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Monopole-based formalism for the diagonal magnetoelectric response
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We develop the formalism of the macroscopic monopolization—that is, the magnetoelectric monopole moment
per unit volume—in periodic solids, and discuss its relationship to the magnetoelectric effect. For the series of
lithium transition metal phosphate compounds, we use first-principles density functional theory to calculate the
contributions to the macroscopic monopolization from the global distribution of magnetic moments within the
unit cell, as well as from the distribution of magnetization around the atomic sites. We find one example within
the series (LiMnPO4) that shows a macroscopic monopolization corresponding to a ferromonopolar ordering
consistent with its diagonal magnetoelectric response. The other members of the series (LiMPO4, with M = Co,
Fe, and Ni) have zero net monopolization but have antiferromonopolar orderings that should lead to q-dependent
diagonal magnetoelectric effects.
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I. INTRODUCTION

The linear magnetoelectric response of a solid is the linear
order magnetization induced by an electric field or equivalently
the linear order electric polarization induced by a magnetic
field. It is described by a reducible second-rank tensor α,
which can be nonzero when both time-reversal and space-
inversion symmetries are broken, and may have diagonal or
off-diagonal components, corresponding to a response parallel
or perpendicular to the applied field, respectively.

Materials with antisymmetric off-diagonal linear magne-
toelectric responses have the same symmetry as the toroidal
component of the second-order term in the magnetic multipole
expansion, and so there has been much recent discussion in the
literature of whether the toroidal moment t is a relevant and
useful concept for describing such magnetoelectric effects.
In particular, the term ferrotoroidics has been introduced to
describe materials in which the toroidal moments are aligned
cooperatively, and such materials have been considered to
complete the group of primary ferroics.1–3 Motivated by
this suggestion, a theory of toroidization—defined to be
the toroidal moment per unit volume—in bulk crystalline
solids has been developed, which appropriately treats the
multivaluedness caused by the periodic boundary conditions.4

The observation of ferrotoroidic domains has been reported,3

and attempts to demonstrate that the toroidal moment can act
as a primary order parameter are ongoing. In addition, the local
toroidal moments associated with the atomic V sites in V2O3

and the atomic Cu sites in CuO have been detected directly
using resonant x-ray diffraction.5–7 Such atomic-site toroidal
moments could be of tremendous importance, as it has been
proposed that they are candidates for the order parameter in
the pseudogap phase of cuprate superconductors.8

The second-order term in the magnetic multipole expansion
contains two additional contributions beyond the toroidal term,
which describe in turn magnetic quadrupolar and monopolar
components that couple, respectively, to the gradient and

divergence of the magnetic field (see detailed derivation
below). While the latter has not been extensively discussed
on the grounds that Maxwell’s equations tell us formally that
B does not diverge, it can in fact be nonzero in materials with
a diagonal linear magnetoelectric response. Here, we use the
expression magnetoelectric monopole to distinguish it from the
zeroth-order term in the multipole expansion of the magnetic
field, which is the magnetic analog to the electrical charge and
indeed is formally zero. We emphasize also that the magneto-
electric monopole discussed here is a ground-state property of
the system, and so is distinct from the monopoles recently pro-
posed and verified in spin ice, which exist as excited states.9,10

The origin of the relationship between the magnetoelectric
monopolar contribution to the multipole expansion and the
diagonal magnetoelectric response is illustrated in Figs. 1(a)
and 1(b), where we follow the discussion from Ref. 11. The
monopolar magnetic vortex in panel (a) consists of local spin
magnetic moments (black solid arrows) oriented outwards
from a point, note that Maxwell’s equations are not violated;
while M diverges, it is compensated for by H and so B does
not diverge. Since the spin moments si are never parallel,
it is known from the theory of multiferroics that there is
a local radial electric polarization ∝si × sj (unfilled grey
arrows) associated with each pair of spins.12,13 These local
radial polarizations are uniform around the vortex and the net
electric polarization is zero. On application of a magnetic field,
however, the spin moments reorient to align themselves more
closely parallel to the field [panel (b)]. The local contributions
to the electric polarization no longer average to zero and a net
polarization parallel to the magnetic field direction results.

For completeness, we show in Figs. 1(c) and 1(d) the
analogous relationship between a toroidal vortex and the
off-diagonal magnetoelectric response. In this case, an applied
magnetic field modifies the spin orientations so that a net
magnetic moment is induced perpendicular to the direction of
applied field.
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(a) (d)(c)(b)

FIG. 1. (Color online) Diagonal [(a) and (b)] and off-diagonal
[(c) and (d)] magnetoelectric responses of monopolar and toroidal
spin arrangements (from Ref. 11).

The remainder of this paper is organized as follows. In the
next section, we review the definition of the magnetoelectric
monopole starting from a multipole expansion of the magnetic
field and show that it couples to the divergence thereof. In
Sec. III, we describe how the magnetoelectric monopole can be
calculated from first-principles electronic structure methods.
We introduce the term monopolization to describe the mag-
netoelectric monopole per unit volume in periodic solids and
show that it is natural both theoretically and experimentally to
divide the total monopolization into two contributions: (i) the
one arising from the atomic-site magnetoelectric monopoles
around individual ions and (ii) the one arising from the global
distribution of magnetic moments within the solid. We discuss
also the problems associated with defining the monopolization
for an infinite periodic solid and propose a practical solution. In
Sec. IV, we present results of the calculated monopolizations
for the family of lithium transition metal phosphates, LiMPO4,
M = Mn, Fe, Co, Ni. All members of this family have the same
structure and overall magnetic order, but they differ in their
local magnetic anisotropy and hence their magnetic symmetry.
We find that the different magnetic symmetries lead to different
monopolar orderings; in one case, there is ferromonopolar
ordering with a net macroscopic monopolization, and the
remaining three cases have zero net monopolization but
with hidden “antiferromonopolar” orderings that have not
previously been identified. In Sec. V, we develop the Ginzburg-
Landau theory describing the coupling of the monopolization
to homogeneous external magnetic and electric fields. In
the final section, we discuss the possible relevance of these
concepts.

II. THE MULTIPOLE EXPANSION

Following the derivation in Ref. 14, we consider a magne-
tization density μ(r), which may, in principle, arise from both
spin and orbital contributions, in an inhomogeneous magnetic
field H(r) that varies slowly on the scale of the system size.
Then the interaction energy Hint of the magnetization density
with the magnetic field

Hint = −
∫

μ(r) · H(r)d3r (1)

can be expanded in powers of field gradients calculated at
some arbitrary reference point r = 0:

Hint = −
∫

μ(r) · H(0)d3r

−
∫

riμj (r)∂iHj (0)d3r − . . . , (2)

where i,j are Cartesian directions (summation over repeated
indices is implied). The first term is the interaction of the field
with the magnetic moment of the system

m =
∫

μ(r)d3r. (3)

In the second term, the tensor Mij = ∫
riμj (r)d3r with nine

components can be decomposed into three irreducible tensors:
(i) the pseudoscalar from the trace of the tensor,

a = 1

3
Mii = 1

3

∫
r · μ(r)d3r, (4)

(ii) the toroidal moment vector dual to the antisymmetric
part of the tensor, ti = 1

2εijkMjk ,

t = 1

2

∫
r× μ(r)d3r, (5)

and
(iii) the traceless symmetric tensor qij describing the

quadrupole magnetic moment of the system,

qij = 1

2

(
Mij + Mji − 2

3
δijMkk

)

= 1

2

∫ [
riμj + rjμi − 2

3
δij r · μ(r)

]
d3r. (6)

The expansion of Eq. (2) can then be written in the form

Hint = −m · H(0) − a(∇ · H)r=0 − t · [∇ × H]r=0

−qij (∂iHj + ∂jHi)r=0 − . . . . (7)

We see that the toroidal moment t couples to the curl of the
magnetic field, and the quadrupole moment qij couples to
the field gradient, while the pseudoscalar a is coupled to the
divergence of magnetic field, and so represents a monopolar
component. Note again that we refer to a throughout as a
magnetoelectric monopole to distinguish it from the zeroth-
order term in the multipole expansion.

III. CALCULATION OF THE MAGNETOELECTRIC
MONOPOLE IN BULK, PERIODIC SOLIDS

In this section, we discuss the difficulties associated with the
definition of the magnetoelectric monopole in bulk, periodic
solids and propose solutions that allow a correspondence
between calculated magnetoelectric monopole moments and
possible experimental measurements.

For systems of finite size, such as molecules or molecular
clusters, that have zero net magnetic moment, the spin
contribution to the magnetoelectric monopole can be evaluated
directly from the spin part of the magnetization density through
the integral in Eq. (4). However, Eq. (4) is not directly
applicable to extended systems where periodic boundary
conditions are employed because the integral contains the
position operator r . Therefore, for a general continuous
magnetization density μ(r), it will lead to arbitrary values,
depending on the choice of unit cell used in the calculation.
Complications also arise when there is a significant orbital
contribution to the magnetization. We address both of these
issues below.
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A. Decomposition of the magnetoelectric monopole moment
into atomic site and local moment contributions

In anticipation of treating the bulk, periodic case, we rewrite
Eq. (4) by decomposing the position operator r into the
positions of the constituent atoms rα , relative to some arbitrary
origin, plus the distance from each atomic center, (r − rα).
The integral over all space then separates into a sum over the
atomic sites

∑
α and an integral around each atomic site

∫
as,

and Eq. (4) can be rewritten as

a = 1

3

∫
r · μ(r)d3r

= 1

3

∑
α

∫
as

[(r − rα) + rα]· μ(r)d3r

= 1

3

∑
α

[∫
as

(r − rα) · μ(r)d3r + rα ·
∫

as
μ(r)d3r

]

= 1

3

∑
α

[∫
as

(r − rα) · μ(r)d3r + rα · mα

]
, (8)

where the summation
∑

α is over all of the atoms α in the
system and mα is the local magnetic moment on the αth atom.

We see then that the magnetoelectric monopole can be
decomposed into two components: the first comes from the
magnetoelectric monopoles at the atomic sites, which arise
from the same magnetization density around the site that
simultaneously gives rise to the local dipole moment, and the
second is the magnetoelectric monopole arising from those
local dipole moments.

We call the first contribution aas for “atomic site,” and at
each site α, it is given by

aas
α = 1

3

∫
as

(r − rα).μ(r)d3r, (9)

where the atomic nucleus is at position rα and the integral
is over some localized region around the atomic nucleus; in
an electronic structure calculation, this can be chosen to be
the “atomic sphere” or the “pseudoatomic orbital” depending
on the details of the implementation and the integral can, in
principle, be evaluated over this finite region.

In practice, we calculate the atomic-site contributions to
the magnetoelectric monopole through expectation values of
spherical tensors using a generalization of the method used
previously to obtain inversion-even tensor moments in studies
of correlated d- or f -electron materials.15,16 For each atomic
site α, a local density matrix γα inside a site-centered sphere
is obtained from the electronic structure and expanded in
spherical harmonics and spinors. In the present work, we
use the augmented plane-wave plus local orbital (APW + lo)
method and these spheres are naturally chosen to be the
muffin-tin spheres. The density matrices are then further
expanded with respect to their behavior (either even or odd)
under space inversion i and time inversion θ :

γα =
1∑

ν=0

1∑
η=0

γ νη
α , θγ νη

α = (−1)νγ νη
α , iγ νη

α = (−1)ηγ νη
α .

(10)

FIG. 2. (Color online) Representation of (left to right) positive
and negative magnetoelectric monopoles, the z component of the
toroidal moment and the z2 component of the quadrupole moment.

For magnetoelectrically active multipole moments such as
monopoles, only the component that is odd in both space
inversion and time reversal that is γ 11

α , is relevant. In addition,
for convenience, we expand the density matrices in the Pauli
matrices and the identity matrix in spin space,

γ νη = 1

2

3∑
β=0

σβγ νηβ
α , γ νηβ

α = Sp σβγ νη, (11)

where Sp is the trace over the spin degree of freedom.
Now the magnetoelectric monopole moment can be written

in the form

aα = 1

2

3∑
β=1

Tr �(110)σβγ 11β
α . (12)

Here, the operator �(110) describes the coupling of two rank one
tensors, rα and mα , to a rank zero aα , and Tr is the trace over the
orbital degree of freedom. We note that the orbital contribution
to the magnetization density, μorb(r) ∝ r × p(r), ( p is the
momentum) makes no contribution by symmetry to the atomic-
site magnetoelectric monopoles since r · r × p is zero. This
can also be seen from the form of the operator required to
produce a space-odd term: a spin-independent scalar observ-
able can only be produced by a tensor operator of the form
�(000), but the latter is only nonzero for space-even operators.
Therefore the atomic-site magnetoelectric monopole arises
entirely from the spin component of the magnetization density.
In Fig. 2, we show the generic magnetization textures for
positive and negative atomic-site magnetoelectric monopoles,
as well as for completeness the z component of a toroidal
moment and the z2 component of the quadrupolar tensor. The
arrows represent the magnetization orientation on a sphere
surrounding an atomic site and the color indicates whether the
magnetization points outwards (green) or inwards (red).

Note that these atomic-site magnetoelectric monopoles can,
in principle, be measured by resonant x-ray spectroscopy,17

which has been used successfully to detect an atomic-site
toroidal moment.7,18 No unambiguous measurement of atomic
magnetoelectric monopoles has been made to date, however,
because a material has not yet been identified that meets
the stringent conditions required to achieve an observation
in the resonant x-ray measurement. We point out also that,
provided that the local magnetic site is not an inversion center,
the atomic magnetoelectric monopoles can be nonzero even
in a system with overall zero monopole moment; we will
explore some examples in Sec. IV. Such systems might be
described as “antimonopolar” and should show a q-dependent
magnetoelectric effect.

The second contribution to the magnetoelectric monopole,
which we write alm for “local moment,” arises from
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(c)(a) (b)

= +

FIG. 3. Representative arrangements of local magnetic moments
(shown by arrows) that have monopolar contributions. The arrange-
ments in (a) and (b) (point group 4m′) are purely monopolar and
have equal and opposite monopoles. (c) (point group m′m′) consists
of the sum of a monopolar contribution (of size half that of (b) and
a quadrupolar contribution; the decomposition is shown in the lower
panel.

representing the magnetization density by a distribution of
localized magnetic moments mα at the atomic sites:

alm = 1

3

∑
α

rα.mα. (13)

In systems such as insulating 3d transition metal oxides,
which have large localized magnetic moments that are spatially
separated by distances of a few angstroms, we expect this
contribution to be the dominant contribution to the total
magnetoelectric monopole.

Using Eq. (13), we can straightforwardly evaluate the
magnetoelectric monopoles of the arrangements of magnetic
moments shown in Fig. 3. Taking the ±y-oriented magnetic
moments to be spaced a distance d apart along the y direction,
and the ±x-oriented moments a distance d apart along x, then
the magnetoelectric monopoles of arrangements (a) and (b) in
Fig. 3 are a = − 2

3dm and + 2
3dm, respectively, where m is the

magnitude of each local magnetic dipole moment. Applying
Eq. (13) to the arrangement shown in (c) yields the value
+ 1

3dm; this can also be obtained by inspection by recognizing
that (c) consists of a magnetoelectric monopole with magnetic
moments at the same position of as in (b) but of half the
magnitude, plus a quadrupole, as shown in the lower panel of
Fig. 3.

The total magnetoelectric monopole resulting from these
two contributions is then

a = alm +
∑

α

aas
α , (14)

where the sum is over all the atomic sites.
In all the cases shown in Fig. 3, the net magnetization is

zero. There exists a complication, however, in the case where
the material for which the monopole is to be evaluated has a
net magnetic dipole: all multipoles in systems with nonzero
lower-order multipoles (the magnetic dipole in the case of the
magnetoelectric monopole) are dependent on the choice of
origin used to evaluate them. It is straightforward to see that
for systems with nonvanishing magnetic dipole moment, for a
change of origin defined by

r → r ′ = r + R0, (15)

the magnetoelectric monopole changes as

a → a′ = a + 1

3
R0.

∑
α

mα. (16)

It remains an open question in general, which we do not address
here, whether such origin dependence of the multipoles
is physically meaningful (see, for example, Ref. 19). One
practical approach is to always choose the center of mass of
the local magnetic moments as the origin; this is equivalent to
neglecting any uncompensated part of the magnetization and
retaining only the compensated part in the calculation of the
magnetoelectric monopole.4 Care must be taken, however, in
situations where a structural rearrangement occurs, to ensure
that a consistent choice of origin is maintained. Our method
for calculating the atomic-site monopoles through expectation
values of the spherical tensors provides another practical
approach to circumventing this origin dependence.

B. Bulk systems with periodic boundary conditions;
the problem of multivaluedness

Next, we turn to the case of a system with periodic
boundary conditions. It is often convenient to describe the
properties of a bulk crystalline solid in terms of a small
repeat unit (the unit cell), which is then replicated using
periodic boundary conditions to generate the infinite solid.
Many intensive quantities such as the magnetization, which
is defined to be the magnetic moment per unit volume, can
then be simply obtained as the value of the quantity in a
single unit cell divided by the unit cell volume. For the
case of the macroscopic magnetoelectric monopole per unit
volume—which we propose to call the monopolization by
analogy with magnetization, polarization, etc.—Eq. (4) is not
directly applicable to extended systems with periodic boundary
conditions, because for a general continuous magnetization
density μ(r), Eq. (4) evaluated over one unit cell will leads to
arbitrary values, depending on the particular choice of unit
cell used in the calculation. We note that this behavior is
distinct from the origin dependence discussed in Sec. III A
and persists even in the case when the net magnetization is
zero. In fact, the difficulties are exactly analogous to those
encountered in defining a macroscopic bulk toroidization,
and indeed reflect those involved in defining a macroscopic
bulk ferroelectric polarization, which were solved through
the introduction of the modern theory of polarization20–22. A
proposed solution in the case of the toroidization was described
in detail in Ref. 4. In this section we extend the description
to the case of the magnetoelectric monopole and address
the following questions. (1) How should the magnetoelectric
monopole density—the monopolization—of a bulk periodic
solid be formally defined? (2) What are the consequences of the
periodic boundary conditions within a bulk crystalline solid?

For simplicity, we develop the formalism for the case of
the monopolization coming from the local moment contri-
bution. We then define the local moment monopolization,
Alm = alm/V , where V is the volume of the system with
local moment magnetoelectric monopole alm. Then, for a
large finite system containing N identical unit cells each of
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volume 
,

Alm = 1

3N


∑
α

rα.mα (17)

= 1

3N


∑
n,i

(r i + Rn).mi . (18)

Here, r i are the positions of the magnetic moments, mi relative
to the same (arbitrary) point within each unit cell, Rn is a
lattice vector with index n, and we have used the fact that
the orientation of the magnetic moments is the same in each
unit cell. The summation over i indicates the summation over
all moments within a unit cell and that over n indicates the
summation over all unit cells. Expanding the scalar product,
we obtain

Alm = 1

3


∑
i

r i .mi + 1

3N


∑
n

Rn.
∑

i

mi

= 1

3


∑
i

r i .mi , (19)

using the fact that the sum over all lattice vectors contains
both Rn and −Rn, so that

∑
n Rn = 0. Thus the local moment

magnetoelectric monopole of a system of N unit cells is just
N times the magnetoelectric monopole evaluated for one unit
cell, and the corresponding monopolizations are identical.

In an infinite periodic solid, we have a freedom in choosing
the basis corresponding to the primitive unit cell of the crystal.
In particular, we can translate any atom of the basis by a lattice
vector Rn without changing the overall periodic arrangement.
However, such a translation of an atom by Rn leads to a change
in the local moment monopolization as follows:

�Alm
ni = 1

3

Rn · mi , (20)

where mi is the magnetic moment on the translated atom. The
freedom in choosing the basis corresponding to the primitive
unit cell thus leads to a multivaluedness of the monopolization
with respect to certain “increments” [defined by Eq. (20)] for
each magnetic sublattice i and lattice vector Rn.

This multivaluedness of the monopolization is reminiscent
of the modern theory of electric polarization,21–23 where
the polarization changes by eRn/
 when an elementary
charge e is translated by a lattice vector Rn. The resulting
multivaluedness has led to the concept of the “polarization
lattice” corresponding to a bulk periodic solid,23 with eRn/


called the “polarization quantum” if Rn is one of the three
primitive lattice vectors. An even closer analogy is provided
by the toroidization, which is multivalued with values spaced
by the toroidization increments 1

2

Rn × mi , corresponding to

translation of an elementary magnetic moment mi by a lattice
vector.4 Equation (20) suggests the existence of an analogous
“monopolization lattice,” with monopolization increments

1
3


Rn · mi , where Rn is any primitive lattice vector. Note that
the monopolization, and hence the monopolization increments
are scalar quantities, in contrast to the polarization and
toroidization, which are vectors. As a result the corresponding
monopolization lattice can become rather dense, particularly
in cases where the three lattice vectors are unequal but close in
size, and the spin moments are noncollinear and canted away
from the lattice vector directions.

2d

m-m
x

(a)

(b)

d

(d-λ)
x

m-m

λ

FIG. 4. (Color online) Calculation of the monopolization for two
different one-dimensional antiferromagnetic periodic arrangements
of magnetic moments. Our choice of unit cell is indicated by the
shaded area in each case. (a) A nonmonopolar state, which is
space-inversion symmetric with respect to each moment site. (b) A
monopolar state.

We illustrate the behavior and implications of the monop-
olization lattice next with a simple model one-dimensional
example.

C. A one-dimensional example

(a) The periodic nonmonopolar state. To illustrate some
consequences of the multivaluedness of the monopolization
in periodic systems described in the previous section and to
explore how to connect it to physical reality, we now consider
the example of a one-dimensional antiferromagnetic chain of
equally spaced magnetic moments as shown in Fig. 4(a). The
moments, with magnitude m = μB , are spaced a distance d

apart from each other along the x axis and are alternating in
orientation along ±x. Thus the unit cell length is 2d and there
are two oppositely oriented magnetic moments in each unit
cell. Since this configuration does not possess a macroscopic
magnetic dipole moment, the corresponding magnetoelectric
monopole moment is origin independent.

The arrangement of magnetic moments in Fig. 4(a) is space-
inversion symmetric with respect to each moment site and
thus cannot exhibit a macroscopic magnetoelectric monopole
moment. The local moment magnetoelectric monopole of
the single unit cell highlighted in Fig. 4(a), calculated using
Eq. (13), however, is identical to that calculated for the finite
moment configuration in Fig. 3(c), i.e., alm = 1

3dm, and the
corresponding monopolization, Alm = alm/
 = 1

3
dm
2d

= 1
3

μB

2
(since the “volume” 
 of the one-dimensional unit cell is
just its length 2d). Since the moments of magnitude μB

are oriented exactly parallel to the x axis, the elementary
monopolization increment in this case is �Alm = ± 1

3μB ,
which means that the monopolization of the unit cell is exactly
equal to one-half of the monopolization increment, and the
allowed monopolization values for the periodic arrangement
are An = ( 1

2 + n) 1
3μB , where n can be any integer number.

We see that in our example the allowed local moment
monopolization values form a one-dimensional lattice of
values, centrosymmetric around the origin. This is analogous
to the case of the electric polarization, where the polarization
lattice is invariant under all symmetry transformations of
the underlying crystal structure. In particular, polarization
lattices corresponding to centrosymmetric crystal structures
are inversion symmetric, which is achieved in lattices that
include either zero or the half quantum. We point out, however,
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that our example is a special case in which the local magnetic
moments are parallel to a lattice vector and correspond to
integer numbers of Bohr magnetons. Such a case can occur
in insulating collinear antiferromagnets in which the local
magnetic moments have no orbital contribution; an integer
number of electrons has an integer number of electronic
spins and therefore a spin magnetic moment which is an
integer number of Bohr magnetons. For general orientations
of the magnetic moments, however, and for moments that
contain also an orbital contribution, it is possible to generate
a noncentrosymmetric set of monopolization values even in
a nonmonopolar system. This feature of the formalism is
rather unsatisfactory and motivates future development and
implementation of a full Berry phase theory of the monop-
olization. We will show next, however, that only changes in
monopolization are experimentally accessible quantities, and
that these are still well defined even in this general case.

In the case of the electric polarization, it is now widely
recognized that only differences in the polarization lattices
between different configurations, such as between a cen-
trosymmetric nonpolar reference structure and a ferroelectric
polar crystal, are in fact measurable quantities. Since these
differences are the same for each point of the polarization
lattice they are well-defined quantities. Likewise in the case
of the toroidization, only differences in toroidization lattices
between, for example, different arrangements of magnetic
moments or different ionic positions are measurable.4 In the
next section, we show that in analogy with the cases of the
toroidization and electric polarization, only differences in local
moment monopolization, corresponding to two different bulk
configurations, are measurable quantities and correspond to
physical observables such as the difference in monopoliza-
tion between a ferromonopolar state and its nonmonopolar
paraphase. Such quantities can be obtained by monitoring the
change in monopolization on one arbitrarily chosen branch
within the allowed set of values, when transforming the
system from the initial to the final state along a well-defined
path.

(b) Monopolar state and changes in monopolization. In
order to obtain a nontrivial macroscopic monopolization the
system has to break both space and time inversion symmetry.
In the case of the one-dimensional antiferromagnetic chain,
this can be achieved by “moment pairing,” i.e., if the distances
between neighboring magnetic moments alternate as shown in
Fig. 4(b). Here, the magnetic moments of magnitude m = μB

are spaced alternately a distance of (1 − λ)d and (1 + λ)d
apart from each other along the x axis (−1 < λ < 1). The
nonmonopolar example above corresponds to λ = 0. Since
the unit cell size is the same as in the nonmonopolar case,
the elementary monopolization increment is again �Alm =
± 1

3μB . The monopolization of the unit cell indicated in
Fig. 4(b) is Alm = 1

3 (− λ
d

+ 1)μB

2 , so that the allowed values of
Alm for the full periodic arrangement are

Alm =
(

1

2
+ n

)
1

3

(
−λ

d
+ 1

)
μB. (21)

Figure 5 shows the allowed monopolization values as a
function of the displacement λ of the moments from their
positions in the centrosymmetric, nonmonopolar state.
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FIG. 5. (Color online) Allowed values of the monopolization for
the antiferromagnetic chain of Fig. 4 as a function of displacement λ

from the nontoroidal case (λ = 0). The cartoons at the bottom indicate
the corresponding positions of the magnetic moments within the unit
cell.

The change in monopolization between two configurations
with λ = λ1 and λ = λ2 for a certain branch n is given by

Alm
n (λ2) − Alm

n (λ1) = 1

3

λ2 − λ1

d

μB

2
, (22)

i.e., it is independent of the branch index n. In particular,
if the noncentrosymmetric distortion is inverted (λ2 = λ0,
λ1 = −λ0), the change in monopolization is 2Alm

s = 1
3

λ0μB

d

so that Alm
s = 1

3
λ0μB

2d
can be interpreted as the spontaneous

monopolization, again in analogy to the case of the electric
polarization, where the spontaneous polarization is given by
the branch-independent change in polarization compared to a
centrosymmetric reference structure.

Another possible way to alter the monopolization is by
changing the orientation of the magnetic moments instead of
changing their positions. In particular, we expect that a full
180◦ rotation of all magnetic moments, which is equivalent to
the operation of time reversal, should invert the macroscopic
“spontaneous monopolization” and should therefore lead to the
same change 2Alm

s as discussed above. If we allow the magnetic
moments to rotate out of the x direction, while preserving
the antiparallel alignment of the two basis moments, the
monopolization is given by

Alm
n (λ,α) =

(
1

2
+ n

)
1

3

(
−λ

d
+ 1

)
μB cos α, (23)

where α is the angle between the magnetic moments and
the x direction. Note here a difference from the case of the
toroidization—since the monopolization is a scalar, rotation
of the magnetic moments away from perfect alignment
reduces the absolute magnitude of the monopolization. In
contrast, in the toroidal case, a rotation could reduce the
toroidization along one axis while simultaneously increasing
it along another. Interestingly, in this example, the magnetic
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moment rotation, which reduces the monopolization induces
a toroidization, effectively converting the monopolar response
into a toroidal one through the moment reorientation. The
change in monopolization for a full 180◦ rotation of the
moments is thus

Alm
n (λ0,180◦) − Alm

n (λ0,0
◦)

= 2

(
1

2
+ n

)
1

3

(
−λ0

d
+ 1

)
μB, (24)

and apparently depends on the branch index n. However, if
one calculates the same change in monopolization for the
nonmonopolar state with d = 0, one obtains

Alm
n (0,180◦) − Alm

n (0◦) = −2

(
1

2
+ n

)
1

3
μB. (25)

Obviously, in this case, the corresponding change in macro-
scopic monopolization should be zero, since both the initial
and final states (and all intermediate states) correspond to a
nonmonopolar configuration and thus Alm

s = 0. If one subtracts
the improper change in Alm, Eq. (25), from the change in
monopolization calculated in Eq. (24), one obtains the proper
change in monopolization 2Alm

s = 1
3

λ0μB

d
, which is identical to

that obtained by inverting the noncentrosymmetric distortion
λ. Here, we use the terminology “proper” and “improper” in
analogy to the case of the proper and improper piezoelectric
response,24 where a similar branch dependence is caused by
volume changes of the unit cell, and the improper piezoelectric
response has to be subtracted appropriately.

Figure 6 shows the initial and final states for the two cases
where either the atoms carrying the moments are displaced,
or the magnetic moment directions are inverted. The two final
states are equivalent except for a translation of all moments
by half a unit cell along y, which due to Neumann’s principle,
is irrelevant for the macroscopic properties. The spontaneous
monopolization of the upper state in Fig. 6 is therefore the
same as for the lower state in the figure.

x

x

x
atoms displaced

moments reversed

initial state

FIG. 6. (Color online) Effect on the magnetic moment configura-
tion of Fig. 4(b) (middle panel) of a reversal of all magnetic moments
(lower panel) and of a reversal of the noncentrosymmetric distortion d

(upper panel). Note that the upper and lower final states are identical,
with the moments in the upper and lower panels translated by half a
unit cell relative to each other.

FIG. 7. (Color online) Structure of the lithium transition metal
phosphates. The 1–4 labeling of the transition metal atoms is
consistent with their labeling in Tables II and III.

IV. MONOPOLIZATIONS IN REAL MATERIALS—THE Li
TRANSITION-METAL PHOSPHATES

We now turn to a real materials example, and choose
the family of lithium transition metal phosphates, LiMPO4,
M = Mn, Fe, Co, Ni, as our model system. All of the
LiMPO4 compounds crystallize in the olivine structure with
the orthorhombic space group Pnma and the crystallographic
point group D2h.25–29 The structure is shown in Fig. 7, and
the lattice parameters and atomic coordinates, obtained from
first-principles calculations in this work and Refs. 30 and 31,
are given in Table I.

The transition metal cations occupy the sites with Wyckoff
positions 4c; these are surrounded by strongly distorted
oxygen octahedra and have local Cs = {e,i2y} symmetry. All
compounds have a transition to an antiferromagnetic state at
some tens of degrees of Kelvin. The resulting magnetic order
breaks the inversion symmetry in all cases and hence allows
for the linear magnetoelectric effect. Across the series, how-
ever, three distinct antiferromagnetic orderings emerge,28,32–35

TABLE I. a, b, and c lattice parameters and Wyckoff positions
for the lithium transition metal phosphates, LiMPO4, M = Mn, Fe,
Co, and Ni. All values were obtained by structural relaxation using
density functional theory within the LSDA+U method as described
in the text.

Mn Fe Co Ni

a (Å) 10.440 10.330 10.202 10.032
b/a 0.583 0.582 0.581 0.584
c/a 0.455 0.454 0.461 0.466
M 4c x 0.280 0.282 0.223 0.225
M 4c z 0.477 0.480 0.507 0.488
P 4c x 0.093 0.096 0.096 0.095
P 4c z −0.085 −0.072 −0.074 −0.076
O1 4c x 0.097 0.097 0.101 0.101
O1 4c z 0.237 0.254 0.248 0.250
O2 4c x 0.455 0.458 0.455 0.452
O2 4c z −0.292 −0.300 −0.193 −0.305
O3 8d x 0.171 0.168 0.168 0.170
O3 8d y 0.048 0.045 0.457 0.040
O3 8d z −0.218 −0.204 −0.212 −0.220
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TABLE II. Experimentally determined magnetic orderings for the
lithium transition metal phosphates. For simplicity we neglect small
cantings of the magnetic moments away from the easy axis that are
reported or known for many of the compounds.

Mn Fe / Co Ni

m1 (m, 0, 0) (0, m, 0) (0, 0, m)
m2 (−m, 0, 0) (0, −m, 0) (0, 0, −m)
m3 (−m, 0, 0) (0, −m, 0) (0, 0, −m)
m4 (m, 0, 0) (0, m, 0) (0, 0, m)

summarized in Table II. These different antiferromagnetic
orderings lead in turn to different magnetic symmetries and
different allowed monopolar contributions.

A. Symmetry analysis

In Table III, we show the character table of the D2h sym-
metry group and indicate which irreducible representations are
adopted by each possible collinear ordering of the transition
metal magnetic moments m along the cartesian axes, as well as
the symmetries of the possible magnetoelectric monopolar a,
toroidal t , and quadrupolar q orderings on the transition metal
sites.

In LiMnPO4, the easy axis is the a axis, and the magnetic
moments adopt a C-type antiferromagnetic ordering with order
parameter m1 − m2 − m3 + m4.34 The point group on the
Mn sites is m′m′m′, which belongs to the Au irreducible
representation of the D2h symmetry group. (This ordering
allows for a simultaneous A-type antiferromagnetic canting
along the c axis, which is negligible in our DFT calculations.
Note that a weak ferromagnetic canting that is not compatible
with the Pnma symmetry has also been reported;36 this we
also neglect.) We see from the line corresponding to the
Au irreducible representation in Table III that the ordering
of local M-site magnetoelectric monopole moments all with
the same sign also has Au symmetry, therefore LiMnPO4 is
ferromonopolar and supports a macroscopic monopolization.
Conversely, there is no net toroidal moment, with only
an antiferrotorodial ordering along the b direction allowed
on the Mn sites. This is consistent with the experimental
observation that the magnetoelectric response has only di-
agonal components.37 We note also that the z2 and x2 − y2

quadrupolar components have the same symmetry as the
magnetoelectric monopole; these quadrupolar contributions
are responsible for the inequality between the magnitudes of
the diagonal elements of the magnetoelectric tensor.

LiCoPO4 has been of particular recent interest because of
a report of the observation of ferrotoroidic domains using
nonlinear optical techniques.3 Both LiCoPO4 and LiFePO4

also adopt a C-type antiferromagnetic ordering, but in contrast
to LiMnPO4, both have their easy axis primarily along the b

axis.33,38 The point group on the transition metal sites is mmm′,
which corresponds to the B1u irreducible representation,
which we see from Table III disallows both a macroscopic
monopolization and any local monopolar contribution on
the transition metal sites. This symmetry allows, however,
a toroidal moment parallel to the c axis. As a result, the
magnetoelectric responses of both compounds are entirely
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off-diagonal,37,39 although αxy is not exactly equal to −αyx

(which would be the case for a purely toroidal response)
because a ferroquadrupolar qxy component is allowed with the
same symmetry as tz. (We note that recently it was found that
the magnetic moments in LiCoPO4 and LiFePO4 are rotated
slightly away from the b direction.32,40 Such a symmetry
lowering is not compatible with the Pnma space group and
requires an additional structural distortion that has not yet been
identified. We do not treat these further symmetry lowerings
here.)

Finally, we turn to the case of LiNiPO4, which again has
C-type AFM ordering, but this time with easy axis along
the c direction,35 so that the Ni sublattice has magnetic
point group mm′m and transforms according to the B2u

representation. (This symmetry also allows a small A-type
AFM canting of the magnetic moments along the a direction,
which has been reported35 and which we obtain in our density
functional calculations, which we do not include in our
subsequent analysis). While this symmetry does not allow
a net macroscopic monopolization, local magnetoelectric
monopoles are allowed on the Ni ions and must order with an
antimonopolar arrangement. A macroscopic toroidal moment
is again allowed, this time along the b direction, consistent with
the corresponding off-diagonal magnetoelectric effect.30,35,41

In this series, therefore, we find one example—LiMnPO4—
of a material with a net monopolization in which the atomic-
site magnetoelectric monopole moments on the transition
metal sites are aligned in a ferromonopolar arrangement. We
also find an example—LiNiPO4—which has no macroscopic
monopolization, but has a finite-q antimonopolar ordering on
the transition metal sites. In the remaining two compounds—
LiCoPO4 and LiFePO4—the macroscopic monopolization and
the atomic-site magnetoelectric monopoles on the transition
metal sites are both zero by symmetry. (Note that for LiCoPO4

this is the case only in the orthorhombic structure that
we consider here; the proposed lower symmetry monoclinic
structure32 would allow magnetoelectric monopoles on the
transition metal sites.) We summarize our symmetry analysis
in Table IV.

While it is at first sight tempting to describe LiCoPO4

and LiFePO4 as nonmonopolar, this is not strictly correct,
as we discuss next. First, we note that in the LiMPO4 family,
the P atom and the O1 and O2 atoms also occupy 4c sites,
and so they follow the same symmetry transformations as

TABLE IV. Summary of the measured primary (C-type) magnetic
ordering, the resulting additional magnetic orderings, toroidal, and
magnetoelectric monopole moments, and components of the magne-
tolectric tensor (ME), obtained by symmetry analysis for the LiMPO4

series.

magnetic ME
label M order tensor toroidization monopolization

Au Mn Cx , Az

(
αxx

αyy

αzz

)
(0,0,0) A

B1u Co, Fe Cy

(
αxy

αyx

)
(0,0,Tz) 0

B2u Ni Cz, Ax

(
αxz

αzx

)
(0,Ty,0) 0

the transition metal ions. This means that for LiMnPO4 and
LiNiPO4 local magnetoelectric monopoles are allowed on
these atoms. Of the remaining sites, the 4a of Li have only
i as a symmetry operation, and the 8d sites of the O3 have no
site symmetry. In Table III, we also list the symmetries and
possible magnetoelectric monopole orderings of the 4a and
8d sites. We find that for the A1u irreducible representation of
LiMnPO4, the magnetoelectric monopoles on Li and O3 have
the same ferromonopolar ordering as the Mn sites. Likewise,
for LiNiPO4, in which the Ni sites have antiferromonopolar
ordering, an antiferromonopolar ordering of the Li and O3

magnetoelectric monopoles is also found. Most notably, for
LiFePO4 and LiCoPO4, which have non-monopolar transition
metal 4b sites, antiferromagnetically ordered magnetoelectric
monopoles are allowed on the 4a and 8d sites. In the next
section, we use first-principles density functional theory to
calculate the magnitudes of these various contributions.

B. Density functional calculations of atomic-site
magnetoelectric monopoles and macroscopic

monopolizations

Our calculations were done using the local spin density
approximation with an additional Hubbard U correction on the
transition metal sites (the LSDA+U method). We took values
of U = 5 eV and J = 0.75 eV for all systems; these values
correctly reproduce the experimentally reported magnetic
orderings and anisotropies. For structural optimizations, we
used the Vienna ab initio simulation package (VASP)42 with
a plane-wave basis set and projector augmented wave43

potentials. Our energy cutoff and k-point grid were 500 eV and
2 × 2 × 4, respectively. We used default VASP PAW potentials
with the following electrons in the valence: Li (1s,2s), O
(2s,2p), P (3s,3p), Co (3d,4s), Mn, Fe, and Ni (3p,3d,4s).
Structural relaxations were performed in the absence of spin-
orbit coupling. For the magnetoelectric monopole calculations,
we used the structures obtained form the VASP code, then
used the linearized augmented plane wave (LAPW) method
as implemented in the ELK code44 with spin-orbit coupling
included to calculate the charge and spin density. We used a
basis set of lmax(apw) = 10, a 9 × 5 × 5 k-point sampling of the
Brillouin zone and took the product of the muffin tin radius
(3.780, 3.213, 2.986, and 2.381 Å for the transition metal, Li,
P, and O, respectively) and the maximum reciprocal lattice
vector to be 7.5. To calculate the atomic-site magnetoelectric
monopoles (aas), we decomposed the density matrix into tensor
moments as described in Sec. III.16 For space-odd tensor
moments, ρlm,l′m′ only contributes for l − l′ odd, and in our
calculations, we evaluated the d − p matrix elements for the
transition metal atoms and the p − s matrix elements for the
Li, P, and O atoms.

In Table V, we report our calculated local atomic-site
magnetoelectric monopoles aas, for the series of transition
metal phosphates, as well as the local moment contribution alm,
and the monopolizations normalized to the unit volume, A. As
expected, we find that the sum of the atomic-site monopoles, as
well as the local moment contribution and the monopolization
are zero for all cases except the ferromonopolar LiMnPO4.

The first thing to note is that, in the ferromonopolar case
of LiMnPO4, the local moment magnetoelectric monopole is
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TABLE V. Calculated atomic-site magnetoelectric monopoles,
transition metal spin- and orbital- local magnetic moments, local mo-
ment magnetoelectric monopoles, and macroscopic monopolizations
for the Li transition metal phosphates.

aas (×10−3 μBÅ) Mn Fe Co Ni

M 1.94 0.00 0.00 0.09
Li 0.06 0.03 0.04 0.01
P 3.20 0.00 0.00 0.49
O1 −7.68 0.00 0.00 −3.14
O2 7.14 0.00 0.00 4.10
O3 −1.26 −6.02 −6.74 −7.63
mspin (μB ) 4.26 3.42 2.56 1.62
morbital (μB ) −0.01 0.17 0.23 0.14∑

aas (×10−3 μBÅ) 8.52 0.00 0.00 0.00
alm (×10−3 μBÅ) 1778.17 0.00 0.00 0.00
Alm (×10−3μB/Å2) 5.89 0.00 0.00 0.00
A (×10−3μB/Å2) 5.92 0.00 0.00 0.00

as expected considerably larger—by around three orders of
magnitude—than the atomic-site magnetoelectric monopoles.
The value of the local moment magnetoelectric monopole
in one four-formula unit cell is 2.09 μBÅ, whereas the
local atomic-site magnetoelectric monopoles are all around
10−3μBÅ. Even when summed over all the atomic sites, the
contribution from the atomic-site magnetoelectric monopoles
is still only 8.52 × 10−3μBÅ; it is so small in part because
of cancellations between site monopoles of different sign.
The macroscopic monopolization A, which is the total mag-
netoelectric monopole per unit volume, then derives almost
entirely from the local moment contribution. We obtain a
value of A = 6.95 × 10−3μB/Å2 modulo the monopolization
increment of 11.54 × 10−3μB/Å2. Note that since we treat the
magnetic moments as collinear along a lattice vector, there is
just one monopolization increment.

For the other compounds, a net monopolization is forbidden
by symmetry, and so the local moment magnetoelectric
monopole and the total monopolization are both formally zero.
We find, however, nonzero values for those atomic-site mag-
netoelectric monopoles that are allowed by symmetry, always
with the appropriate symmetry-allowed antiferromonopolar
ordering. Particularly interestingly, we find that when atomic-
site magnetoelectric monopoles are symmetry allowed on the
P and O atoms, they are comparable to or larger than the values
on the transition metals. The relative sizes of the atomic-site
magnetoelectric monopoles can be understood from inspection
of the magnetization density. In Fig. 8, we show the isosurface
of our calculated magnetization density at 0.00125 μB/Å3 for
LiNiPO4, with blue and red surfaces indicating positive and
negative density, as well as a slice through the magnetization
density coinciding with the Ni site positions. The small
deviation from a perfectly spherical distribution around the
Ni atom is indicative of the monopolar and other nondipolar
multipolar contributions. It is clear that the magnetization
density around the oxygen atoms, while smaller in magnitude,
is more nonspherical than that around Ni. In particular, the
magnetization density changes sign at the O3 sites, indicating a
highly nonspherical magnetization density, which is consistent
with their having the largest atomic-site magnetoelectric

FIG. 8. (Color online) Calculated magnetization density isosur-
face for LiNiPO4. The blue and red surfaces correspond to positive
or negative density, respectively.

monopoles. The atomic-site magnetoelectric monopole on
Li, although nonzero by symmetry for every case, is always
small, consistent with the highly ionic nature of the Li+ ion;
since the charge density around the Li ions is close to zero,
the magnetization density is too (see Fig. 8). Finally, we
note that the atomic-site magnetoelectric monopole on Ni in
LiNiPO4 is one order of magnitude smaller than that on Mn
in LiMnPO4, even though its local magnetic dipole moment
is only ∼2.5 times smaller. Our initial computer experiments
suggest that this is partly a result of the different magnetic
anisotropy in the two cases, as a calculation with the Ni
moments constrained to have the same orientation as those of
Mn in LiMnPO4 yields increased atomic-site magnetoelectric
monopoles. A detailed study of the factors that determine the
magnitudes of atomic-site magnetoelectric monopoles will be
the subject of future work.

V. MULTIFERROIC FREE ENERGY WITH
MAGNETOELECTRIC MONOPOLE CONTRIBUTIONS

As stated above, from a macroscopic symmetry point of
view, the symmetries that allow for a macroscopic monopoliza-
tion are identical with that allowing for a diagonal component
of the linear magnetoelectric effect tensor. In this section,
we develop the relationship between these two quantities by
analyzing the following free energy expression:

U = 1

2ε
P 2 − P · E + 1

2χ
M2 − M · H

+1

2
βA2 + 1

4
γA4 + cAP · M, (26)

where ε and χ are the electric and magnetic susceptibil-
ities, β and γ are temperature-dependent coefficients, and
c determines the strength of the magnetoelectric coupling.
(Note that, in general, ε and χ are tensor quantities but
for simplicity, we do not write out the full tensor notation
here.) This is the simplest possible free energy expression
that can simultaneously describe (i) a phase transition from
a paramonopolar (A = 0) into a ferromonopolar phase (A �=
0), (ii) the coupling of the electric polarization P and the
magnetization M to the electric field E and the magnetic
field H , respectively, and (iii) a coupling between the electric
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polarization, the magnetization, and the monopolization. Note
that only the magnetization and the polarization couple to
H and E; the monopolization, in general, does not couple
to any homogeneous external fields, in agreement with the
fundamental definitions discussed in Sec. II. The trilinear
form of the magnetoelectric coupling term in Eq. (26) is the
lowest possible order that is compatible with the overall space
and time reversal symmetries. Since our purpose here is to
discuss the new features arising from this trilinear coupling,
we leave for future work the analysis of gradient terms in the
free energy that would be required to describe for example
variations in monopolization, magnetization, or polarization
at domain walls. The equilibrium values for P and M can be
obtained by minimizing Eq. (26). This leads to

P = ε(E − cAM) (27)

and

M = χ (H − cAP). (28)

If one inserts Eq. (28) into Eq. (27), one obtains (to leading
order in A)

P = ε(E − χcAH). (29)

The last term in Eq. (29) is a symmetric linear magnetoelectric
effect proportional to the monopolization. Thus the presence
of the trilinear coupling term between monopolization, mag-
netization, and polarization in Eq. (26) gives rise to a diagonal
magnetoelectric effect P = αH in the ferromonopolar phase,
with contributions to the diagonal elements of the magne-
toelectric tensor equal to εχcA. (Note that an off-diagonal
magnetoelectric effect is obtained from a trilinear coupling
between toroidization, magnetization and polarization, as
discussed in Ref. 4.)

Conversely, the presence of a monopolar contribution can
be inferred from the existence of a diagonal linear magneto-
electric response, the magnitude of which is determined by the
product of the dielectric susceptibility, magnetic permeability,
monopolization, and the strength of the coupling between
A, P , and M. If the linear magnetoelectric response is
diagonal and isotropic, then there can be no quadrupolar
contributions and the response arises entirely from monopolar
contributions. We see also from Eq. (29) that in the case of
antiferromonopolar ordering, a homogeneous magnetic field
will induce a finite-q polarization. Such a relationship could
be used in the case of q = π/a, to provide a more fun-
damental definition of an antiferroelectric in simultaneously
antiferromonopolar systems, than the current unsatisfactory
working definition based on the observation of double-loop
hysteresis. Finally, we mention that an additional interesting
consequence of the relationship between the monopolization
and the diagonal magnetoelectric effect is the induction of
magnetoelectric monopoles by electric charge. This has been
discussed previously in the context of axion electrodynamics45

and is currently being revisited in the context of topological
insulators.46

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

In summary, we have presented a theoretical analysis
of magnetoelectric monopoles in bulk periodic solids. We

introduced the term “monopolization” to describe the mag-
netoelectric monopole moment per unit volume and consid-
ered two contributions, one arising from the local variation
in magnetization density around the atom and the second
from the distribution of localized magnetic dipole moments
throughout the unit cell. We found that the latter dominates
the total monopolization in transition metal compounds with
ferromonopolar ordering. We showed that, for ferromonopolar
materials, periodic boundary conditions lead to a multivalued-
ness of the monopolization, suggesting that only differences
in monopolization are well-defined observable macroscopic
quantities. We found also that care must be taken in evaluating
such monopolization differences: for example, in the example
of the distorted one-dimensional antiferromagnetic chain
discussed in Sec. III C, the change in monopolization due
to a structural distortion can be calculated straightforwardly,
whereas in the case of a magnetic moment reversal, one has to
subtract the improper monopolization change that is caused by
the corresponding change in the monopolization increment.

Quantitative measurements of monopolizations are chal-
lenging. The atomic-site monopolization can in principle
be detected using resonant x-ray scattering,47 although the
experimental constraints are rather rigorous and a suitable
material for such an experiment has not yet been identified.
In particular, for most space group symmetries, the sites that
allow an atomic-site magnetoelectric monopole also allow an
atomic-site quadrupolar component, and disentangling the two
contributions is not straightforward.18 This problem can be
circumvented by selecting materials with an isotropic diagonal
magnetoelectric response,48 however, few such materials
have been identified to date. Even more problematic is the
question of how to measure the macroscopic local moment
monopolization. According to the fundamental definition of
the magnetoelectric monopole moment, this is, in principle,
possible by measuring the effect on a sample of a diverging
magnetic field, however such a field is not accessible. It is
possible that earlier observations of a quadrupolar magnetic
field around a spherical sample of the prototypical diagonal
magnetoelectric Cr2O3

49,50 also incorporate a monopolar
contribution; the theory underlying these measurements will be
revisited in future work.51 It has also been recently proposed
that signatures of monopolar behavior will manifest in the
transport properties of diagonal magnetoelectrics.52

An open question for ferrotoroidic and ferromonopolar
materials is whether the toroidal moment or magnetoelectric
monopole moment respectively can be a primary order parame-
ter or is always secondary to an antiferromagnetic or structural
ordering. Currently, no case has been identified even theoreti-
cally in which the monopolization is nonzero while there is no
magnetic ordering, although it is possible that some “hidden-
order parameter” materials that are of current interest might
prove to fall into this class.8 The fact that the magnetoelectric
monopole order parameter is a scalar might be helpful in dis-
tinguishing responses that arise from the antiferromagnetism
from those of the magnetoelectric monopole, in cases where
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the antiferromagnetic order parameter is a vector. Within the
class of secondary ferromonopolar materials, it is also an open
question whether there is a fundamental difference between
the case in which the primary order parameter is the AFM
ordering, and that where it is a structural phase transition from
a centrosymmetric antiferromagnet (which does not allow
monopolization) to a noncentrosymmetric monopolar state.

Finally, we mention that it has been argued that ferro-
toroidicity is a key concept for fitting all forms of ferroic
order in a simple fundamental scheme based on the different
transformation properties of the corresponding order parame-
ters with respect to time and space inversion (see Refs. 1–3, in
particular Fig. 2 in Ref. 3). It is clear from a symmetry point of
view, that the monopolization could play a similar role, since a
ferromonopolar material also breaks both space-inversion and
time-reversal symmetries. As a result, the nonlinear optical
techniques used in Ref. 3 to identify ferrotoroidic ordering are
sensitive also to the monopolar symmetry breaking, and could
provide indirect evidence for the presence of monopolization.
In addition, the four fundamental forms of ferroic order,
with order parameters transforming according to the four
different representations of the “parity group” generated by

the two operations of time and space reversal53 could be
chosen to be ferroelasticity, ferroelectricity, ferromagnetism,
and ferromonopolicity (rather than ferrotoroidicity). Whether
the scalar nature of the magnetoelectric monopole, compared
with the vector nature of the toroidal moment, makes this
choice more or less appropriate is an open question.
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26R. E. Newnham and M. J. Redman, J. Am. Chem. Soc. 48, 547

(1965).
27S. Geller and J. L. Durand, Acta Cryst. 13, 325 (1960).
28R. P. Santoro and R. E. Newnham, Acta Cryst. 22, 344 (1967).
29I. Abrahams and K. S. Easson, Acta Crystallogr., Sect. C: Cryst.

Struct. Commun. 49, 925 (1993).
30E. Bousquet, N. A. Spaldin, and K. T. Delaney, Phys. Rev. Lett.

106, 107202 (2011).
31A. Scaramucci, E. Bousquet, M. Fechner, M. Mostovoy, and N. A.

Spaldin, Phys. Rev. Lett. 109, 197203 (2012).
32D. Vaknin, J. L. Zarestky, L. L. Miller, J.-P. Rivera, and H. Schmid,

Phys. Rev. B 65, 224414 (2002).
33G. Liang, K. Park, J. Li, R. E. Benson, D. Vaknin, J. T. Markert,

and M. C. Croft, Phys. Rev. B 77, 064414 (2008).
34R. Toft-Petersen, N. H. Andersen, H. Li, J. Li, W. Tian, S. L. Bud’ko,

T. B. S. Jensen, C. Niedermayer, M. Laver, O. Zaharko et al., Phys.
Rev. B 85, 224415 (2012).

35T. Jensen, N. Christensen, M. Kenzelmann, H. Rønnow,
C. Niedermayer, N. Andersen, K. Lefmann, J. Schefer, M. von
Zimmermann, J. Li et al., Phys. Rev. B 79, 092412 (2009).
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