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Phase diagram of the spin-1 Heisenberg model with three-site interactions on the square lattice
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We study the spin S = 1 antiferromagnetic Heisenberg model on the square lattice with, in addition to the
nearest-neighbor interaction, a three-site interaction of the form (S; - §;)(S; - Sx) + H.c. This interaction appears
naturally in a strong coupling expansion of the two-orbital, half-filled Hubbard model. For spin 1/2, this model
reduces to a Heisenberg model with bilinear interactions up to third neighbors, with a second-neighbor interaction
twice as large as the third-neighbor one, a very frustrated model with an infinite family of helical classical ground
states in a large parameter range. Using a variety of analytical and numerical methods, we show that the spin-1
case is also very frustrated, and that its phase diagram is even richer, with possibly the succession of seven
different phases as a function of the ratio of the three-site interaction to the bilinear one. The phases are either
purely magnetic phases with collinear order or of mixed magnetic and quadrupolar character with helical order.
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I. INTRODUCTION

The quest for exotic phases in magnetic quantum systems
has driven a lot of research over the past years. The appearance
of new phases is often related to the inclusion of terms
beyond the first-neighbor Heisenberg interaction. For spin
S =1/2, it can be for example longer-range interactions
leading to frustration,' Dzyaloshinskii-Moriya interactions,>>
or plaquette interactions.* These terms also appear in spin
S = 1 systems. However, the fact that the local Hilbert space
is of higher dimension for § =1 allows for new types of
interaction. Starting from a two-orbital Hubbard model at
half-filling with Hund’s coupling, a strong coupling expansion
leads to an effective spin-1 model. At second order, only
a Heisenberg interaction between first neighbor appears. At
fourth order, on top of the usual terms that also appear
in the S = 1/2 case starting from the single band Hubbard
model,>® namely second-neighbor and plaquette interactions,
two new interactions appear, the biquadratic interaction, and
a three-spin interaction”® of the form (S i SH(S; - Sy) +Hee.
The biquadratic interaction has been intensively studied over
the past few years, both in one’!° and two?*>* dimensions.
However, to the best of our knowledge, the effect of the
three-spin interaction has not been investigated in 2D, which
has led us to study the following model on a square lattice:

H=7) 58-8,
(i)

+J3 ) (S S;)(S; - S+ He., (1)
(i.j.k)
where S; are spin S = 1 operators, (i,j) sums over first
neighbors and (i, j,k) sums over all possible configurations
where i and k are first neighbors of j and are different from
each other.

It is worthwhile noticing that in the case of spin-1/2, the
three-spin interaction reduces to a second-neighbor interac-
tion. On a chain, this leads to the J; — J, model, which has
a transition to a dimerized ground state at J,/J; = 0.2411.%
In Ref. 8, it has been shown that the three-spin interaction
generalizes this result to higher spins and that, for any
S, the ground state shows dimerization in some region of

1098-0121/2013/88(9)/094435(8)

094435-1

PACS number(s): 75.10.Jm, 75.10.Pq, 75.40.Mg

the phase diagram. In two dimensions and for spin 1/2,
the Hamiltonian of Eq. (1) reduces to a Hamiltonian with
Heisenberg interactions Jy, Jo, and Jaa to first, second,
and third neighbors with Jye = 2J3¢. A discussion of this
model can be found in Refs. 25-32. The line Jowu = 2J3u is
of particular interest because it lies at the classical transition
between a helical phase with pitch vector (Q,m) and another
helical phase with pitch vector (Q,Q). Starting from an
antiferromagnetic phase with Néel order, the system undergoes
at Jou/J; = 1/4 a phase transition to a phase with an infinite
number of helical ground states whose pitch vectors are defined
by the condition

Ji

cos QO +cos Q, = Ry
nd

2
At the level of linear spin-wave theory, quantum fluctuations
have been shown to completely disorder this phase. This is
the first hint that frustration might be very high in the case of
the Hamiltonian (1) as well. As we shall see, the situation is
even more complicated, and the competition between several
phases leads to a very rich phase diagram. The conclusions we
have obtained regarding this phase diagram are summarized
in Fig. 1.

The paper is organized as follows. In Sec. II, we determine
the different phases in the classical limit and, in particular,
we discuss the degeneracy of the phase appearing in the limit
J3 > J;. In Sec. 111, we discuss the mean-field phase diagram
based on a product of local wave-functions and the difference
between this phase diagram and the classical phase diagram.
We add quantum fluctuations to the system in the context of
a semiclassical expansion around the classical solutions in
Sec. IV. To confirm the previous results, we give some exact
diagonalization results in Sec. V. We finish the paper by a
conclusion in Sec. VI.

II. CLASSICAL PHASE DIAGRAM

In this section, we consider the spins as three dimensional
arrows of length S = 1. The zero-temperature phase diagram
is obtained by minimizing the energy of Hamiltonian (1) under
this assumption. The classical phase diagram can be formally
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FIG. 1. Summary of the information obtained on the phase
diagram of the spin-1 J; — J;3 model on the square lattice. Taken
together, these results suggest the succession of seven phases: Néel,
hl, uvudd, h2, h3, plaquette, and (7,0). These phases are defined
throughout the text, and they are sketched in various figures: the uudd
phase in Fig. 2, the helical phases hl, h2, and h3 in Fig. 5, and the
plaquette and (7,0) phases in Fig. 7. Finally, some examples of the
degenerate configurations of the classical phase diagram are shown
in Fig. 3.

established by decomposing the Hamiltonian into a sum of
local Hamiltonians in the following way:

N
H:ZH[,

1
H; =2 XT:SI‘ Sive 253 ) Y (Sive - S)(Si - Site),

T T#T

where N is the number of sites, and T and T sum over the
nearest neighbors. Minimizing independently all these local
Hamiltonians is a sufficient, though not necessary, condition
to have a global minimum. We will see that we were able to
independently minimize the local Hamiltonian for all values
of the ratio J3/J;.

For symmetry reasons, the central spin of the local
Hamiltonian can be chosen to point in the z direction. Since the
energy only depends on the relative angle between the central
spin and its four neighbors (and not on the angle between the
neighbors themselves, as would be the case with- for example-
a second-neighbor interaction), all the spins can be assumed
to point in the same plane, say the z-x plane. Under these
assumptions, the classical energy can be written as

E = J;/2(cosb; + cos b + cos O3 + cos by)
+2J3 (cos 6 cos B, + cos B cos O3 + cos By cos O,
+ cos 6, cosb; + 6, cos by + B3cos6y),

where 6;,i = 1,...,4 are the angles of the four neighbors
of the central spin with respect to z. This energy can be
easily minimized, and we find three different types of minima,
depending on the value of J3/J;. These three different local
minima can be extended to the entire lattice and constitute the
three phases that appear in the classical phase diagram. We
will now describe in detail the three different phases.

A. Néel phase

In the limit where J; goes to zero, the classical ground
state is of Néel type. The energy per site is given by
Eg=-2J1+12J;.

PHYSICAL REVIEW B 88, 094435 (2013)

uudd

FIG. 2. (Color online) Classical phase for 1/12 < J3/J; < 1/4.
Blue dots mean spins up and red dots spins down. This phase is called
throughout the paper the up-up-down-down (uudd) phase.

B. Up-up-down-down phase

The first transition that appears when increasing J3 leads to
the phase depicted in Fig. 2. This phase realizes a compromise
between the Heisenberg and the three-body interactions. The
three-body interaction favors phases where we have a local
up-up-down or down-down-up structure. In the intermediate
phase, this is realized by having up-up-down-down chains,
which are coupled antiferromagnetically so that the Heisen-
berg interaction is still partially satisfied. The energy per site is
then given by —J;. The transition point can be established by
comparing the classical energy of the two phases. We see that
the transition to this phase appears already at J3 = J;/12. In
the following, we will refer to this phase as the up-up-down-
down (uudd) phase.

C. J; phases

If J; =0, the minimization of the local Hamiltonian is
trivial. Because of the rotational invariance of the Hamiltonian,
the central spin can point in any direction. If we choose it
to point up, then the minimum is realized by having two
neighbors pointing up and two neighbors pointing down. This
still holds if the central spin points down. A global minimum
can be found if we manage to build a configuration where every
spin has two neighbors pointing up and two neighbors pointing
down. An easy way to build phases that respect this constraint
is to draw lines of spins up and lines of spins down so that
two lines of spins up (or spins down) never touch each other.
Several examples are given in Fig. 3. In the first one (1), we
draw straight lines. This can be deformed by adding domain
walls where all lines form an angle, as in (2). In (3), we put
all possible domain walls. A second possibility shown in (4) is
to draw 2 x 2 squares. This phase can also be transformed by
adding bigger squares around the 2 x 2 square (5). Finally, we
can also mix phases with closed loops and phases with lines
as seen in (6).

The local constraint seems weak. However, the residual
entropy scales as L and not as L? (where L is the linear size of
the system). To prove it, let us construct a classical ground state
as described in Fig. 4. We start from an arbitrary cell of four
spins (in purple in Fig. 4). Then, by turning around this cell
following a spiral, we put new spins who respect the constraint
imposed by the spins in the inner side of the spiral. The spin
along the sides are completely constrained by the inner spins
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FIG. 3. (Color online) Some of the degenerate classical config-
urations when J3/J; > 0.25. Blue dots mean spins up and red dots
spins down. The color lines are guides to the eyes.

(in black on Fig. 4). At most two spins when the path form
an angle might*® be choosen freely (in white in Fig 4). The
number of free spins will therefore scales at best as 8L and the
number of possible configuration as 28-. This is only an upper
bound for the degeneracy. Now, one can build at least 2-+!
ground state in a system of linear size L by adding from O to
L domain walls to the phase with straight lines of Fig. 3(1),
which give us a lower bound. Therefore the residual entropy
in the thermodynamic limit lies between L and 8L and scales
as the linear size of the system L.

For classical spins, the Heisenberg interaction does not lift
the degeneracy between these different phases, since it is zero
for all of them (by definition of the constraint). In the classical
case, we therefore expect all these phases to coexist, even
for finite J;. The energy per site of this phase is E = 2J; —
4Js. The transition to the intermediate phase takes place at
J3/J1 =1/4.

Overall, the classical phase diagram contains three regions,
the last one showing a big degeneracy. It is sketched in the
middle panel of Fig. 1.

f

FIG. 4. (Color online) Construction of a ground state following
a spiral. The up spins are shown in blue and the down spins in red.
The black spins are completely constrained by their environment. The
white ones may be constrained in some situations, but can be chosen
freely in general. Since there are at most two unconstrained spins per
corner, the number of free spins divided by the number of spins is
going to zero in the thermodynamic limit.
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III. MEAN-FIELD PHASE DIAGRAM

While classical phases give in general some first intuition
about what the quantum phase diagram could be, they still
show some down sides. One of them is the fact that if
one considers quantum spin S = 1 systems, the local-order
parameter can be of quadrupolar type instead of magnetic
type. This kind of local order is known to be of crucial
importance when biquadratic interactions enter the game.>*
Since the three-body interaction involves the square of some
local operator, it is legitimate to wonder if, in this case as
well, the quadrupolar component plays a role. To tackle this
difficulty, it is useful to do a mean-field phase diagram instead
of a classical phase diagram.>*

To be more precise, the mean-field approach consists in
reducing the Hilbert space to states which are products of
local wave functions, i.e., to consider only states of the form:

V) = &;ilvi).

The local wave function for a spin S =1 is, in general,
described by three complex numbers. However, the condition
that the norm is one, and the freedom to fix the phase, reduce
the freedom to only four real parameters. The local wave
function can be chosen as

[y = e cos 0; cos ¢;|1) + e'7 cos 0; sin ¢; | 1) + sin 6;]0),

where y;, 7, ¢; and 6; are real numbers. It is easy to
check that the norm of the local wave function is one and
therefore (W|W) = 1. The mean-field approach consists then
in minimizing the mean-field energy £ = (V|H|WV), which is
a function of 4N variables.

One of the main reasons to use this approach is to detect
quadrupolar phases, as shown in the case of biquadratic
interactions.”>?* However, even for purely magnetic states,
the phase diagram can be different from the classical one if
one considers terms beyond the Heisenberg interaction. This
effect can be traced back to the fact that the mean-value of
a product of operators is the product of the mean values of
these operators only if these operators commute with each
other. Since the spin operators on different sites commute, for
a Hamiltonian, which is linear in spin operator on all sites, the
classical and the mean-field values are the same, for example,
for a Heisenberg Hamiltonian:

Evi.e = (WIH|Y) =) (VIS:S;¥)
(i.J)
=D WISV (WIS 1¥) = Ectassic-
(i, ])
By contrast, if one considers a Hamiltonian with

higher-order on-site terms such as S - Sf , which appear
in the biquadratic and in the three-body interactions, the
decomposition as a product of mean-field terms cannot be
performed and the classical and mean-field energies are
different, even for coherent states. As an example, let us
compare the mean-field and the classical energies of the
biquadratic interaction in the |11) state:

Ecassic = ((1T[Sq[1T)(11]S2|11))?
= ((0,0,1)- (0,0, — 1))* =1,
Emr = (11 (S182)* [11) = (11|8;82(]00) — |11)) = 2.
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The two energies are indeed different. In the J; — J3 model
presented here, this difference between the classical and the
mean-field energies for a given configuration plays a more
important role than the possibility to have quadrupolar order,
and it lies at the root of the appearance of helical phases
which are not present in the classical case.

The strategy to find the phase diagram is the following.
First, we minimize the mean-field energy of finite clusters,
up to N = 8 x 8, leaving all 8 x 8 x 4 = 256 variables free.
Based on the results, we do an educated guess to reduce
the number of free variables to a number which does not
scale with the system size (for example, the angle between
nearest-neighbor sites). This allows us to find the energy in the
thermodynamic limit with only a few angles left free. We then
have to check that the trial wave function gives an energy per
site, which is smaller or equal to the energy of finite systems.
However, we can never be sure that a bigger cluster would not
lead to a better energy, and therefore that we are not missing
some phases.

Obviously, the classical phases are included in the Hilbert
space of the mean-field phase. They can therefore appear in the
phase diagram. Indeed, the three classical phases are realized
in some region of the phase diagram. However, new phases
appear between the classical phases. Based on the results
obtained from the numerical simulations, we assume that the
system has either a unit cell of 2 x 1 or is an helical phase
obtained by the rotation of a 2 x 1 cell. We also assume that
the spins lie all in the x-y plane. Finally, we assume that
the length of the quadrupole is the same on every site.
This provides us with an energy with only four independent
variables, one for the relative angle inside the unit cell, two for
the rotation of the unit cell in the x and y directions, and a last
one for the length of the spin. Using this assumption, we can
find an expression for the energy in the thermodynamic limit.
However, the exact form of the energy is still too complicated
to be minimized by an analytical treatment. Nevertheless, it
can be minimized numerically with a very high precision. In
the case of a second-order phase transition, we can also predict
the critical value (J3/J;). where the phase changes to a helical
phase by taking the Taylor expansion of the energy around the
different classical phases. The transition point is given by the
condition that the quadratic term vanishes.

First helical phase. Starting from the Néel state, we have a
first instability at J3 = J;/14. This state is formed by exactly
antiferromagnetic chains along one direction, while along
the other direction, the angle between the spins is given by
6 = m + €. Close to the transition, € o v J—JT — (1—3? )c. Once the
helical phase appears, the spins develop a small quadrupolar
component. However, the quadrupolar order is not driving
the transition since, even when restricting the Hilbert space
to purely magnetic states, an instability appears at the same
value of J3/J;. The phase ends with a first order transition
to the up-up-down-down phase, around 0.087. This phase is
depicted in Fig. 5 left.

Second helical phase. The mechanism leading to the second
helical phase is similar. We start from an up-up-down-down
phase, and we start to tilt the spins in the direction where
they are coupled antiferromagnetically. The transition point is
at J3 = J;/6. This is also a second-order phase transition,
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FIG. 5. (Color online) Sketch of the three helical phases, which
appear in the mean-field phase diagram. The colors are only guides
to the eyes.

and the deviation with respect to the classical phase will
also behave as +/ J—J? - (J—:? )c- As in the previous case, a
small quadrupolar component appears. The phase ends with a
first-order transition to a third helical phase at J3/J; = 0.25.
This phase is depicted in Fig. 5 middle.

Third helical phase. To understand the last helical phase,
one has to start from the phase (77,0) [see Fig. 3(1)]. The tilt
starts in the ferromagnetic direction at J3/J; = 1/2 coming
from larger J3 and will end at J3/J; = 0.25 with the first-order
transition to the second helical phase. This phase is depicted
in Fig. 5 right.

Phase diagram. Overall, the three classical phases show
up at some point of the mean-field phase diagram, and on
top of that, three helical phases appear between the classical
phases. In Fig. 6, we show the difference between the mean-
field energy and the classical energy. The mean-field phase
diagram can be seen in Fig. 1.

IV. QUANTUM FLUCTUATIONS

While the first two phases of the classical phase diagram
are expected to show up in the quantum case, with of course
some renormalization of the boundary, the third phase is more
subtle. We expect some lifting of the degeneracy by quantum
fluctuations, i.e., by a process of order by disorder. To see
which phase is selected by the quantum fluctuations, we use
linear spin-wave theory.

The Hamiltonian for any classical phase can be de-
composed as a sum over the magnetic unit cell of local

0.00

—0.02}
= —0.04f
5§
‘L: —0.06}
S
—0.08}
0.0 0.1 0.2 0.3 0.4 05 0.6
J3/ Jy

FIG. 6. (Color online) Difference between the classical energy
and the mean-field energy. Most of the time the energies are the same,
but when a helical state appears, the mean-field solution become lower
in energy than the classical solution.
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HamiltonianS'
"= ;mzl ,Zzsz m Sjmen)
= Y Simr, Sim)Sjm - Sjme,) +He. |,

TnFTm

where j runs over the different magnetic cells, m runs over the
elements of one unit cell, and T and 7 run over the neighbors
of site (j,m). N, refers to the number of sites in one unit cell.

We can then perform a Holstein-Primakov transformation’
and expand it in power of 1/S. For a collinear phase, this
leads to

ijm :eier‘mVS/z(ajm +aT )7
VS/ (ajm_ jm

— el Qrjm (S _ ”lj,m)9

)]m

S

Zj,m

Ny
Z Z{ZEiQT[S — (nk,m + nk,m,r)] + (eiQT

Tm

_ N
SXk:m:I

]

lkT +akmakmtelkr)}+

+(€2" + 1)agma’

—k,m, €

+e 27 2T — 1) ag magm e’ +af,

t

iQ%, iQt —ikt T
+e 2 (e g _ 1)(a—k»mg‘l'ak,me +ak,m,ra7k,m

The different phases have different pitch vectors Q and differ-
ent magnetic cells, leading to different bosonic Hamiltonians.

Correction to the energy. Since for J;3 > 1/4 we have an
infinite number of classical ground states, we cannot perform
the spin-wave calculation for all of them. In particular, we can
only treat phases which are periodic. We restrain ourselves to
four phases, which look paradigmatic to us. The four phases
with the associated unit cells are depicted in Fig. 7. The
(7r,0) phase formed by straight lines of up spins alternating
with lines of down spins is the ground state of the J; — Jou
model for large J,/J;, and we start our analysis by this phase.
We can change this phase by adding domain walls on every
other diagonal (which we refer to as the three-three phase),
or on every diagonals (which we refer to as the step phase).
Finally, the plaquette phase is formed by square of four spins
pointing all in the same direction alternating with square of
spins pointing all in the opposite direction.

The correction to the energy due to quantum fluctuations
is depicted in Fig. 8. We see that quantum fluctuations indeed
lift the degeneracy between most of the phases already at
the 1/ level. After the transition from the up-up-down-down
phase, quantum fluctuations select the plaquette phase. Around
J3/J1 = 1.37, the system undergoes another phase transition
due to quantum fluctuations presumably to the (;r,0) phase.
The phase selected after the transition is however not so
clear from linear spin wave theory. Indeed, the phase (7,0)
is degenerate with the three-three phase. We can, however,
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where S is the length of the spin, Q is the pitch vector of
the phase, r; ,, is the position of the spin (j,m), and a and af
represent Holstein-Primakov bosons.

We performed this transformation and kept only the term
of order 1 (classical energy) and the term of order 1/S
(two-boson interactions). It is then well known that, because
of the periodicity of the lattice, the Fourier transform of
this Hamiltonian will decouple it. Taking the following
convention:

ikr;
9

1
Ajm = ﬁ Xk:ak.me
1 . .
— al e,
«/N zk: fom

where N is the number of sites and r; is the position of site j,
the Hamiltonian reads

[

ikt
k,mafk,m,re )

- 1)(a—k,mak,m,reikr +a

N,
; Y3 (262 S — [ + 2k + M o)]

k m=11,#T,

T ikT i i QT T ikt T ikt
a—k,m,fel 1)+€IQT(elQT + 1)(a—k,ma_k’m’fel T +ak Gk, ekt

e*ik‘[)_l_eiQf(eiQ‘r_i_

—ikt

1)(a—k,m,1aik m€ + ak m,t % .m€ zkr)}

speculate that, at higher order, the interaction between the
domain walls lift the degeneracy, probably in favor of the phase
without any domain wall, considering the fact that the phase
with a high density of domain walls is not good energetically.

(77—70)7 Q=

(m,0) plaquette, @ = (w, )

three-three, @ = (0, 7)

FIG. 7. (Color online) Sketch of the different states around which
we have computed quantum fluctuations. The elementary cell is
depicted in black.
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FIG. 8. (Color online) Correction to the classical energy due to
quantum fluctuations. The (7,0) phase and the three-three phase are
degenerate. The plaquette phase is selected by quantum fluctuations
if J3/J; is small enough. For large J5/J;, the (7,0) phase and the
three-three phases are selected. See Fig. 7 for the description of the
phases.

Reduction of local moment. It is also useful to consider
the average number of bosons to have an estimate of the
amplitude of quantum fluctuations. We have computed the
fluctuations for all the classical ground states that are present
in the spin-wave phase diagram. The helical phases that
appear in the mean-field phase diagram are not minima of the
classical energy, and a conventional spin-wave theory cannot
be performed around them. The calculation of the quantum
fluctuations in these cases would require more sophisticated
tools which are beyond the scope of this paper.

For a spin-1 system, the projection of the spin along
the classical order axis is given by S =1 — (nposons)- If
(Mbosons) > 2, the approximation becomes unphysical, and
it is well controlled in the limit (nposons) << 1. As seen in
Fig. 9, the fluctuations remain quite small for all four phases,
a good indication that the classical ground state is a good
approximation of the true ground state in these regions. At
J3/Jy = 1/12 for the uudd phase, and at J3/J; = 1/4 for the
plaquette phase, the quantum fluctuations diverge (not shown),
but within the region where the classical ground states are also
minima of the mean-field phase diagram, they remain finite
and never exceed 0.35.

0.35 7
—— Néel
—— uudd

0.3} —_— p};quette
— (m,0)

0.25¢

0.2 o

0.15 ~— |

0.1 /L . :

0 005 01 0.15 0.5 1 1.5 2

FIG. 9. (Color online) Quantum fluctuations computed with
linear spin-wave theory for the different classical phases. In green,
the regions where a helical phase is present and where the fluctuations
could not be computed.
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FIG. 10. (Color online) (a) Hidden symmetries of the square
lattice. The Hamiltonian (i.e., the connectivity) is invariant under
the operation that exchanges the spin as in the figure. (b) Class of
equivalence of sites with respect to the bottom left site.

V. EXACT DIAGONALIZATION

The exact diagonalization approach is very limited for spin
S =1 system because of the size of the Hilbert space which
grows as 3". The only cluster that is compatible with all the
classical phases discussed in Sec. IV and which is accessible
with this method is a 4 x 4 cluster. This cluster has some
additional symmetries depicted in Fig. 10(a), which make it
difficult to treat. As shown in Fig. 10(b), if one picks a reference
point, there are only four different types of sites which are not
equivalent by symmetry arguments.

Despite this fact, we can still check that the obtained
results are compatible with exact diagonalization. To do so,
we compute the spin-spin correlation function with respect
to a reference site. Since we do not expect the quantum
ground state to break the symmetry of the Hamiltonian, we
have to compare the quantum quantity to a superposition of
classical configurations. More precisely, we have to average
the quantities over all the classical configurations which are
equivalent up to a symmetry of the cluster. In Fig. 11, we
plot the correlation function for different values of J3/J;.
We clearly see at least three different phases. In particular,
the second diagonal spin (2,2)%¢ starts with a ferromagnetic
correlation, it then becomes antiferromagnetic and is again
ferromagnetic for large J3/J.

The value for J; =0 obviously corresponds to a Néel
state. At J3/J; = 0.1, the fifth neighbor (2,2) is strongly
antiferromagnetic. This is in agreement with the up-up-down-
down phase. Moreover, the second neighbors (1,1) and (2,0)
are very close to zero, which is also in agreement with the
up-up-down-down phase where half the second neighbors are
ferromagnetic and the other half are antiferromagnetic. Finally,
the first neighbor is antiferromagnetic, reflecting the fact that
in the classical phase, three of them are antiferromagnetic,
and one is ferromagnetic. We are therefore confident that the
up-up-down-down phase is stabilized in the thermodynamic
limit.
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FIG. 11. (Color online) Spin-spin correlations with respect to a
reference spin at the bottom left for different values of J3/J,. Red
color means a negative correlation, while blue means a positive one.
The radius of the circle is proportional to the absolute value of the
correlation.

The exact diagonalization for J3/J; >> 1 does not provide
a lot of information. In a 4 x 4 cluster, the phase (r,0) and
the plaquette phase are equivalent by the symmetry arguments
presented in Fig. 10. It is therefore hopeless to try to distinguish
between these two phases with this cluster. Moreover, the
average over the first, second, third, and fourth neighbors is
the same for all the phases of Fig. 7.37 We therefore have to
think about another quantity if we want to make the difference
between the plaquette and the (7,0) phase and the other phases.
One quantity that is different is the product of spins around a
loop: (81 - S2) - (83 - S4). This quantity should be positive in
the (7,0) and in the plaquette phase and should be negative in
the step phase. It should be negative but small in the case
of the three-three phase. We find a value around 0.75 for
J3/Ji = oo, which clearly points toward the plaquette or the
(,0) phase.

VI. CONCLUSION

The phase diagram of the spin S = 1 antiferromagnetic
Heisenberg model on the square lattice with three-site in-
teraction turns out to be extremely rich and complex, with,
according to the present results, the possible succession of
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seven phases, as summarized in Fig. 1: Néel, h1, uudd, h2, h3,
plaquette, and (;r,0). Already for classical spins the situation is
more complicated than for the equivalent Jyn — J3u spin-1/2
model, which has only one transition between a Néel phase
and a highly degenerate phase, whereas the present model
has two classical phases at small J3/J;, a Néel phase and
an up-up-down-down phase, followed by a highly degenerate
ground state. Besides, a mean-field treatment based on a
factorized wave-function suggests that the phase diagram is
actually more complicated, with the appearance of three helical
phases with a predominantly magnetic order parameter and a
tiny quadrupolar component.

Let us now have a critical look at the results. The sequence
and stability of the classical phases is in our opinion quite
robust: all the phases are stable with respect to semiclassical
fluctuations in their range of stability, and the order-by-
disorder selection of the plaquette phase for not too large J3/J;
and of the (r,0) phase for large J3/J; is plausible in view of
the linear spin-wave results, even if, as usual, the final answer
would require to go beyond linear spin-wave theory.

What is less clear however is the fate of the helical
phases. Indeed, it is well known that, quite generally, quantum
fluctuations tend to favor collinear structures because the
harmonic spectrum is softer, and it is not excluded that
the helical phases shrink to the point where they disappear
altogether when quantum fluctuations are included, some-
thing we have not attempted to do in this paper. If that
turned out to be the case, however, the system is likely to
develop quantum spin liquid phases at the transition between
the Néel and the up-up-down-down phases as well as at
the transition between the up-up-down-down and the plaquette
phases since the correction to the local moment diverges in the
up-up-down-down phase upon approaching 1/12 and in the
plaquette phase upon approaching 1/4. This very interesting
alternative, as well as the other open issues summarized above,
are left for future investigation.
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