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Analysis of magnetic neutron-scattering data of two-phase ferromagnets
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We have analyzed magnetic-field-dependent small-angle neutron scattering (SANS) data of soft magnetic
two-phase nanocomposite ferromagnets in terms of a recent micromagnetic theory for the magnetic SANS
cross section [Honecker and Michels, Phys. Rev. B 87, 224426 (2013)]. The approach yields a value for the
average exchange-stiffness constant and provides the Fourier coefficients of the magnetic anisotropy field and
the magnetostatic field, which is related to jumps of the magnetization at internal interfaces.
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I. INTRODUCTION

Progress in the field of nanomagnetism1 relies on the
continuous development and improvement of observational
(microscopy and scattering) techniques. For instance, ad-
vances in spin-polarized scanning tunneling microscopy,
electron microscopy and holography, Kerr microscopy, and
synchrotron-based x-ray techniques such as x-ray magnetic
circular dichroism allow one to resolve ever finer details of the
magnetic microstructure of materials, with a spatial resolution
that ranges from macroscopic dimensions down to the atomic
scale (see, e.g., Ref. 2 and references therein).

The technique of neutron scattering is of particular impor-
tance for magnetism investigations, since it provides access to
the structure and dynamics of magnetic materials on a wide
range of length and time scales.3 Moreover, in contrast to
electrons or light, neutrons are able to penetrate deeply into
matter and, thus, enable the study of bulk properties.

Magnetic small-angle neutron scattering (SANS) measures
the diffuse scattering along the forward direction which arises
from nanoscale variations in the magnitude and orientation
of the magnetization vector field M(r).4–7 The measurable
quantity in a magnetic SANS experiment—the (energy-
integrated) macroscopic differential scattering cross section
d�/d�—depends on the Fourier coefficients of M(r). These
Fourier coefficients M̃(q) depend in a complicated manner
on the magnetic interactions, the underlying microstructure
(e.g., particle-size distribution and crystallographic texture),
and on the applied magnetic field. The continuum theory
of micromagnetics8–10 provides the proper framework for
computing d�/d�.11–13

In a recent paper14 we have derived closed-form expressions
for the micromagnetic SANS cross section of two-phase
particle-matrix-type bulk ferromagnets. Prototypical examples
for this class of materials are hard and soft magnetic nanocom-
posite magnets, which consist of a dispersion of crystalline
nanoparticles in a (crystalline or amorphous) magnetic matrix.
Due to their technological relevance, e.g., as integral compo-
nents in electronics devices or motors, these materials are the
subject of an intense worldwide research effort.15,16 From the
micromagnetic point of view, due to the change of the materials
parameters (exchange and anisotropy constants, saturation

magnetization), the internal interfaces cause a significant
perturbation of the magnetization distribution. In fact, previous
magnetization and electron-holography studies17–20 have dis-
cussed the effect of magnetostatic interactions in such samples,
and SANS experiments21–23 have indicated that jumps in the
value of the saturation magnetization at the particle-matrix
interface represent a dominating source of spin disorder.

It is the aim of this communication to test the previously
published theory for the magnetic SANS cross section of
two-phase nanocomposites (Ref. 14) against experimental
data and to determine quantitatively the magnetic-interaction
parameters; in particular, the exchange constant and the
strength and spatial structure of the magnetic anisotropy and
magnetostatic field. For this purpose, we have analyzed ex-
isting magnetic-field-dependent neutron data of soft magnetic
nanocomposites from the Nanoperm family of alloys.21,22,24

The microstructure of these materials consists of a dispersion
of bcc iron nanoparticles in an amorphous magnetic matrix.15

The particular alloys under study have a nominal compo-
sition of Fe89Zr7B3Cu (particle size: 12 ± 2 nm; crystalline
volume fraction: ∼40%; saturation magnetization: 1.26 T) and
(Fe0.985Co0.015)90Zr7B3 (particle size: 15 ± 2 nm; crystalline
volume fraction: ∼65%; saturation magnetization: 1.64 T);
the addition of a small amount of Co results in a vanishing
magnetostriction.25 For more information on sample synthesis,
characterization, and on the SANS experiments, we refer to
Refs. 15, 21, 22, 24, and 25.

II. SANS THEORY

For the scattering geometry where the applied magnetic
field H0 ‖ ez is perpendicular to the wave vector k0 of the
incoming neutron beam (see Fig. 1), the elastic (unpolarized)
SANS cross section d�/d� at scattering vector q can be
written as6

d�

d�
(q) = 8π3

V
b2

H

( |Ñ |2
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FIG. 1. (Color online) Sketch of the scattering geometry.

where V is the scattering volume, bH = 2.9 × 108 A−1m−1,
Ñ (q) and M̃(q) = [M̃x(q),M̃y(q),M̃z(q)] denote, respectively,
the Fourier coefficients of the nuclear scattering-length density
and of the magnetization M(x) = [Mx(x),My(x),Mz(x)], and
θ represents the angle between H0 and q ∼= q (0, sin θ, cos θ );
c∗ is a quantity complex-conjugated to c.

As shown in Ref. 14, near magnetic saturation and for a
two-phase particle-matrix-type ferromagnet, d�/d� can be
evaluated by means of micromagnetic theory. In particular,

d�

d�
(q) = d�res
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(q) + d�M
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where
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represents the (nuclear and magnetic) residual SANS cross
section, which is measured at complete magnetic saturation
(infinite field), and

d�M

d�
(q) = SH (q) RH (q,θ,Hi) + SM (q) RM (q,θ,Hi) (4)

is the spin-misalignment SANS cross section. The mag-
netic scattering due to transversal spin components, with
related Fourier amplitudes M̃x(q) and M̃y(q), is contained in
d�M/d�, which decomposes into a contribution SH × RH

due to perturbing magnetic anisotropy fields and a part
SM × RM related to magnetostatic fields. The micromagnetic
SANS theory considers a uniform exchange interaction and a
random distribution of magnetic easy axes, but takes explicitly
into account variations in the magnitude of the magnetization
(via the function SM , see below).

The anisotropy-field scattering function

SH (q) = 8π3

V
b2

H |h|2 (5)

depends on the Fourier coefficient h(q) of the magnetic
anisotropy field, whereas the scattering function of the lon-
gitudinal magnetization

SM (q) = 8π3

V
b2

H |M̃z|2 (6)

provides information on the magnitude �M ∝ M̃z of the
magnetization jump at internal (particle-matrix) interfaces.
The corresponding (dimensionless) micromagnetic response
functions can be expressed as

RH (q,θ,Hi) = p2

2

(
1 + cos2 θ

(1 + p sin2 θ )2

)
(7)

and

RM (q,θ,Hi) = p2 sin2 θ cos4 θ

(1 + p sin2 θ )2
+ 2p sin2 θ cos2 θ

1 + p sin2 θ
, (8)

where p(q,Hi) = Ms/Heff and θ represents the angle between
H0 and q ∼= q(0, sin θ, cos θ ). The effective magnetic field
Heff(q,Hi) = Hi(1 + l2

Hq2) depends on the internal magnetic
field Hi and on the exchange length lH (Hi) = √

2A/(μ0MsHi)
(Ms : saturation magnetization; A: exchange-stiffness param-
eter; μ0 = 4π10−7 Tm/A). The particular θ dependence of
the transversal magnetization Fourier coefficients, Eqs. (15)
and (16) in Ref. 14, and, hence, of RH and RM is essentially
a consequence of the magnetodipolar interaction. Depending
on the values of q and Hi , a variety of angular anisotropies
may be seen on a two-dimensional position-sensitive detector
(compare also Fig. 11 in Ref. 13).

When the functions Ñ , M̃z, and h depend only on the
magnitude q of the scattering vector, one can perform an
azimuthal average of Eq. (2). The assumption that M̃z is
isotropic is supported by experiment26 and by micromagnetic
simulations.12 The Fourier coefficient h describes the spatial
distribution (and magnitude) of magnetic anisotropy fields in
the sample, and we believe that the assumption of isotropy
is justified for the polycrystalline magnetic materials under
study. The resulting expressions for the response functions
then read

RH (q,Hi) = p2

4

(
2 + 1√

1 + p

)
(9)

and

RM (q,Hi) =
√

1 + p − 1

2
, (10)

so that the azimuthally-averaged total nuclear and magnetic
SANS cross section can be written as

d�

d�
(q) = d�res

d�
(q) + SH (q) RH (q,Hi) + SM (q) RM (q,Hi).

(11)

FIG. 2. (Color online) Illustration of the neutron-data analysis
procedure according to Eq. (11). The total d�/d� (•) at q� =
0.114 nm−1 is plotted versus the response functions RH and RM at
A = 4.7 pJ/m and experimental field values (in mT) of 1270, 312,
103, 61, 42, 33. The plane represents a fit to Eq. (11). The intercept
of the plane with the d�/d� axis provides the residual SANS cross
section d�res/d�, while SH and SM are obtained from the slopes of
the plane (slopes of the thick black and red lines).
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FIG. 3. (Color online) Qualitative comparison between experiment, analytical theory, and numerical micromagnetic simulations. Upper
row: Experimental spin-misalignment SANS cross sections d�M/d� of Fe89Zr7B3Cu (Ref. 21) in the plane of the two-dimensional detector
at selected applied magnetic fields (see insets). The d�M/d� were obtained by subtracting the scattering at a saturating field of 1994 mT. H0

is horizontal. Middle row: Prediction by the micromagnetic theory for d�M/d�, Eq. (4), at the same field values as above. For both M̃z(qR)
and h(qR) we have used the form factor of the sphere with a radius of R = 6 nm. Furthermore, the following materials parameters were used:
A = 3.1 pJ/m; μ0Ms = 1.26 T; μ0Hp = 0.01 T; μ0�M = 0.05 T; this particular choice of parameters is motivated by the outcome of our
data analysis (see below). Lower row: Results of full-scale three-dimensional micromagnetic simulations for d�M/d� (Refs. 11–13). Linear
color scale is used in all subfigures. For each data set, we have, respectively, normalized d�M/d� to its highest value at the lowest field of
45 mT. Yellow color corresponds to “high” d�M/d� and blue color to “low” values of d�M/d�.

For given values of the materials parameters A and Ms ,
the numerical values of both response functions are known
at each value of q and Hi . Equation (11) is linear in both
RH and RM , with a priori unknown functions d�res/d�,
SH and SM . By plotting at a particular q = q� the values
of d�/d� measured at several Hi versus RH (q�,Hi,A) and
RM (q�,Hi,A), one can obtain the values of d�res/d�, SH and

SM at q = q� by (weighted) least-squares plane fits (see Fig. 2).
Treating the exchange-stiffness constant in the expression
for Heff as an adjustable parameter allows one to obtain
information on this quantity. We note that in order to obtain a
best-fit value for A from experimental field-dependent SANS
data, it is not necessary that the data is available in absolute
units.
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FIG. 4. (Color online) Azimuthally-averaged d�/d� of (a) Fe89Zr7B3Cu (Ref. 21) and (b) (Fe0.985Co0.015)90Zr7B3 (Ref. 24) at selected
applied magnetic fields (log-log scale). Field values (in mT) from bottom to top: (a) 1994, 321, 163, 85, 45; (b) 1270, 312, 103, 61, 33. Solid
lines in (a) and (b): Fit to the micromagnetic theory, Eq. (11); the solid lines connect the computed d�/d� at each value of q and Hi . (◦)
Residual scattering cross sections d�res/d�. The insets depict the respective (reduced) weighted mean-square deviation between experiment
and fit, χ 2/ν, as a function of the exchange-stiffness constant A.

III. RESULTS AND DISCUSSION

Figure 3 provides a qualitative comparison between experi-
ment, analytical theory, and numerical micromagnetic simula-
tions for the field dependence of the spin-misalignment SANS
cross section d�M/d�.27 The purpose of this figure is to
demonstrate that the experimental anisotropy (θ dependence)
of d�M/d� (upper row in Fig. 3) can be well reproduced
by the theory. At the largest fields, one observes the so-called
clover-leaf anisotropy with maxima in d�M/d� roughly along
the diagonals of the detector. Clearly, this feature is due to
the term SM × RM in d�M/d� [compare Eq. (8)]. Reducing
the field results in the emergence of a scattering pattern that
is more of a cos2 θ -type (with maxima along the horizontal
direction). The observed transition in the experimental data
is qualitatively reproduced by the analytical micromagnetic
theory (middle row, compare also Figs. 2 and 3 in Ref. 14), and
by the results of full-scale three-dimensional micromagnetic
simulations for d�M/d� (lower row). For further details
on the micromagnetic simulation methodology, we refer the
reader to Refs. 11–13.

The observation that the anisotropy in the experimental
163 mT data is not as clearly visible as in the other two
data sets is related to the fact that (i) both analytical theory
and micromagnetic simulations do not contain instrumental
smearing effects (in contrast to the experimental data), and
that (ii) the displayed difference-intensity data was obtained
by subtracting the scattering at the highest field (∼2 T), which
may not be sufficient to completely saturate the sample. By
contrast, in the theory and the simulations the scattering at sat-
uration can be obtained precisely and the subtraction procedure
yields the pure spin-misalignment scattering cross section.
Furthermore, we note that for the sake of a rough qualitative
comparison (visualization), we have used in the analytical
theory the simple sphere form factor for both M̃z(qR) and
h(qR). Spin canting, which is known to be of relevance in

nanoparticles,28 may be modeled, e.g., via a core-shell form
factor. Likewise, in view of the large particle volume fraction
of both samples, a structure factor may also be included, but we
believe that this will not contribute significantly to obtaining
a more detailed understanding of the field and θ dependence
of d�M/d�, since this rather affects the q dependence of
d�M/d�, which is analyzed in the following.

The azimuthally-averaged field-dependent SANS cross
sections of both Nanoperm samples along with the fits to the
micromagnetic theory [Eq. (11), solid lines] are displayed in
Figs. 4(a) and 4(b). It is seen that for both samples the entire
(q,H ) dependence of d�/d� can be excellently described
by the micromagnetic prediction. As expected, both residual
SANS cross sections d�res/d� (◦) are smaller than the
respective total d�/d�, supporting the notion of dominant
spin-misalignment scattering in these types of materials. From
the fit of the entire (q,H ) data set to Eq. (11) one obtains
values for the volume-averaged exchange-stiffness constants
[compare insets in Figs. 4(a) and 4(b)]. We obtain A =
3.1 ± 0.1 pJ/m for the Co-free alloy and A = 4.7 ± 0.9 pJ/m
for the zero-magnetostriction Nanoperm sample.

Since jumps in A have not been taken into account in our
micromagnetic SANS theory, the determined A values repre-
sent mean values, averaged over crystalline and amorphous
regions within the sample. The thickness δ of the intergranular
amorphous layer between the iron nanoparticles can be roughly
estimated by29 δ = D(x−1/3

C − 1), where D is the average
particle size and xC denotes the crystalline volume fraction.
For Fe89Zr7B3Cu with D = 12 nm and xC = 40% we obtain
δ ∼= 4 nm, whereas δ ∼= 2 nm for (Fe0.985Co0.015)90Zr7B3 with
D = 15 nm and xC = 65%. Since one may expect that the
effective exchange stiffness is governed by the weakest link
in the bcc-amorphous-bcc coupling chain,15,30 the above
determined experimental values for A reflect qualitatively the
trend in δ (and hence in xC) between the two samples.
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FIG. 5. (Color online) Best-fit results for the scattering function of the anisotropy field SH = 8π 3V −1b2
H |h(q)|2 and for the scattering

function of the longitudinal magnetization SM = 8π 3V −1b2
H |M̃z(q)|2 of (a) Fe89Zr7B3Cu and (b) (Fe0.985Co0.015)90Zr7B3 (log-log scale).

d�nuc/d� = 8π 3V −1 |Ñ |2 denotes the nuclear SANS, which was, respectively, obtained by subtracting the |M̃z|2 scattering from the residual
SANS cross section d�res/d� [compare Eq. (3)].

The experimental A values seem to be in agreement with
the following expression for the effective exchange-stiffness
constant A of two-phase magnetic nanostructures,15

D + δ√
A

= D√
Acr

+ δ√
Aam

, (12)

where Acr and Aam denote, respectively, the local exchange
constants of the crystalline iron and amorphous matrix
phase. Equation (12) has been derived by considering the
behavior of the tilting angle between exchange-coupled local
magnetizations.30 Aam can be roughly estimated by means
of Aam = Acr (Mam

s

Mcr
s

)2 T am
c

T cr
c

, where Acr = 10 pJ/m, μ0M
cr
s =

2.15 T, T cr
c = 1043 K (Ref. 31), and T am

c
∼= 350 K (Ref. 30);

Mam
s is found by using the measured Ms-value of the

compound and the crystalline volume fraction, according to
Mam

s = (Ms − xCMcr
s )/(1 − xC). By inserting these estimates

in Eq. (12), we finally obtain effective values of A = 2.1 pJ/m
(Fe89Zr7B3Cu) and A = 4.0 pJ/m [(Fe0.985Co0.015)90Zr7B3],
which agree reasonably with the experimental data.

In addition to the exchange-stiffness constant, analysis of
field-dependent SANS data in terms of Eq. (11) provides
the magnitude squares of the Fourier coefficients of the
magnetic anisotropy field SH ∝ |h(q)|2 and of the longitudinal
magnetization SM ∝ |M̃z(q)|2 ∝ (�M)2 (see Fig. 5). It is
immediately seen in Fig. 5 that over most of the displayed q-
range |M̃z|2 is orders of magnitude larger than |h|2, suggesting
that jumps �M in the magnetization at internal interfaces is
the dominating source of spin disorder in these alloys. For
Fe89Zr7B3Cu at the largest q, the Fourier coefficient |h|2
becomes comparable to |M̃z|2 [Fig. 5(a)]. This explains the
existence of the cos2 θ -type anisotropy in d�M/d� at the
smallest fields (compare Fig. 3).

Numerical integration of SH (q) and SM (q) over the whole
q space, i.e.,

1

2π2b2
H

∫ ∞

0
SH,M q2 dq, (13)

yields, respectively, the mean-square anisotropy field 〈|Hp|2〉
and the mean-square longitudinal magnetization fluctuation
〈M2

z 〉 (e.g., Ref. 32). However, since experimental data for SH

and SM are only available within a finite range of momentum
transfers (between qmin and qmax) and since both integrands
SH q2 and SMq2 do not show signs of convergence, one
can only obtain rough lower bounds for these quantities:
For the (Fe0.985Co0.015)90Zr7B3 sample (for which d�/d�

is available in absolute units), we obtain μ0〈|Hp|2〉1/2 ∼=
10 mT and μ0〈M2

z 〉1/2 ∼= 50 mT. This finding qualitatively
supports the notion of dominant spin-misalignment scattering
due to magnetostatic fluctuations. Finally, we note that
knowledge of SM ∝ |M̃z|2 and of the residual SANS cross
section d�res/d� [Eq. (3)] allows one to obtain the nuclear
scattering |Ñ |2 (see Fig. 5), without using sector-averaging
procedures (in unpolarized scattering) or polarization
analysis.26

IV. SUMMARY AND CONCLUSIONS

We have analyzed magnetic-field-dependent SANS data
of iron-based soft magnetic nanocomposites in terms of a
recent micromagnetic theory for the magnetic SANS cross
section. The approach provides quantitative results for the
mean exchange-stiffness constant as well as for the Fourier
coefficients of the magnetic anisotropy field and the longitu-
dinal magnetization. The observed angular anisotropy of the
SANS pattern, in particular, the clover-leaf anisotropy, can be
well reproduced by the theory. For the two Nanoperm alloys
under study, we find evidence that the magnetic microstructure
close to saturation is dominated by jumps in the magnetization
at internal interfaces. A lower bound for the root-mean-square
longitudinal magnetization fluctuation of ∼ 50 mT could be
estimated, as compared to a mean magnetic anisotropy field of
strength ∼10 mT.
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10H. Kronmüller and M. Fähnle, Micromagnetism and the Mi-
crostructure of Ferromagnetic Solids (Cambridge University Press,
Cambridge, 2003).

11S. Erokhin, D. Berkov, N. Gorn, and A. Michels, Phys. Rev. B 85,
024410 (2012).

12S. Erokhin, D. Berkov, N. Gorn, and A. Michels, Phys. Rev. B 85,
134418 (2012).

13A. Michels, S. Erokhin, D. Berkov, and N. Gorn, arXiv:1207.2331.
14D. Honecker and A. Michels, Phys. Rev. B 87, 224426 (2013).
15K. Suzuki and G. Herzer, in Advanced Magnetic Nanostructures,

edited by D. Sellmyer and R. Skomski (Springer, New York, 2006),
pp. 365–401.

16O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar,
and J. P. Liu, Adv. Mater. 23, 821 (2011).

17K.-Y. He, J. Zhi, L.-Z. Cheng, and M.-L. Sui, Mater. Sci. Eng. A
181-182, 880 (1994).

18L. K. Varga, L. Novák, and F. Mazaleyrat, J. Magn. Magn. Mater.
210, L25 (2000).

19Y. F. Li, D. X. Chen, M. Vazquez, and A. Hernando, J. Phys. D:
Appl. Phys. 35, 508 (2002).

20Y. Gao, D. Shindo, T. Bitoh, and A. Makino, Phys. Rev. B 67,
172409 (2003).

21A. Michels, C. Vecchini, O. Moze, K. Suzuki, J. M. Cadogan, P. K.
Pranzas, and J. Weissmüller, Europhys. Lett. 72, 249 (2005).

22A. Michels, C. Vecchini, O. Moze, K. Suzuki, P. K. Pranzas,
J. Kohlbrecher, and J. Weissmüller, Phys. Rev. B 74, 134407 (2006).

23A. Michels, M. Elmas, F. Döbrich, M. Ames, J. Markmann,
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