see, e.g., Ref. 4). Quantum spin chains are extensively
studied in the context of quantum information science5 and
their bipartite entanglement for blocks of consecutive spins has
been investigated in many works (see, e.g., Refs. 6–12) both
numerically and analytically. Most of these works concentrate
on exact critical points.

At the same time, in 1 + 1-dimensional quantum field
theory (QFT) several universal results have been obtained for
the entanglement entropy. Two of these results deserve special
attention. First, the logarithmic growth of entanglement as the
block size increases in conformal field theory (CFT), which is
controlled by the central charge.13,14 This behavior has been
verified for many critical quantum chains.6–9,12 Second, the
approach to saturation in massive QFT, which is controlled
by the mass spectrum.15,16 This has not been observed yet in
quantum spin chains.

In the present work we investigate the entanglement entropy
in two paradigmatic spin chain models (the Ising model
and the XXZ model) near to, but not at, criticality. We
numerically analyze for the first time the universal behavior
of the entanglement entropy of a block of length L in the
near-critical scaling limit. This scaling limit is expected to be
described by massive QFT. In particular, we confirm massive
QFT predictions.15,16

The entanglement entropy is the von Neumann entropy of
the reduced density matrix of a state |�〉 with respect to a
tensor factor of the Hilbert space H = A ⊗ B:

S = −TrA(ρA log ρA) with ρA = TrB|�〉〈�|. (1)

Let |�〉 be the ground state of a quantum spin chain. In
general, it is expected that, thanks to locality, the entanglement
entropy of a continuous block A of length L saturates as
L → ∞: It only receives contributions from entanglement
between spins surrounding boundary points of A. But this
is not so at second-order phase transitions. Assume that the
Hamiltonian is parameterized by h, and that there exists a
value hc corresponding to a quantum second-order phase
transition (critical point). These critical points are particularly
interesting, as they characterize collective quantum behaviors.
At h = hc, and in the thermodynamic limit N → ∞, the
correlation length ξ of the ground state is infinite, and the
gap ∝ξ−1 between the ground state and the continuum of

094439-11098-0121/2013/88(9)/094439(7) ©2013 American Physical Society

http://dx.doi.org/10.1007/s10955-007-9422-x
http://dx.doi.org/10.1103/PhysRevLett.102.031602
http://dx.doi.org/10.1103/PhysRevLett.102.031602
http://dx.doi.org/10.1103/PhysRevB.88.094439


LEVI, CASTRO-ALVAREDO, AND DOYON PHYSICAL REVIEW B 88, 094439 (2013)

excited states vanishes: The system is critical. If the dynamical
exponent is z = 1 (so that the dispersion relation is linear),
then the macroscopic, low-energy properties are universal and
described by a CFT.

For a block A of length L, the entanglement entropy S

diverges for large L as:13,14

S(L) ∼ c

3
log

(
L

ε

)
+ c2, (2)

where c is the central charge of the CFT, ε is a short-distance
scale (here and below taken as the intersite spacing), and c2 is
a nonuniversal constant. The divergence occurs because with
ξ = ∞ sites far apart are entangled. Thus we may extract the
value of the central charge by studying the divergence of the
entanglement entropy in critical spin chains.

In obtaining (2), the order of limits, first h → hc then L 	
ε, is very important. Instead, let us take h → hc and L 	 ε

“simultaneously”: with L/ξ =: mr fixed. This is the near-
critical scaling limit. It is universal, described by a massive
QFT corresponding to a perturbation off the original critical
point. The mass scale m may be identified with ξ−1. In this
limit, the gap of the spin chain is infinitesimally small as
compared to microscopic energies (like the intersite interaction
energy), but the observation length is so large as to probe
only the low-energy, universal, collective excitations of the
quantum chain just above the gap; hence the gap still has
an effect. The entanglement entropy then has the form of a
“saturation term” (c/3) log(ξ/ε) + c1 which diverges in the
scaling limit, where c1 is another nonuniversal constant, plus a
universal scaling function f (mr). The approach to saturation
as mr → ∞ is given by an exponential decay of f (mr) which
is solely determined by the spectrum of masses {mi} of the
QFT:15,16

S = c

3
log

(
ξ

ε

)
+ c1 − 1

8

∑
i

K0(2rmi) + O(e−3rm),

(3)
where m ≡ m1 is the mass of the lightest particle. Here K0(z) is
the modified Bessel function. Thus, in the near-critical scaling
limit, the entanglement entropy of the chain encapsulates
information about the mass spectrum of the QFT. Further,
despite the nonuniversality of c1 and c2, their difference is
universal:

U := c1 − c2. (4)

In massive QFT, U is related to the expectation value of a
branch point twist field, as described in Ref. 15. In contrast to
the large number of works dealing with critical spin chains, the
absence of studies of the near-critical scaling regime precludes
a comparison with massive QFT results. The present work
intends to fill this gap.

II. ISING MODEL

This model has Hamiltonian

H = −J

2

N∑
i=1

(
σx

i σ x
i+1 + hσ z

i

)
, (5)

where σa
i are Pauli matrices acting on site i and we consider

periodic boundary conditions σi+N ≡ σi . J > 0 is a “micro-
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FIG. 1. (Color online) Correction to the saturation of the en-
tanglement entropy of the gapped Ising chain for ξ = 40. The
solid circles represent the numerical values after subtraction of the
exact saturation terms. The dashed red line represents the function
1
8 K0(2Lξ−1). The agreement is striking and clearly improves for
increasing values of Lξ−1.

scopic” energy scale, and h plays the role of an external
magnetic field. It is well known (see, e.g., Ref. 17) that this
model has a quantum critical point for h = hc = 1 described
by a CFT with c = 1

2 . The exact correlation length of the chain
is given by ξ−1 = log h (Ref. 18) and, as expected, diverges
at the critical point. For h > 1 the system is gapped and the
ground state is unique (no symmetry is broken). Taking the
scaling limit described above, a massive QFT is obtained:
the free massive relativistic Majorana fermion.

A numerical study of the Ising model has the advantage
that a free fermion map can be used to perform computations
in the thermodynamic regime. This technique is explained in
much detail in Ref. 7 and is based on the use of Toeplitz
determinants.9 In Appendix A we report a summary of this
method, alongside a simple implementation. We can then carry
out extremely precise numerics on an exactly infinite chain for
very large values of L and very small values of ξ−1.

A numerical computation at the conformal critical point
yields the expected behavior (2). For the Ising model, the exact
value of U = −0.131984 . . . was first evaluated in Ref. 15.
With c1 = log 2/2 calculated in Ref. 19 this gave, using (4),
the constant c2 = 0.478558 . . .. This agrees extremely well
with the numerical results obtained in Ref. 7 and with our own
numerics. At the critical point h = 1, we find that the entropy
is very well described by the function (2) with c = 0.500003
and c2 = 0.478551.

Away from criticality the spectrum of the QFT has a single
particle. Hence formula (3), with only one term in the sum,
should describe the large-mr behavior in the limit h → 1+. In
our numerics, we take finite, increasing values of ξ , and each
time fit the large-L behavior to

S = 1

6
log ξ + c1(ξ ) − 1

α(ξ )
K0(2L/ξ ) (6)

(we choose ε = 1 and use mr = L
ξ

). We expect c1(∞) = c1

and α(∞) = 8. Figure 1 provides an example of such a fit
with ξ = 40, showing excellent agreement between numerical
results and the Bessel function form of the correction to
saturation. Figure 2 shows the data for c1(ξ ). The points
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FIG. 2. (Color online) The circles are numerical values of c1(ξ )
obtained by fitting (6). The dashed line represents exactly twice the
function in Eq. (13) of Ref. 19, as expected since Peschel’s work
considers a partition into two semi-infinite regions. The agreement is
again extremely good.

agree very well with the exact function of ξ predicted in
Refs. 14 and 19 lending support to our method. Finally, Fig. 3
illustrates the main result for the Ising chain. We show the
function α(ξ ) =: αx(ξ ) obtained from a fit of (6) in regions
L > xξ for x = 1.5,2,2.5,3,3.5,4, and 4.5. In all cases, αx(ξ )
appears constant as a function of ξ , and as x increases this
constant approaches α(∞) = 8.

III. XXZ SPIN-1/2 MODEL IN THE GAPPED REGIME

Let us now consider the Hamiltonian (with J > 0)

H = J

N∑
i=1

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �σz
i σ z

i+1

)
, (7)

with periodic boundary conditions. This is the antiferromag-
netic spin- 1

2 XXZ chain (anisotropic Heisenberg model). This
model displays a rich variety of features, depending on the
value of the anisotropy parameter �. For � ∈ (−1,1] the
thermodynamic limit N → ∞ is well described by a CFT with
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FIG. 3. (Color online) Numerical values of αx(ξ ). Linear fittings
of the seven sets of data provide the asymptotic values α1.5(∞) =
7.85581, α2(∞) = 7.9186, α2.5(∞) = 7.95252, α3(∞) = 7.97121,
α3.5(∞) = 7.9818, α4(∞) = 7.98783, and α4.5(∞) = 7.99146. Ex-
trapolating in x gives the prediction limx→∞ αx(∞) = 7.99281.

c = 1 (a free massless boson). For � > 1 the model is gapped;
hence the scaling limit should be described by a massive QFT.
The QFT is the SU (2)-Thirring model (the sine-Gordon model
at a special value of its coupling constant—different values of
the coupling are recovered by approaching the critical line
in other ways; see, e.g., Refs. 20 and 21). This model has a
spectrum of two asymptotic particles of equal mass.

In the XXZ model the exact correlation length is
given by ξ (�)−1 = γ

2 + ∑∞
n=1

(−1)n

n
tanh(nγ ), where γ =

cosh−1(�).18

Numerical simulations on the XXZ chain were obtained by
employing the density matrix renormalization group (DMRG)
approach.23 In contrast to the Ising example, a new set of
technical challenges arises. Whereas in the Ising model we
could use formulas for the entropy where the length of the
chain was infinity from the outset, in the XXZ case we have
to deal with finite chains. This means that if we want to get
meaningful results in the scaling limit we need to ensure that
N 	 L and, at the same time, if we want to test the behavior (3)
we have to consider L 	 ξ while ξ 	 ε is sufficiently large
so as to be close to the critical point � = 1.

We have found that for a given � an optimal choice
is achieved by setting N = 5ξ . Longer chains are too hard
to simulate while for shorter chains boundary effects make
it impossible to obtain meaningful results. We considered
the cases ξ = 12,14,16,18,20, and 22, and used again the
form (6). We fitted over the range ξ < L < 2ξ .

A further challenge is posed by the fact that we have
to consider periodic boundary conditions to recover the
behavior (6). This makes the convergence of our DMRG
algorithm much slower, forcing us to consider up to 1000
states to observe good convergence.

In order to guarantee the correct identification of the
ground state we have employed two control parameters: the
local magnetization 〈σ z

i 〉 and the truncation error. We used
the condition 〈σ z

i 〉 = 0 as guiding principle for selecting the
ground state. Imposing this condition is quite challenging for
periodic chains. In our work we have been able to guarantee
〈σ z

i 〉 < 10−2.
For L 	 ξ we observe small oscillations in the entropy

between blocks with odd and even numbers of sites. These
oscillations are slightly visible in the coefficient c1(ξ ), Fig. 4,
and the Bessel function, Fig. 5, and clearly visible in the
function α(ξ ), Fig. 6. Oscillations in the entropy have been
seen for finite chains (see, e.g., Ref. 25) where they arise as
a consequence of finite size effects, albeit not for the von
Neumann entropy. Clearly, in our case these oscillations must
have a different origin. We believe that they are a consequence
of the degeneracy of the ground state: For � > 1 the ground
state is twofold degenerate18,24 in the thermodynamic limit
(diagonalizing the momentum, two eigenvalues 0 and π occur).
Since we are always dealing with finite chains we should
never see this degeneracy in our numerical simulations (the
state with momentum eigenvalue 0 is the “true” ground state).
However for long chains, the gap between the two states
narrows and the precision of our algorithm fails to distinguish
the energies of those states. The oscillations should then be due
to an alternate targeting of two linear combinations of the true
(0-momentum) ground state and the π -momentum state (with
small amplitude), depending on the parity of L. In Appendix B
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FIG. 4. (Color online) The function c1(ξ ) near the critical point.
The points represent the numerical results; the dotted line, the exact
function as predicted in Refs. 21 and 22. Denoting by Ũ (ξ ) the
function (14) of Ref. 21 minus the leading logarithmic term 1

6 log ξ ,
the dotted line above is the function c1(ξ ) = 2Ũ (ξ ) + log 2. The
factor 2 is due to the presence of two boundary points. The term
log 2 is related to the degeneracy: Our zero-momentum ground state
is composed in equal parts of two Néel-like orthogonal states of the
same entropy. This function has the property c1(∞) = 2 log 2/3.

we report some details on the simulation parameters, and an
explanation of the oscillation phenomenon.

Figure 6 shows that the coefficient α(ξ ) converges with
great precision to its theoretical value 4. Contrary to the Ising
case, α(ξ ) has a dependence on the correlation length. Figure 5
shows a good fit to a Bessel function which continues to be
good away from � = 1 as long as the coefficient α(ξ ) is
changed as dictated by Fig. 6. Thus the function (6) may
provide to a good accuracy a universal description of the
entropy of gapped spin chains.

Finally, at the critical point, we have found that the entropy
is very well fitted by the function (2) with c = 1.00024 and
c2 = 0.733758. We can therefore make a prediction for the
universal QFT constant U = c1(∞) − c2 = −0.27166 in the
SU (2)-Thirring model.
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FIG. 5. (Color online) Correction to the saturation of the en-
tanglement entropy of the gapped XXZ chain for ξ = 20. The
solid circles represent the numerical values after subtraction of the
exact saturation terms. The dashed red line represents the function
1
4 K0(2Lξ−1). The agreement is good and clearly improves for
increasing values of Lξ−1.
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FIG. 6. (Color online) Values of α(ξ ) approaching the critical
point. The linear expression α(ξ ) = −4.3261ξ−1 + 4.0039 reason-
ably fits the points and its extrapolation gives α(∞) = 4.0039, which
is quite close to the QFT prediction αQFT = 4.

IV. CONCLUSIONS

By studying gapped spin chains we have provided
strong numerical evidence for the behavior (3) suggested in
Refs. 15 and 16 for two-dimensional QFT. Besides confirming
QFT predictions, our results show that computing the entan-
glement entropy may be a good numerical way to determine
the number of lightest particles in the universal spectrum,
especially in combination with the knowledge that α(∞) in (6)
must be a fraction of 8. Our results also suggest that some of the
QFT predictions may still hold, with small changes, beyond
the scaling regime. It would be very interesting to derive this,
or the appropriate modification of (6), for spin chains from
first principles. We have made a prediction for the universal
constant U in the SU (2)-Thirring model, still to be confirmed
by means of QFT techniques.
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APPENDIX A

In this section we report a summary on how to reduce
the density matrix of a block of L spins of the ground state
|�〉 of the Ising spin chain into the density matrix of a set
of noninteracting free Majorana fermions. This method was
first proposed and employed in Refs. 6 and 7. We focus
on a chain in its thermodynamic limit, so that it enjoys of
translation invariance, and we can take the block made of
spins from 1 to L. Our aim is to compute the reduced density
matrix ρL = Tr\L|�〉〈�|. This is a Hermitian matrix, and its
action on the generic spin i can be written as αμσ

μ

i , where
αμ = (α0,α1,α2,α3) is real, while σ

μ

i = (I,σ x
i ,σ

y

i ,σ z
i ). Then

the density matrix takes the form

ρL = 1

2L

∑
μ1,...,μL=0,1,2,3

αμ1···μL
σ

μ1
1 ⊗ ... ⊗ σ

μL

L , (A1)
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where αμ1···μL
= 〈�|σμ1

1 ⊗ ... ⊗ σ
μL

L |�〉. This is a 2L × 2L-
matrix, then its dimension grows exponentially with the length
of the region L. This makes the direct evaluation of its
eigenvalues impossible but for very short intervals, or special
cases. The strategy we adopt is to map the density matrix
elements of this model to the matrix elements of uncorrelated
fermionic harmonic oscillators.

The fact that the Ising model can be reduced to a Dirac
fermion is well known in the scientific community. The central
idea is to identify the two Dirac complex operators of creation
and annihilation on a certain site, as real Majorana operators
acting on two different sites. So we define

a2n−1 =
(∏

l<n

σ z
l

)
σx

n , a2n =
(∏

l<n

σ z
l

)
σy

n , (A2)

and they are Hermitian fermionic operators, satisfying a
†
k =

ak , and {ak,al} = δkl . Using the Wick theorem one can see
that all generic correlators of n operators can be expressed as
products of two point functions. These functions can be written
as 〈�|aiaj |�〉 = δij + i�a

ij , where

�a =

⎛
⎜⎜⎜⎜⎝

G0 G1 . . . GN−1

G−1 G0 . . . GN−2

...
. . .

...

GN−1 GN−2 . . . G0

⎞
⎟⎟⎟⎟⎠ , (A3)

with

Gn =
(

0 G(n)

−G(−n) 0

)
, (A4)

and for external magnetic field h

G(n) = 1

2π

∫ π

−π

dφe−iφn h − cos φ + i sin φ√
(h − cos φ)2 + sin2 φ

. (A5)

The matrix �a is a real skew symmetric Toeplitz matrix, and
as such its eigenvalues form a set of couples of pure imaginary
numbers, which we label ±iνj , with j ∈ [1,L]. We first reduce
�a in its block diagonal form by the transformation �f =
UT �aU, where U ∈ SU (2L). Then we end up with the matrix

�f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ν1

−ν1 0 ν2

−ν2 0

. . .

0 νL

−νL 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)

and the set of Majorana operators �f = U�a. The correlation
matrix �f is now much more sparse than �a , and connects
only nearest-neighbor fermions. A last simplification is then
the definition of fermionic modes ψj = (f2j−1 + if2j )/2, such
that

〈ψlψ
†
m〉 = δlm

1 + νl

2
. (A7)

By means of this last transformation we managed to map
the Ising model on a set of uncorrelated fermionic operators.

The density matrix (A1) factorizes then into ρL = �1 ⊗ �2 ⊗
... ⊗ �L. The single-mode density matrix can be reduced to
the diagonal form �m = diag[(1 + νm)/2,(1 − νm)/2] which
means that we have a clear expression of the 2L eigenval-
ues of ρ, in terms of products of the 2L eigenvalues of
the matrices �l . The map between eigenvalues of ρ (that
we will call λs) and �l can be implemented by a string
of L classical bits P = p1p2...pL, where pi = 0,1, such
that

λP =
L∏

j=1

1 + (−1)pj νj

2
. (A8)

This map allows us to express the entanglement entropy as

S(L) =
L∑

j=1

H2

(
1 + νj

2

)
, (A9)

where H2(x) = −x log x − (1 − x) log(1 − x) is the binary
entropy.

The immediate gain of employing this technique is in the
evaluation of the entanglement entropy, as now for a L sites
block we just have to diagonalize a 2L × 2L matrix, instead
of the original 2L × 2L density matrix.

A numerical simulation on this model is divided in the
following steps:
(1) Solve numerically (A5) to compute G(j ) and G(−j ), for
j = 1,...,L.
(2) Assemble the matrix �a by means of (A3) and (A4), and
diagonalize it.
(3) Extract the values of νj from, e.g., the set of pos-
itive imaginary eigenvalues and finally compute SL as
in (A9).

We report here an extract of a MATHEMATICA program
which implements the aforementioned steps. First we define
the matrices Gn in (A4) with the function

1 GG[ L , h ] := Block [{ gg } ,
2 gg [ x , a ] := KroneckerDelta [−x , 1 ] / ; h ==

0 ;
3 gg [ x , a ] := −1./(\ [ Pi ] ( x + 1/2) ) / ; h ==

1 ;
4 gg [ x , a ] :=
5 NIntegrate [
6 Re [ ( Cos [ t ] − a + I ∗Sin [ t ] ) / Sqrt [ ( Cos [ t ] −

a ) ˆ2 + ( Sin [ t ] ) ˆ2 ] Eˆ(
7 I ∗ t∗x ) /(2 \ [ Pi ] ) ] , { t , 0 , 2 \ [ Pi ] } ,
8 Method −> {GlobalAdaptive ,

MaxError Increases −> 10000} ,
9 Prec i s i onGoa l −> 12 , MaxRecursion −> 20 ]

/ ; h != 1 && h != 0 ;
10 Do[
11 G[ l ] = {{{0 , gg [ l , h ] } , {−gg[− l , h ] , 0}}} ;
12 , { l , 0 , L − 1 } ] ;
13 ] ;

where L is the length of the block, and h is the external
magnetic field. We perform then the remaining steps with the
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function

1
2 CorrToEntropy [ L ] :=
3 Block [ {MM, MMM, MMMM, l1 , l2 , gg , E, Eigen ,

H} ,
4
5 MM = Table [ 0 , { i , 1 , 2∗L} , { j , 1 , 2∗L } ] ;
6 Do [MMM[ j ] =

ArrayFlatten [ Transpose [ Table [G[ i ] , { i ,
0 , L − j } ] ] ] , { j , 1 , L } ] ;

7 Do [Do [MM[ [ i , j ] ] = MMM[ Ce i l i ng [ i / 2 ] ] [ [ Mod[ i
+ 1 , 2 ] + 1 , j − 2 Ce i l i ng [ i /2 ] + 2 ] ] ,
{ j , 2 Ce i l i ng [ i /2 ] − 1 , 2∗L} ] , { i , 1 ,
2∗L } ] ;

8 Do [Do [MM[ [ j , i ] ] = −MM[ [ i , j ] ] , { i , 1 ,
2∗ Ce i l i ng [ j /2 ] − 2} ] , { j , 3 , 2∗L } ] ;

9
10 Eigen = Eigenvalues [MM] ;
11
12 l 1 = Se l e c t [ Im [ Eigen ] , # > 0 &] ;
13 l 2 = Table [ ( l 1 [ [ i ] ] + 1) /2 , { i , 1 ,

Length [ l 1 ] } ] ;
14
15 H[ x ] := I f [ Abs [ x ] > 10ˆ−22 && Abs [ 1 − x ] >

10ˆ−22 , −x∗Log [ x ] − (1 − x ) Log [ 1 − x ] ,
0 ] ;

16 E = Chop [Re [Sum [H[ l 2 [ [ i ] ] ] , { i , 1 ,
Length [ l 2 ] } ] ] ] ;

17
18 Return [Re [E ] ] ;
19 ] ;

Here the matrix �a defined in (A3) is built in lines 5–8, and
then its eigenvalues are stored in the vector Eigen in line 10.
This vector is used to define the quantities (1 + νj )/2 in lines
12–13, which will be used by the binary entropy H defined in
line 15. All this quantities are combined together to compute
the block entanglement entropy in line 16.

APPENDIX B

The XXZ model cannot be mapped on a free fermion
problem; hence we are not able to use the methods employed
for the Ising spin chain. We use the density matrix renor-
malization group (DMRG) to carry out our simulations. This
method has the digitalization of the block density matrix built
in, and allows to reach a relatively large block length. This
algorithm is based on a truncation in the Hilbert space instead
of the high-energy modes of the momentum-space RAG, or the
small distance correlations of the real-space RAG. A complete
description of the DMRG would be lengthy and out of the
scope of this paper; hence we will directly summarize the key
steps of our simulation.

(1) We start with the infinite algorithm,23 until we reach the
desired length. We are interested in the scaling properties of the
block entropy when the length of the block is from comparable
to much bigger than the correlation length. We need then to
grow our block far beyond the correlation length.

(2) We perform then the finite algorithm. We take a number
of sweeps and states which ensures convergence, and we use
the entropy of the final sweep for increasing (e.g., left) blocks
to obtain our results. The setting we want to reproduce is the
one of a finite block, plugged in an infinite chain, so that we
are forced to consider periodic boundary conditions. DMRG’s
precision relies heavily on the decaying of the entanglement
spectrum, which is much slower for periodic boundaries than

TABLE I. In this table the details of our DMRG simulations are
reported. N is the length of the chain, mi the number of states kept
in the infinite phase, mf the number of states kept in the finite phase,
and finally ε is the truncation error.

� 1.92833 1.85021 1.79041 1.74286 1.70394 1.67137

N 60 70 80 90 100 110
mi 600 600 800 800 800 1000
mf 600 600 600 800 800 1000
n 60 60 10 80 80 100
ε(10−11) 1.3 3.4 6.5 3.7 6.2 3.06
|〈σ z

i 〉| 0.0089 0.0068 0.0011 0.01 0.01 0.009

open ones. This forces us to keep more states, and sweep
more before observing a good convergence. Good convergence
is characterized by a low truncation error, and a symmetric
behavior of the entanglement entropy for growing left/right
blocks.

We used conserved quantum numbers to speed up the
computation. In fact we know that the XXZ Hamiltonian
conserves the global magnetization along the anisotropy axis,
that is Sz. Moreover we know the ground state has 〈Sz〉 = 0,
so that we can focus on that sector.

We considered various values of the anisotropy parameter
�, corresponding to correlation lengths ξ = 12,14,16,18,20,
and 22. In our study the left block must grow much longer than
the correlation length in the finite algorithm phase. Clearly
longer chains are harder to simulate, and results are less
precise. We choose to consider a chain long five times the
correlation length as it allows us to obtain good insight on the
scaling region, as well as reliable results.

A major problem that arose in performing DMRG sim-
ulations on long chains in this regime is the presence of
oscillations in the local magnetization and the entropy. In the
thermodynamic limit the ground state is twofold degenerate
for � > 1, as there are two lowest energy states, with different
momentum 0 and π ,24 which we call respectively |ψ0〉 >

and |ψπ 〉. This degeneracy is removed in the case of finite
periodic chains, where the ground state has zero momentum,
while the lowest energy state of the momentum π sector is
an excited state. We will refer to these two states again as
|ψ0〉 and |ψπ 〉 with an abuse of notation. The gap between
these two states though becomes very narrow for chains
of the length we are considering. At the precision we are
working our DMRG algorithm struggles to distinguish these
two states. A source of error could be the employment of
the Lanczos algorithm for sparse digitalization, which has
difficulties in resolving degeneracies. As a result we observe
a small staggered behavior for the local magnetization, and
a small oscillation in the block entropy between even/odd
lengths of the block. Even if 〈ψ0|σ z

i |ψ0〉 = 〈ψπ |σ z
i |ψπ 〉 = 0,

a confusion between these two states can end up giving as
target state a superposition |�〉 = α|ψ0〉 + β|ψπ 〉, and as a
result 〈�|σ z

i |�〉 = 0 in general. We use as signal of a good
convergence σ z

i , which we want to be as low as possible.
We used different implementation of the DMRG, but the

most precise and reliable results were obtained with ALPS.26

We report in Table I the details of our simulations and results
of the convergence tests.
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