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Theory of asymmetric and negative differential magnon tunneling under temperature bias:
Towards a spin Seebeck diode and transistor
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We study the nonequilibrium transport for the asymmetric and negative differential magnon tunneling driven
by temperature bias. We demonstrate that the many-body magnon interaction that makes the magnonic spectrum
temperature-dependent is the crucial factor for the emergence of rectification and negative differential spin
Seebeck effects in magnon tunneling junctions. When magnonic junctions have temperature-dependent density
of states, reversing the temperature bias is able to give asymmetric spin currents and increasing temperature bias
could give an anomalously decreasing magnonic spin current. We show that these properties are relevant for
building spin Seebeck diodes and transistors, which could play important roles in controlling information and
energy in magnonics and spin caloritronics.
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I. INTRODUCTION

In the fast-developing fields of spintronics,1 magnonics,2

and spin caloritronics,3,4 many intriguing effects have been
observed. One of the most interesting discoveries is the
spin Seebeck effect (SEE), which is a phenomenon that a
temperature bias can drive a pure spin current. It has been
identified in many kinds of materials, including magnetic
metals,5 magnetic semiconductors,6,7 magnetic insulators,8,9

and nonmagnetic materials with spin-orbit coupling.10

The real breakthrough is made by the observation of
SSE in magnetic insulators,8,9 which has clearly uncovered
that, distinct from spin-dependent Seebeck effect in metallic
materials, SSE possesses the unique ability to generate a pure
flow of spin angular momentum by mere thermal excitations
without moving charge carriers. The thermal-generated pure
spin current is carried by excitations of the magnetization,
known as magnons, instead of by moving charges. This is
an advantage because charge carriers are often problematic
for the thermal design of devices, of which the issue can
be avoided by the SSE in insulating magnets without con-
ducting charge currents. It allows us to construct efficient
thermoelectric devices upon new principles11 and to realize
robust, nondissipative information transmission and energy
transfer12,13 in the absence of Joule heating. Therefore, the SSE
is expected to act as a new method facilitating the functional
use of “waste” heat and opens a new possibility of spintronics,1

magnonics,2 and spin caloritronics,3,4 and thus has ignited a
new upsurge of research interest14–21 in these fields.

A recent work by one of the authors has uncovered the
rectification and negative differential SSE in a metal-insulating
magnetic interface system,22 where the spin transfer is assisted
by the interface electron-magnon inelastic scattering. It was
shown that with the interfacial electron-magnon coupling,
reversing the thermal bias is able to give asymmetric spin
currents, and increasing thermal bias across the interface
abnormally gives an increasing spin current.22 In this work,
we study the nonequilibrium transport for the asymmetric and
negative differential magnon tunneling driven by temperature
bias. We demonstrate in magnon tunneling junctions that
the rectification and negative differential SSE emerge as a

FIG. 1. (Color online) Schematic illustration of the magnon
tunneling junction. By acting as a spin Seebeck diode, for TL > TR

the magnonic spin current is easily flowing from left to right but
for TR > TL the magnonic spin current from right to left is severely
suppressed and even prohibited.

consequence of the magnon-magnon interaction that makes the
magnonic spectrum temperature-dependent. This mechanism
is different from the one underlying the asymmetric and nega-
tive differential SSEs in metal-magnetic insulator interfaces22

that needs the energy-dependent electronic spectrum. We also
illustrate the concept of spin Seebeck transistor based on the
negative differential SSE.

The rectification and negative differential electronic trans-
ports are fundamental for realizing functional electronic
diodes and transistors, which are building blocks of mod-
ern electronics. Similarly, the rectification of heat flux and
negative differential thermal conductance23 are also crucial
for designing heat diodes and transistors that are as well the
fundamental building blocks of phononics.24 Thus, we believe
our results are relevant for constructing magnonic and spin
caloritronic circuits with efficient spin Seebeck diodes and
transistors, which could play crucial roles in controlling energy
and information in magnonics2 and spin caloritronics.4

We summarize the transport theory of magnon tunneling in
a spin tunneling junction in Sec. II. We point out in Sec. III A
that the many-body interaction is important for rectifying spin
Seebeck currents. In Sec. III B, we show one example of the
spin Seebeck diode with magnon-magnon interaction induced
temperature-dependent spectrum. In Sec IIIC, we demonstrate
the negative differential SSE in a magnon tunneling junction
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with temperature-dependent excitation gaps and illustrate the
functionality of a spin Seebeck transistor. We conclude in
Sec. IV and discuss the possible extension of the present results
to phononics of controlling phononic information and thermal
energy.24

II. TUNNELING HAMILTONIAN AND
MAGNONIC SPIN CURRENT

The magnonic spin tunneling junction consists of three
parts: When putting together the left and right insulating
magnetic segments, the central interface will be formed, which
may result from the lattice mismatch, the vacuum, and the
depleted- or nonmagnetic regime that acting as the tunneling
barrier [see Fig. 1]. Therefore, the total Hamiltonian can be
written as

Ĥ = ĤL + ĤI + ĤR. (1)

The left and right insulating magnetic materials, in the low
temperature or large spin size limit, are well described by the
noninteracting magnon model:

ĤL =
∑
k∈L

εka
†
kak, ĤR =

∑
p∈R

ε pa
†
pa p, (2)

where a
†
k( p) and ak( p) are the creation and annihilation operators

of the magnon with momentum k( p) and energy εk(ε p) at
the left (right) segments. These field operators satisfy the
commutation relations for bosons. The left and right magnons
are assumed at their own equilibriums with temperature TL

and TR , respectively. Note that since we are interested in
the SSE where the pure spin current is induced by the mere
temperature bias, we do not consider the possible chemical
potential imbalance for the left and right magnons and set
them both to zero. In the next section we will discuss more
details, where many-body magnon interaction is included.

For the tunneling part, the magnonic spin transfer is
described by the tunneling matrix:

ĤI =
∑
kp

(Vkpa
†
ka p + V ∗

kpa
†
pak), (3)

which results from the exchange interaction across the inter-
face. Because this term could be small compared to other parts
of the total Hamiltonian, it is usually treated by the perturbation
theory.

Physically, each magnon carries a unit spin angular mo-
mentum h̄. The annihilation of a magnon at one side and the
successive creation of a magnon at the other side correspond
to the rising of the spin component at one side but lowering the
spin component at the other side. In other words, the tunneling
magnon current is equivalent to the pure spin down current
if the magnetization of the material is defined as up. The
tunneling magnon current operator Îs through the interface
is given by Îs = − ˙̂NL = ˙̂NR , where N̂L = ∑

k∈L a
†
kak and

N̂R = ∑
p∈R a

†
pa p are the magnon number operators of the

left and right segments, respectively. Using the Heisenberg’s
equation ˙̂Nv = i

h̄
[Ĥ ,N̂v] = i

h̄
[ĤI ,N̂v], (v = L,R), we can

express the tunneling magnon current operator as

Îs = i

h̄

∑
kp

(Vkpa
†
ka p − V ∗

kpa
†
pak). (4)

The magnonic spin current Is across the tunneling interface
is the average value of the operator 〈Îs〉, which under the
second-order perturbation of the tunneling matrix is calculated
through

Is = − i

h̄

∫ t

−∞
dτ 〈[Îs(t),ĤI (τ )]〉, (5)

where Îs(t) = eiĤ0t Îse
−iĤ0t and ĤI (τ ) = eiĤ0τHI e

−iĤ0τ are
represented in the interaction picture, with Ĥ0 = ĤL + ĤR .
Substituting the operator Îs , we arrive at the single-magnon
tunneling current

Is = − 2

h̄2 Im
[
Gr

tot(ω)
]
ω=0 = i

h̄2

[
Gr

tot(ω) − Ga
tot(ω)

]
ω=0,

(6)

where the retarded (advanced) Green’s function reads
G

r(a)
tot (ω) = ∫ ∞

−∞ dteiωtG
r(a)
tot (t) with G

r(a)
tot (t) = ∓i�(±t)

〈[B̂(t),B̂†(0)]〉 and B̂(t) = ∑
kp Vkpa

†
k(t)a p(t). Although this

tunneling spin current is formulated in terms of the bosonic
magnon tunneling and the bosonic Green’s functions are
defined in a different way from the electronic ones due
to the different (anti)commutation relations, we note that
it shares the same expression as for the standard result
of fermionic electron tunneling.25 The Green’s functions
are often calculated by evaluating equivalent Matsubara
functions of imaginary frequency and successively by the
analytic continuation (iωn → ω ± i0+).25 In the following,
we alternatively adopt the simple way in the real time and
frequency so that the calculations are accessible for the
beginner.

To evaluate the tunneling spin current, we use the apparent
relation Gr

tot − Ga
tot = G>

tot − G<
tot so that Is = − i

h̄2 [G>
tot(ω) −

G<
tot(ω)]ω=0, where the lesser Green’s function in time domain

is G<
tot(t) = −i〈B̂†(0)B̂(t)〉 and the greater Green’s function is

G>
tot(t) = −i〈B̂(t)B̂†(0)〉. In the tunneling process, since the

left and right segments of the junction are independent, we
then can factorize the Green’s function as a product of the
corresponding left and right ones. For example,

G>
tot(t) = −i

∑
kp

∑
k′ p′

VkpVk′ p′〈a†
k(t)a p(t)a†

p(0)ak(0)〉

= −i
∑
kp

|Vkp|2〈a†
k(t)ak(0)〉〈a p(t)a†

p(0)〉

= i
∑
kp

|Vkp|2G<
L (k, − t)G>

R ( p,t). (7)

Then, noticing that G<
L (k,t) = −i〈a†

k(0)ak(t)〉 = −iNL(εk)

e−iεk t/h̄ and G>
R ( p,t) = −i〈a p(t)a†

p(0)〉 = −i[1 + NR(ε p)]
e−iε pt/h̄ where Nv(ε) = [exp(ε/kBTv) − 1]−1 is the corre-
sponding Bose-Einstein distribution of the magnon population
at the v segment with temperature Tv , one immediately
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arrives at

G>
tot(ω) = −2πi

∑
kp

|Vkp|2NL(εk)[1 + NR(ε p)]

× δ

(
ω + εk − ε p

h̄

)
. (8)

With the same procedure, one also has

G<
tot(ω) = −2πi

∑
kp

|Vkp|2[1 + NL(εk)]NR(ε p)

× δ

(
ω + εk − ε p

h̄

)
. (9)

Therefore, we finally obtain the tunneling spin current:

Is = 2π

h̄

∑
kp

|Vkp|2δ(εk − ε p)[NL(εk) − NR(ε p)]. (10)

For the noninteracting magnon picture within the left and
right segments, we have the spectral functions for both sides as
AL(k,ε) = 2πδ(ε − εk) and AR( p,ε) = 2πδ(ε − ε p), so that
the magnonic tunneling spin current can be expressed as

Is = 1

2πh̄

∫ ∞

0
dε

∑
kp

|Vkp|2AL(k,ε)AR( p,ε) [NL(ε) − NR(ε)] .

(11)

Note the density of states (DOS) is related to the spec-
tral functions as ρL(ε) := 1

2π

∑
k AL(k,ε) and ρR(ε) :=

1
2π

∑
p AR( p,ε), when approximating the tunneling matrix

element as a constant |Vk p| ≈ |V |,26 one will get

Is = 2π

h̄
|V |2

∫ ∞

0
dερL(ε)ρR(ε) [NL(ε) − NR(ε)] . (12)

This formula shows that the tunneling spin current is deter-
mined by the magnon population difference and the overlap
between magnon DOS of the left and right segments. In spite
of the fact that the spin current is formulated in terms of the
bosonic magnon tunneling and the bosonic Green’s functions
are different from the electronic ones, the expression Eq. (12)
is still reminiscent of that for the electron tunneling.26–28 The
only differences are that here the integral of magnon energy
is from 0 from ∞ instead of the energy range (−∞,∞) for
electrons; the magnon population is characterized by the Bose-
Einstein distribution instead of the Fermi-Dirac distribution
for electrons. By the substitutions

∑
k → ∫

dεkρL(εk) and∑
p → ∫

dε pρR(ε p), Eq. (12) can be also obtained directly
from Eq. (10).

III. RESULTS AND DISCUSSIONS

In the above section, we have summarized the theoretical
derivations of the tunneling spin current carried by magnons.
It shows clearly that the temperature bias only manifests in the
distribution difference of magnons [see Eqs. (10)–(12)]. As
such, when reversing the thermal bias TL ↔ TR , we merely get
the reversed spin current without changing magnitude, Is →
−Is , i.e., the spin Seebeck diode is absent. In order to obtain
the rectification of spin current controlled by the temperature
bias, it is necessary for both sides of the tunneling junction to

have different responses to temperature change. Therefore, we
need to go beyond the noninteracting magnon picture so that
the temperature-dependent DOS becomes possible.

A. Many-body interaction effect for rectifying
spin Seebeck current

In many-body systems, the (nonlinear, higher order than
quadratic) interaction generally changes the energy spectrum.
In terms of the language of Green’s functions, the many-
magnon interaction manifests as the so-called self energy
	(k,ε,T ) that is generally temperature-dependent. Following
the Dyson equation,29 the retarded (advanced) Green’s func-
tion at temperature T including magnon-magnon (or other
many-body) interactions has the form

Gr(a) = 1

ε − εk − Re[	(k,ε,T )] ∓ iIm[	(k,ε,T )]
. (13)

Accordingly, the spectral function including the many-
magnon interaction obtains the temperature-dependence as
well, through the self-energy in Green’s functions:

A(k,ε,T ) = −2Im[Gr ] = i
[
Gr − Ga

]

= −2Im[	(k,ε,T )]

{ε − εk − Re[	(k,ε,T )]}2 + {Im[	(k,ε,T )]}2
.

(14)

Taking the limit of Im	 → 0 as in the mean-field approach,
we retrieve the δ-function-type spectral function A(k,ε,T ) =
2πδ(ε − ε̃k,T ) as for the noninteracting case. The temperature-
dependence now enters in the renormalized effective free
quasiparticle energy ε̃k,T = εk − Re[	(k,ε,T )]. Thereupon,
the magnon DOS becomes also temperature-dependent
ρ(ε,T ) := 1

2π

∑
k AL(k,ε,T ) = ∑

k δ(ε − ε̃k,T ). As such,
Eq. (12) is modified by the many-body interaction, as

Is = 2π

h̄
|V |2

∫ ∞

0
dερL(ε,TL)ρR(ε,TR) [NL(ε) − NR(ε)] .

(15)

Generally, the left and right magnetic materials of the
tunneling junction can be different, i.e., their magnon DOS
have different responses for temperature change. After re-
versing the thermal bias, i.e., exchanging the temperatures
TL ↔ TR , we generally have the different DOS-overlaps
(or called different spectral-overlaps) ρL(ε,TR)ρR(ε,TL) �=
ρL(ε,TL)ρR(ε,TR). As a result, the reversed spin current will
have different magnitudes under reversing thermal bias. If the
density-overlap ρL(ε,TR)ρR(ε,TL) is much larger or smaller
than ρL(ε,TL)ρR(ε,TR), we will obtain a spin Seebeck diode.
That is, in one direction the temperature bias could produce
a considerable spin current but in the opposite direction
the temperature bias produces less spin current inefficiently,
as illustrated in Fig. 1.

Even if the left and right magnetic materials are identical,
in some cases the density-overlap ρL(ε,TL)ρR(ε,TR) may
decrease as increasing the thermal bias |TL − TR|. When the
decreasing of the density-overlap surpasses the increasing of
[NL − NR], we will have the negative differential SSE. That
is, the magnonic spin current decreases with an increasing
thermal bias.
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Therefore, the many-body-interaction-induced
temperature-dependence of the DOS (as well as the
temperature-dependent spectral functions) is the key to
achieve the rectification and negative differential transport of
spin current by controlling temperature bias.

B. Rectifying spin Seebeck current with
magnon-magnon interaction

In the following, let us use a simple standard model to
illustrate how the magnon-magnon interaction induces the
temperature-dependent magnon energy30,31 that in turn leads
to the possible spin Seebeck diode. Without loss of generality,
we focus on the ferromagnets. The results and discussions are
readily generalized to the antiferromagnets.30

We first look into the left insulating magnetic material,
which is conventionally described by a Heisenberg lattice:

ĤL = −JL

∑
〈i,j〉

Si · Sj

= −JL

∑
〈i,j〉

[
1

2
S+

i S−
j + 1

2
S+

i S−
j + Sz

i S
z
j

]
, (16)

where S±
j = Sx

i ± S
y

i is the raising (lowering) operator for the
spin at site j and 〈i,j 〉 denotes the nearest-neighbor bond with
exchange coupling strength JL. This Heisenberg exchange
Hamiltonian can be expanded in increasing powers of the
magnon operators by the Holstein-Primakoff transformation,32

which maps the spin operators into bosonic magnons
through S+

j =
√

2SL − a
†
j aj aj , S−

j = a
†
j

√
2SL − a

†
j aj , Sz

j =
SL − a

†
j aj , where SL is the spin size of the left material.

Clearly, the creation (annihilation) of a magnon a
†
j (aj ) at site

j corresponds to that spin points less (more) in z component
so that each magnon carries an spin angular momentum
of −1 (associated with a magnetic moment). Thus, the
tunneling magnons driven by temperature bias are responsible
for the Seebeck spin current.

When keeping up to the lowest order of two-body magnon-
magnon interaction, we have the truncated expansion:

ĤL = JLSL

∑
〈ij〉

(a†
i ai + a

†
j aj − a

†
i aj − a

†
j ai)

+ JL

4
(a†

i a
†
i aiaj + a

†
i a

†
j ajaj + a

†
i a

†
j aiai

+ a
†
j a

†
j aiaj − 4a

†
i aia

†
j aj ) + O

(
1

SL

)
, (17)

where we dropped an irrelevant constant term corresponding
to the ground-state energy. Since the Holstein-Primakoff
transformation requires the constraint 〈a†

j aj 〉/(2SL) < 1, the
above expansion is justified, as in the large spin limit or low
temperatures. After performing the Fourier transform into the
momentum space, one gets

ĤL =
∑

k

εka
†
kak + JL

4n

∑
kk′k′′

∑
δr

a
†
ka

†
k′ak′′ak+k′−k′′

× [e−ik·δr +e−i(k+k′−k′′)·δr −2e−i(k′−k′′)·δr ], (18)

where n is the total number of sites, δr denotes the nearest-
neighbor vector, and the energy spectrum has the dispersion
εk = JLSL

∑
δr (1 − e−ik·δr ). To handle the two-body magnon

interaction, we adopt the standard mean-field approximation
and keep the Hartree-Fock terms. Finally, after some algebra,
one arrives at the quasifree magnon Hamiltonian, as in Ref. 31:

ĤL =
∑

k

αL(TL)εka
†
kak, (19)

where all the magnon-magnon interactions are renormalized
into the temperature-dependent factor

αL(TL) = 1 − 1

2JLS2
Lnz

∑
k

εk

exp
(

α(TL)εk
kBTL

) − 1
, (20)

with z the lattice coordinate number. It requires self-
consistency to solve αL(TL) and the analytic expression is
absent. However, to the lowest order we can set the factor
at the right-hand side as 1 and use the long-wave limit
εk ≈ JLSLa2k2 for the three-dimensional (3D) cube lattice
with a the lattice constant, then one can integrate Eq. (20) and
readily obtain

αL(TL) = 1 − ζ (5/2)

64SLπ3/2

(
kBTL

JLSL

)5/2

, (21)

with ζ (·) denoting the ζ function. Accordingly, the
temperature-dependent magnon DOS for the 3D cube lattice
is obtained as

ρL(ε,TL) = 1

(2π )2

√
ε

[JLSLαL(TL)]3
, (22)

with the total number of spins being normalized. Same
expressions also apply for the right insulating magnetic
materials with the subscript interchange L → R.

From Eq. (21), we know that increasing temperature Tv

will decrease αv that in turn increases the DOS ρv through
Eq. (22) [see also Fig. 2(a)]. This is understandable because
when temperature increases, more magnons are excited so
that their interactions effectively soften the exchange stiffness
through the decreasing factor αv , which equivalently increases
the magnon population. As a consequence, the DOS ρv

increases (decreases) as temperature Tv increases (decreases)
and the increasing (decreasing) rate is a function of Jv and
Sv . Therefore, when the left and right segments are made
of different magnetic materials, i.e., JL �= JR , SL �= SR , or
different spin lattice structures, their DOS then generally
possess different responses to the temperature change through
Eq. (22), which makes the spin Seebeck diode possible.

Figure 2(b) illustrates one example of the asymmetric SSE:
in the positive thermal bias �T > 0 (TL,R = T0 ± �T ), the
thermal-generated spin current is considerable while it is
suppressed in the negative thermal bias �T < 0. This is rea-
sonable by looking into the DOS-overlap ρL(ε,TL)ρR(ε,TR) ∼
[αL(TL)αR(TR)]−3/2, which as shown in Fig. 2(a) is asymmet-
ric for positive and negative thermal bias as the consequence
of different responses of αL and αR to the temperature change.
The behavior of the DOS-overlap is consistent with that
of the Seebeck spin current, displayed in Fig. 2(b). Naturally,
the rectification ratio R := |Is(�T )/Is(−�T )| increases as
enlarging the thermal bias [see the inset of Fig. 2(b)]. Although
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FIG. 2. (Color online) (a) Different temperature responses
of the left and right magnonic segments. The DOS-overlap
ρL(ε,TL)ρR(ε,TR) ∼ [αL(TL)αR(TR)]−3/2 shows the asymmetric be-
havior. (b) Asymmetric thermal-generated spin current in a spin
Seebeck diode. Inset shows the rectification ratio defined as R :=
|Is(�T )/Is(−�T )|. Material parameter values are JL = 0.1 meV,
JR = 0.2 meV, SL = SR = 14, which are comparable with the
estimated ones from typical magnetic insulators, cf. YIG (Y3Fe5O12)
in Refs. 33–35. Other parameters are V = 0.1 meV, TL = T0 +
�T , TR = T0 − �T , with T0 = 300 K. To meet the constraint
〈a†

kak〉/(2SL,R) < 1, we set a magnon gap of 5 meV, which, however,
will not affect the data plotted here.

the rectification ratio R shows that it is not as good as a
perfect diode at small thermal bias, the example demonstrates
in principle the feasibility of the spin Seebeck diode.

Note here the rectification of SSE emerges from
the temperature-dependent magnonic spectrum due to the
magnon-magnon interaction. It applies for the pure magnonic
tunneling system. This mechanism is different from the
asymmetric SSE in hybrid metal-magnetic insulator systems,22

where the interfacial magnon-electron scattering and the
energy-dependent electronic spectral density are crucial. Al-
though we exemplify the spin Seebeck rectification with only
the lowest-order magnon-magnon interaction, at high temper-
atures more magnons will be excited and high-order magnon
interactions will be manifested. As such, the temperature-
dependence of the magnon DOS will become stronger, which
then magnifies the response difference of the magnon DOS
of the two segments to temperature changes. Therefore, more
and stronger (high-order) magnon interactions are preferable
for realizing efficient spin Seebeck diode.

C. Negative differential spin Seebeck effect and
spin Seebeck transistor

In the above example, we have illustrated that the possible
spin Seebeck diode effect can result from the temperature-
dependent spectra induced by the magnon-magnon interaction
with however temperature-independent exchange couplings.
In fact, in real situations, the exchange interaction itself J (T )
may be sensitive to temperature changes, which in turn also
has the contribution to the spin Seebeck diode effect. Beside
the exchange coupling, the dipolar interaction will have a
similar effect. In particular, the dipolar interaction as well
as the anisotropic exchange coupling usually opens a gap

for the magnon spectrum, which thus makes the magnon gap
temperature-dependent; see Refs. 36–38 for experimental ex-
amples. The temperature-dependent magnon gap not only con-
tributes to the spin Seebeck diode effect but also makes the neg-
ative differential SSE possible; that is, increasing (decreasing)
the thermal bias gives a decreasing (increasing) spin current.

As an example, we consider the two materials at both sides
of the tunneling interface are both 3D cube lattices with finite
magnon gaps so that their DOS can be obtained as

ρv(ε,Tv) = 1

π

∫ ∞

0
dx[J0(2JvSvx)]3 cos[x(ε − �v − 6JvSv)],

(23)

whereJ0(·) denotes the Bessel function of the first kind and �v

(v = L,R) is the magnon gap of the v side, which we assume
linearly increases with temperature �v = γvTv , as indicated
by the experiments in Refs. 36–38. We would like to iterate
that although here we use a phenomenological temperature-
dependence of magnon gap, the microscopic reason relies
on the general mechanism of the magnon-interaction-induced
(or other particle-magnon-interaction-induced) temperature-
dependence. We focus on the model study at present, which
in principle is sufficient to demonstrate the possible nontrivial
properties. Future works should be continued from the aspect
of first-principle or ab initio theory for more realistic material
calculations.

The corresponding negative differential SSE is illustrated
in Fig. 3. When TL increases larger than TR , the spin
Seebeck current first increases as expected but then counter-
intuitively decreases with further increasing thermal bias, so
called negative differential SSE. This anomalous behavior can
be understood with the insets of the figure, where the
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L
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FIG. 3. (Color online) Negative differential spin Seebeck effect.
The insets show that the DOS-overlap decreases with increasing
the thermal bias, which causes the behavior of negative differential
conductance. Material parameter values are JL = JR = 0.1 meV,
SL = SR = 14 for 3D cube lattices that are comparable with
the estimated ones from typical magnetic insulators, cf. YIG in
Refs. 33–35, and V = 0.1 meV. The right segment has a fixed
magnon gap �R = 5 meV with a fixed temperature TR = 240 K.
The magnon gap for the left material is assumed as �L = γLTL

with γL = 0.05 meV/K. The three DOS profiles are calculated from
Eq. (23).
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FIG. 4. (Color online) Schematic illustration of the concept of a
spin Seebeck transistor.

corresponding magnon DOS of the left and right materials
are depicted through calculating Eq. (23): With increasing the
thermal bias, the DOS of two sides are drawn away from each
other, which in turn decreases the DOS-overlap in Eq. (15);
When the DOS-overlap decreasing surpasses the increasing
of thermal bias, the spin current starts to decrease although
with increasing the bias, and the negative differential SSE
then emerges. This mechanism for the negative differential
SSE is different from the one discussed in Ref. 22, where
both the interfacial electron-magnon coupling and the strong
energy-dependent electronic DOS play the crucial role.

Now, based on the negative differential SSE, let us illustrate
the concept of spin Seebeck transistor following the spirit of
phononics:24 Similar to the electronic counterpart of a field-
effect transistor (FET), the spin Seebeck transistor is composed
of three parts: The source (S), the gate (G), and the drain (D),
as depicted in Fig. 4, which may then connect to external spin
or magnon circuits. The temperatures at the source and drain
are fixed with TS > TD so that the Seebeck-effect-generated
magnonic spin current flows from the source to the drain. A
third temperature TG at the gate side is tunable to control
the spin currents at the source, gate, and drain, with I S

s =
ID
s + IG

s . The amplification ability of a spin Seebeck transistor
can be characterized as the change rate of the gain spin current
at the drain upon the change of the control current at the gate,
which is expressed as

βAmp =
∣∣∣∣∂ID

s

∂IG
s

∣∣∣∣ =
∣∣∣∣∣

∂ID
s

∂
(
ID
s − I S

s

)
∣∣∣∣∣ =

∣∣∣∣ GD

GD + GS

∣∣∣∣ , (24)

where GS = −∂IS
s /∂TG and GD = ∂ID

s /∂TG are the differ-
ential spin Seebeck conductance for the source and drain
segments, respectively. It is straightforward to see that only
when either negative differential spin Seebeck conductance
GS < 0 or GD < 0 is present then βAmp emerges to be larger
than unity. Therefore, the negative differential SSE is crucial
for realizing a spin Seebeck transistor to amplify a spin current
with a weak input signal, as the FET in modern electronics and
the thermal transistor in phononics.24

IV. CONCLUSIONS

In summary, we have studied the nonequilibrium transport
for the asymmetric and negative differential magnon tunneling
driven by temperature bias. We have demonstrated that in
magnon tunneling junctions, the rectification and negative dif-
ferential spin Seebeck effects are emerging as a consequence
of the many-body magnon interaction that makes the magnonic
spectrum temperature-dependent, which are then used to build
spin Seebeck diodes and transistors. Considering the fact that
the magnon carries not only the spin angular momentum but

also the energy [see, e.g., Ref. 13], the present results further
indicate the potential of a magnon tunneling junction acting as
a thermal diode and/or a thermal transistor.

Although in calculations we normalized the number of spin
at the interface, the size effect will not influence the asymmetric
and negative differential magnon tunneling behaviors, but
only affects the magnitude of the spin current. We can
restore the interface size by denoting the number of spin
at the tunneling interface as Ns . In this way, ρv → Nsρv

and V → V/
√

Ns . Thus, the tunneling spin current will be
magnified as Is → NsIs . Therefore, in macroscopic magnon
tunneling junctions, the spin current can be sufficiently large
and easier for measurements and applications.

Extension of the asymmetric and negative differential
tunneling to phononics for the phonon diode and transistor24

is also possible but should be done with care. Although the
phonon and magnon are both bosons, phonons have different
physics in the real space compared to magnons. For phonons,
the left and right side can still be described by the free bosonic
gas model as in Eq. (2), but then the tunneling matrix is
modified to

ĤI =
∑
k p

Vk p(ak + a
†
−k)(a p + a

†
− p), (25)

because the phonon tunneling is caused by the bilinear
coupling of atomic displacements in the real space. Also, the
retarded (advanced) Green’s function for phonons, instead of
Eq. (13), has a different form:25

Gr(a) = 2ωk

ω2−ω2
k−2ωkRe[	(k,ω,T )] ∓ i2ωkIm[	(k,ω,T )]

,

(26)

which is also due to the fact that the physics of the
phononic Green’s functions in real space are expressed in
terms of the displacement-displacement correlation. But the
underlying mechanism should not change, that is, the many-
body interaction induces temperature-dependent self-energies,
which in turns makes the quasiparticle spectrum temperature-
dependent. As a consequence, the rectification and negative
differential thermal conductance will be emergent and the
phonon diode and transistor become possible.

Recent studies also imply that the phonon-drag plays
an important role in SSE.10,39–44 Thus, taking account of
the effect of nonequilibrium phonons on asymmetric and
negative differential SSE will be an interesting future topic.
We therefore believe that by integrating the phononics24 with
spintronics,1 magnonics,2 and spin caloritronics,4 there are
more opportunities to achieve the smart control of energy and
information in low-dimensional nanodevices.
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