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We consider the spin-1/2 antiferromagnetic Heisenberg model on three frustrated lattices (the diamond chain,
the dimer-plaquette chain, and the two-dimensional square-kagome lattice) with almost dispersionless lowest
magnon band. Eliminating high-energy degrees of freedom at high magnetic fields, we construct low-energy
effective Hamiltonians, which are much simpler than the initial ones. These effective Hamiltonians allow a
more extended analytical and numerical analysis. In addition to the standard strong-coupling perturbation theory,
we also use a localized-magnon-based approach leading to a substantial improvement of the strong-coupling
approximation. We perform extensive exact diagonalization calculations to check the quality of different effective
Hamiltonians by comparison with the initial models. Based on the effective-model description, we examine the
low-temperature properties of the considered frustrated quantum Heisenberg antiferromagnets in the high-field
regime. We also apply our approach to explore thermodynamic properties for a generalized diamond spin
chain model suitable to describe azurite at high magnetic fields. Interesting features of these highly frustrated
spin models consist in a steep increase of the entropy at very small temperatures and a characteristic extra
low-temperature peak in the specific heat. The most prominent effect is the existence of a magnetic-field-driven
Berezinskii-Kosterlitz-Thouless phase transition occurring in the two-dimensional model.
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I. INTRODUCTION

The study of frustrated quantum antiferromagnets is one of
the most active research fields in condensed matter physics.1

Among them there is a wide class of one-, two-, and three-
dimensional frustrated quantum Heisenberg antiferromagnets
with dispersionless (flat) lowest magnon bands. There is
currently a great deal of general interest in flat-band systems,
since new many-body phases can be realized there (see
Refs. 2–12, and references therein).

Interestingly, flat-band quantum spin systems2,3 admit
the application of specific methods of classical statistical
mechanics to study their high-field low-temperature behavior.
For the application of classical statistical mechanics on the
quantum systems, the concept of many-body independent
localized-magnon states is crucial.2–4,13–16 Typical ground-
state features related to the localized-magnon states are zero-
temperature magnetization plateaus and jumps,2 high-field
spin-Peierls lattice instabilities,3 and a residual ground-state
entropy at the saturation field.4,13,14,17 Furthermore, these states
set an additional low-energy scale that dominates the low-
temperature thermodynamics in the vicinity of the saturation
field resulting, e.g., in an extra peak in the specific heat at
low temperatures.4,14 In two-dimensional systems, localized-
magnon states may lead to a finite-temperature order-disorder
phase transition of purely geometrical origin.4,15 It is worth
mentioning that this concept for quantum spin systems is
related to Mielke’s and Tasaki’s flat-band ferromagnetism of
the Hubbard model.11,18,19

The previously developed theories for localized-magnon
spin lattices are valid if the conditions for localization of the
magnon states are strictly fulfilled (so-called ideal geometry).
In real-life systems we cannot expect that, rather the violation

of the localization condition is typical. Therefore several ques-
tions arise: what happens when the localization conditions are
(slightly) violated? Which features of the localized-magnon
scenario survive? Which new effects may appear?

Although a systematic quantitative theory for such a case
has not been elaborated until now, it is in order to mention
here Ref. 20 considering a distorted frustrated two-leg spin
ladder (see also Ref. 21 related to a frustrated bilayer) and
Refs. 22 and 23 dealing with a distorted diamond spin chain.
These studies, however, are not based on the localized-magnon
picture and use a strong-coupling approach, see below. In our
recent paper,24 we touch this problem suggesting a heuristic
ansatz for the partition function of a distorted diamond spin
chain inspired by localized-magnon calculations.

The aim of the present paper is to develop a systematic
treatment of a certain class of localized-magnon systems,
namely, the monomer class,14 in the presence of small
deviations from ideal geometry. We consider three different
frustrated quantum spin lattices belonging to the monomer
class, the diamond chain, the dimer-plaquette chain (see
Fig. 1), and the square-kagome lattice (see Fig. 2). These
frustrated quantum antiferromagnets were investigated previ-
ously in the literature by various authors.25–28 The frustrated
diamond chain has been discussed widely in the literature
as a prototype of a quantum spin system with local con-
servation laws (also called “hidden Ising symmetry”), see,
e.g., Ref. 25. It exhibits zero-temperature phase transitions
between a collective ferrimagnetic state and simple product
states driven by frustration. The distorted diamond-chain
Heisenberg model has attracted particular attention as a model
to describe the magnetic properties of the natural mineral
azurite, see below. The dimer-plaquette chain Heisenberg
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model can be understood as the one-dimensional counterpart
of the famous Shastry-Sutherland model.29 It also exhibits
zero-temperature phase transitions. Although on the first
glance the diamond chain and the dimer-plaquette chain
seem to be quite similar, the horizontal dimer bond may
lead to quite different properties.26,27 The most spectacular
feature of the model is the existence of an infinite series of
magnetization steps in the magnetization curve between 1/4
and 1/2 of the saturation magnetization.27 This is a unique
characteristic of this model not found so far in other quantum
spin models. The two-dimensional square-kagome lattice is
an example for a system with corner-sharing triangles. Hence
the square-kagome Heisenberg antiferromagnet shares some
properties with the famous kagome antiferromagnet.28

Our strategy to treat the models with small deviations
from ideal geometry is to eliminate high-energy degrees of
freedom, this way constructing low-energy effective Hamil-
tonians which are much simpler to treat than the initial ones.
Among the considered lattices the two-dimensional square-
kagome lattice is particularly interesting, since it shares some
properties with the kagome lattice.28 Moreover, generally in
two dimensions, a richer phase diagram can be expected. The
square-kagome lattice also admits a straightforward appli-
cation of the strong-coupling method developed in previous
papers, see, e.g., Refs. 22, 23, and 30. Note, however, that
the strong-coupling approach is not custom-tailored to the
problem at hand, since it does not take advantage of the
special localized-magnon properties. We also want to compare
our theoretical findings with available experimental results for
azurite.31 Azurite is known to be the model compound for
a diamond spin chain (for other compounds with diamond
structure, see Ref. 32). Although its exchange parameter set
differs from the ideal localized-magnon geometry, it is not too
far from it.23,33 Let us mention that there is also an example
of a spin-chain compound possessing the dimer-plaquette
structure, see Ref. 34.

The rest of the paper is organized as follows. First, we
introduce the models and briefly illustrate the localized-
magnon scenario (Sec. II). Then we construct effective
Hamiltonians (Sec. III) considering separately the strong-
coupling approach and the localized-magnon based approach.
In Sec. III, we compare exact-diagonalization results for the
full and the corresponding effective models to estimate the va-
lidity of the effective models. In Sec. IV, we use the constructed
low-energy effective models to discuss the low-temperature
properties of the initial frustrated quantum antiferromagnets
at high fields. We summarize our findings in Sec. V.

II. MODELS. INDEPENDENT LOCALIZED MAGNONS

In the present study, we consider the standard spin-1/2
antiferromagnetic Heisenberg model in a magnetic field with
the Hamiltonian

H =
∑
(ij )

Jij si · sj − hSz, Sz =
N∑

i=1

sz
i , Jij > 0. (2.1)

Here, the first sum runs over all nearest-neighbor bonds on a
lattice, whereas the second one runs over all N lattice sites.
Note that [Sz,H ] = 0, i.e., the eigenvalues of Sz are good
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FIG. 1. (Color online) (a) The diamond chain and (b) the dimer-
plaquette chain described by Hamiltonian (2.1). The trapping cells
(vertical dimers) for localized magnons are indicated by bold solid
red lines (J2 bonds).

quantum numbers. The pattern of the exchange integrals Jij

of the three different frustrated lattices considered here is
shown in detail in Figs. 1 and 2. On a particular lattice, a
localized-magnon state can be located within a characteristic
trapping cell due to destructive quantum interference.2 For
the diamond and dimer-plaquette chains, the trapping cells
are the vertical dimers, see Fig. 1, and for the square-kagome
lattice, the trapping cell is a square, see Fig. 2. Owing to the
localized nature of these states the many-magnon states in the
subspaces Sz = N/2 − 2, . . . ,N/2 − nmax, nmax ∝ N can be
constructed by filling the traps by localized magnons. Clearly,
all these states are linear independent.35 Moreover, it can
be shown that these localized-magnon states have the lowest
energy in their corresponding Sz subspace, if the strength of
the antiferromagnetic bonds of the trapping cells J2 exceeds a
lower bound.2,36
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FIG. 2. (Color online) The square-kagome lattice described by
Hamiltonian (2.1). The trapping cells (squares) for localized magnons
are indicated by bold solid red lines (J2 bonds).
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The degeneracy of the localized-magnon states is calculated
via mapping onto spatial configuration of corresponding hard-
core objects on an auxiliary lattice.4,13,14 For the frustrated
quantum antiferromagnet on the lattices at hand, this hard-core
system is a classical gas of monomers on a chain or a square
lattice.13,14

It is important to notice that the magnon localization
occurs due to the specific lattice geometry and hence requires
certain relations between the bonds Jij . For the considered
traps (single bond or square), this condition is fulfilled if
an arbitrary bond of the trapping cell and the surrounding
bonds attached to the two sites of this bond form an isosceles
triangle, i.e., J1 = J3 = J in Figs. 1 and 2. At low temperatures
and for magnetic fields h around the saturation field hsat = h1

(h1 = J2 + J for the diamond and dimer-plaquette chains and
h1 = 2J2 + J for the square-kagome lattice), the contribution
of localized states is dominating in the partition function.14 In
the present study, we deal with the case when the localization
conditions are violated. To be specific, in what follows, we
consider a violation of the ideal geometry by taking into
account different values of J1 and J3 but fixing their average,
i.e., J1 �= J3, J1 + J3 = 2J , see Figs. 1 and 2. This choice is
relevant for azurite23,33 and it is appropriate to illustrate the
main point of our considerations.

For the further treatment of the models we introduce a
convenient labeling of the lattice sites by a pair of indices,
where the first number enumerates the cells [m = 1, . . . ,N ,
N = N/3 for the diamond chain, N = N/4 for the dimer-
plaquette chain, N = N/6 for the square-kagome lattice, N

is the number of sites; for the square-kagome lattice the cells
are enumerated by the vector index m = (mx,my)] and the
second one enumerates the position of the site within the cell,
see Figs. 1 and 2.

III. EFFECTIVE HAMILTONIANS

A. Strong-coupling approach

The strong-coupling perturbation theory is well established
in the theory of quantum spin systems, see, e.g., Refs. 22, 23,
and 30. Note that it is not necessarily related to the existence
of localized-magnon states. We begin with a brief illustration
of the main steps of such an analysis. The strong-coupling
approach starts from finite elements/cells (e.g., dimers or
squares) of the spin lattice that do not have common sites and
have sufficiently large couplings, here J2. The number of cells
is denoted by N , N /N < 1. On these cells the spin problem
is solved analytically. (In the context of localized-magnon
states, these cells will play the role of the trapping cells.)
The cells are joined via weaker connecting bonds Ji , i �= 2.
The strong-coupling approach is based on the assumption
that the coupling J2 is the dominant one, i.e., Ji/J2 � 1, i �= 2.
Specifically, at high fields considered here, only a few states
of the trapping cell are relevant, namely, the fully polarized
state |u〉 and the one-magnon state |d〉. All other sites have
fully polarized spins. As the magnetic field decreases from
very large values, the ground state of the cell undergoes a
transition between the state |u〉 and the state |d〉 at the “bare”
saturation field h0 of a cell. The Hamiltonian H is splitted
into a “main” part Hmain [the Hamiltonian of all cells and the

Zeeman interaction of all spins with the magnetic field h0;
for the dimer-plaquette chain, it includes also the interaction
along horizontal bonds, J4, see Fig. 1(b)] and a perturbation
V (the rest of the Hamiltonian H ). The ground state |ϕ0〉 of
the Hamiltonian without the connecting bonds, i.e., Ji = 0
for i �= 2, at h − h0 = 0 is 2N -fold degenerate and forms a
model space defined by the projector P = |ϕ0〉〈ϕ0|. For Ji �= 0,
i �= 2, and h − h0 �= 0, we construct an effective Hamiltonian
Heff which acts on the model space only but gives the exact
ground-state energy. Heff can be found perturbatively and is
given by37–39

Heff = PHP + PV
∑
α �=0

|ϕα〉〈ϕα|
ε0 − εα

V P + · · · . (3.1)

Here, |ϕα〉, α �= 0, are excited states of Hmain. Finally, to rewrite
the effective Hamiltonian in a more transparent form amenable
for further analysis, it might be convenient to introduce
(pseudo)spin operators representing the states of each trapping
cell.

Next, we present the concrete effective Hamiltonians
obtained according to the above described procedure for the
frustrated quantum Heisenberg antiferromagnets at hand, see
Appendix A. In all cases, we get the spin-1/2 isotropic XY

model in a transverse magnetic field with the Hamiltonian

Heff = J
∑
(mn)

(
T x

mT x
n + T y

mT y
n

) − h
N∑

m=1

T z
m + NC. (3.2)

Here, the first sum runs over all nearest neighbors on a
simple chain (diamond and dimer-plaquette) or a square
lattice (square-kagome) of N sites and the second sum runs
over all sites of the simple chain or the square lattice. The
(pseudo)spin-1/2 operators for each cell T α , α = x,y,z act in
the subspace of the two states, |u〉 and |d〉. For specific values
of the Hamiltonian parameters see Appendix A.

B. Localized-magnon approach

As illustrated above, the strong-coupling consideration
provides a low-energy description for the considered frustrated
quantum Heisenberg antiferromagnets at high fields provided
that the intracell coupling J2 is much larger than all other
couplings. This might be a quite natural requirement for
cell-based (e.g., dimer-based or square-based) spin systems but
it is not necessary in the context of localized-magnon systems.
Indeed, the localized-magnon picture for the considered spin
systems emerges when J1 − J3 = 0 whereas (J1 + J3)/2 = J

is only smaller, but not much smaller than J2.14

At first glance, we may extend straightforwardly the
above described scheme introducing another splitting of the
Hamiltonian H taking advantage of the specific features
of the localized-magnon scenario. As the main part of the
Hamiltonian we take that part of the initial Hamiltonian that
corresponds to the ideal geometry, i.e., a Hamiltonian with
J = (J1 + J3)/2 instead of J1 and J3 at h = h1. The remaining
part of the initial Hamiltonian, which contains Ji − J and
h − h1 only, we consider as the perturbation. The ground
state of the main part is the well-known set of independent
localized-magnon states, however, the excited states that are

094426-3



DERZHKO, RICHTER, KRUPNITSKA, AND KROKHMALSKII PHYSICAL REVIEW B 88, 094426 (2013)

necessary for calculation of the second term in Eq. (3.1) are
generally unknown.

We may overcome this difficulty considering as a starting
point instead of H the Hamiltonian

H = PHP, P = ⊗N
m=1Pm, (3.3)

where Pm is the projector on the relevant states of the
trapping cell m. It was defined for the various models under
consideration in Appendix A. It is important to note that by
contrast to the projection operator P used in strong-coupling
approximation [Eqs. (3.1) and (A1)], the projection operator
P used here does not fix the intermediate spins connecting
the trapping cells thus allowing more degrees of freedom.
Nevertheless, we have made an approximation by reducing
the number of states taken into account [namely, instead of
four (16) states of each vertical bond (square) we consider
now only two of them, the fully polarized state |u〉 and the
localized-magnon state |d〉]. Moreover, the restriction to states
|u〉 and |d〉 limits the possibility of spreading the cell states
over the lattice. For the reduced set of degrees of freedom, it
is then straightforward to introduce in H again (pseudo)spin
operators.

The usefulness of this new Hamiltonian H is twofold.
First, it is interesting in its own rights providing an effective
description of the initial spin model in terms of a simpler model
with a smaller number of sites, see below. Second, a major
advantage is that for H, we can eliminate the spin variables
relating to the sites that connect the traps perturbatively
with respect to small deviations from the ideal geometry
(but not with respect to the total strength of the connecting
bonds) arriving at an effective model, which is certainly an
improvement of the strong-coupling one. More specifically,
we split H into a main part Hmain (that is the Hamiltonian
H with J1 = J3 = J and h = h1) and a perturbation V =
H − Hmain. The ground state of Hmain is the same as that
of the strong-coupling approach |ϕ0〉 (although with another
value of the ground-state energy ε0, since the connecting bonds
are present in Hmain) and, hence, also the projector is the
same P = |ϕ0〉〈ϕ0|. Moreover, for the Hamiltonian Hmain, all
relevant excited states |ϕα〉, α �= 0, are known and therefore
an effective Hamiltonian (3.1) can be worked out. Below we
present further details for each frustrated quantum Heisenberg
antiferromagnet under consideration.

1. Diamond and dimer-plaquette chains

After eliminating irrelevant states of the vertical bond in
favor of the two relevant ones, |u〉 and |d〉, and introducing
(pseudo)spin T operators (A2), we obtain from Eq. (3.3),

H =
N∑

m=1

[
−h

2
− J2

4
− (h − J2)T z

m − (h − J )sz
m,3

+ J1 − J3√
2

(
T x

msx
m,3 + T y

ms
y

m,3

) + JT z
msz

m,3

− J1 − J3√
2

(
sx
m,3T

x
m+1 + s

y

m,3T
y

m+1

) + J sz
m,3T

z
m+1

]
.

(3.4)

That is a spin-1/2 XXZ model with alternating isotropic XY

bonds in an alternating magnetic z field on a simple chain of
2N sites, i.e., the unit cell contains two sites.

To exclude further the spin variables at the sites m,3, m =
1, . . . ,N perturbatively, we consider the main Hamiltonian

Hmain =
N∑

m=1

[
− h1

2
− J2

4
− (h1 − J2)T z

m − (h1 − J )sz
m,3

+ J
(
T z

msz
m,3 + sz

m,3T
z
m+1

)]
, (3.5)

where h1 = J2 + J . That is an Ising chain Hamiltonian
with known eigenstates |ϕα〉. The set of ground states∏

m(|v〉|↑3〉)m, where v is either u or d, has the energy
ε0 = (−5J2/4 − J/2)N . Now we consider the perturbation
V = H − Hmain and the set of excited states |ϕα〉 that enter
Eq. (3.1). Again, we consider the states with one flipped spin
on the site m,3. However, now (since J �= 0) the energy of the
excited state depends on the states of the neighboring vertical
bonds. Namely, εα = ε0 + J2 − J if for the neighboring sites
T z = 1/2, εα = ε0 + J2 if for one of the neighboring sites
T z = 1/2 and for another one T z = −1/2, and εα = ε0 +
J2 + J if for the neighboring sites T z = −1/2. Taking into
account this circumstance in Eq. (3.1), after straightforward
calculations, we arrive at the effective Hamiltonian

Heff =
N∑

m=1

[
J
(
T x

mT x
m+1 + T y

mT
y

m+1

) + JzT z
mT z

m+1 − hT z
m + C

]
(3.6)

with the following parameters:

J = (J1 − J3)2

4J2

1

1 − J
J2

,

Jz = (J1 − J3)2

4J2

(
1

1 − J
J2

− 1

)
,

h = h − h1 − (J1 − J3)2

4J2
, (3.7)

C = −h − J2

4
+ J

2
− (J1 − J3)2

16J2

(
1

1 − J
J2

+ 1

)
,

J = J1 + J3

2
, h1 = J2 + J.

We may expand the effective couplings and field with
respect to J/J2 in Eq. (3.7):

J = (J1 − J3)2

4J2

(
1 + J

J2
+ · · ·

)
,

Jz = (J1 − J3)2

4J2

(
J

J2
+ · · ·

)
, (3.8)

h = h − h1 − (J1 − J3)2

4J2
.

This result reproduces not only the second-order perturbation
theory in 1/J2 reported in Refs. 22 and 23, but also the third-
order terms22 in 1/J2, see Eq. (6.3) of Ref. 22.

Repeating such calculations for the dimer-plaquette
chain (see Appendix B), we again finally arrive at the
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effective Hamiltonian (3.6), however, now with the following
parameters:

J = − (J1 − J3)2

8(J2 − J4)
+ (J1 − J3)2

8J2
,

Jz = (J1 − J3)2

8(J2 − J4)

[
1 − 1

1 + J+J4−
√

J 2
4 +J 2

2(J2−J4)

(1 − x)2

1 + x2

]

+ (J1 − J3)2

8J2

[
1 − 1

1 + J−J4+
√

J 2
4 +J 2

2J2

(1 + x)2

1 + x2

]
,

h = h − h1 − (J1 − J3)2

8(J2 − J4)

1

1 + J+J4−
√

J 2
4 +J 2

2(J2−J4)

(1 − x)2

1 + x2

− (J1 − J3)2

8J2

1

1 + J−J4+
√

J 2
4 +J 2

2J2

(1 + x)2

1 + x2
,

C = −3

2
h − J2

4
+ J

2
+ J4

4

− (J1 − J3)2

32(J2 − J4)

[
1 + 1

1 + J+J4−
√

J 2
4 +J 2

2(J2−J4)

(1 − x)2

1 + x2

]

− (J1 − J3)2

32J2

[
1 + 1

1 + J−J4+
√

J 2
4 +J 2

2J2

(1 + x)2

1 + x2

]
,

J = J1 + J3

2
, x =

J4 −
√

J 2
4 + J 2

J
,

h1 = J2 + J. (3.9)

In the limiting case J/J2 → 0, J/J4 → 0, this result trans-
forms into the one obtained using the strong-coupling ap-
proach, cf. Eq. (A5).

2. Square-kagome lattice

Similar calculations for the two-dimensional square-
kagome lattice presented in some detail in Appendix B lead
finally to the following effective Hamiltonian:

Heff =
∑
(mn)

[
J
(
T x

mT x
n + T y

mT y
n

) + JzT z
mT z

n

]

− h
N∑

m=1

T z
m + NC. (3.10)

Here, the first sum runs over the neighboring sites of an
N -site square lattice and the parameters have the following
values:

J = − (J1 − J3)2

16J2

1

1 − J
2J2

,

Jz = (J1 − J3)2

16J2

(
1

1 − J
2J2

− 1

1 − J
4J2

)
,

h = h − h1 − (J1 − J3)2

8J2

1

1 − J
4J2

,

C = −5

2
h + 3

2
J − (J1 − J3)2

32J2

(
1

1 − J
2J2

+ 1

1 − J
4J2

)
,

J = J1 + J3

2
, h1 = 2J2 + J. (3.11)

FIG. 3. (Color online) Comparison of the full model with ef-
fective models for the distorted diamond chain of N = 6 cells:
field dependencies of the magnetization (per site) and temperature
dependencies of the specific heat (per site) for J1 = 0.85, J2 = 3
(main panels) and J2 = 6 (inset), J3 = 1.15. The values of h1l , h1h

[as they follow from Eqs. (3.6) and (3.7)] along with the value of
h1 are indicated by filled triangle-down, triangle-up, and square. For
more explanations, see the main text.
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FIG. 4. (Color online) Comparison of the full model with effec-
tive models for the distorted dimer-plaquette chain of N = 4 cells:
field dependencies of the magnetization (per site) for J1 = 0.9, J2 =
2, J3 = 1.1, J4 = 1 (main panel) and J4 = 0.2 (inset) at T = 0.0001.
Note that for J4 = 0.2 (inset), all curves practically coincide. For
more explanations, see the main text.

Obviously, in the limit J/J2 → 0, this result coincides with
that one obtained within the strong-coupling approach, cf.
Eq. (A7).

C. Exact diagonalization

In this section, we will discuss the region of validity of
the effective Hamiltonians obtained in the previous sections
by reducing the dimension of the full Hilbert space and by
using perturbation expansions. To check the quality of the
obtained effective Hamiltonians, we perform extensive exact
diagonalization studies for the initial and the effective models
and compare the results focusing on magnetization curves and
the temperature dependence of the specific heat.

In Figs. 3–5, we show the magnetization curve at low
(including zero) temperatures for the considered distorted
models of N = 6 (diamond chain, Fig. 3), N = 4 (dimer-
plaquette chain, Fig. 4) as well as N = 4 and 8 cells (square-
kagome lattice, Fig. 5). In Figs. 3 and 5, we also show the
temperature dependence of the specific heat at high fields.
Results for the initial full model (2.1) (thick solid black curves)
are compared with corresponding data for the effective models
[(i) strong-coupling approach, Hamiltonian Heff , see Eqs. (A3)
and (A4), (A3) and (A5), and (A6) and (A7), thin long-dashed
green curves; (ii) localized-magnon description, Hamiltonian
H, see Eqs. (3.4), (B1), and (B3), short-dashed blue curves;
and (iii) localized-magnon description with subsequent pertur-
bation approach, Hamiltonian Heff , see Eqs. (3.6) and (3.7),
(3.6) and (3.9), and (3.10) and (3.11), dotted red curves].

Comparing the full initial model with the effective ones,
we find a quite excellent agreement with the localized-magnon
based effective models described by H and Heff . Note that in
our plots, the deviation from ideal geometry, i.e., J1 = J3, is
up to 20%. We mention that even for fairly large deviations,
not shown here, the agreement is still satisfactory. Moreover,
the perturbative localized-magnon description by Heff almost
coincides with nonperturbative localized-magnon description
by H for temperatures including the full low-temperature
maximum in c(T ). Hence the former one is the favored

FIG. 5. (Color online) Comparison of the full model with effec-
tive models for the distorted square-kagome lattice of N = 4 (main
panel and left inset) andN = 8 (right inset): field dependencies of the
magnetization (per site) and temperature dependencies of the specific
heat (per site) for J1 = 0.8, J2 = 2 (main panels and right inset) and
J2 = 4 (left inset), J3 = 1.2. For more explanations, see the main text.

approach, since it contains much less degrees of freedom and
therefore its treatment is simpler. The neglected degrees of
freedom become relevant only at higher temperatures. On
the other hand, for J2 = 3 and 2 considered in Figs. 3–5,
the strong-coupling approach is significantly less accurate.
Naturally, it becomes better by increasing of J2, see, e.g., the
inset in the upper panel of Fig. 3. In general, we may conclude
that the derived effective models approximate the exact results
remarkably well for a wide range of parameters.
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Some generic features emerging due to the deviation from
the ideal geometry are already clearly visible from the data
obtained for the initial full models of small size. First, we
mention that the deviation from ideal geometry, i.e., J1 �= J3,
does not yield a noticeable change of the width of the plateau
that precedes the magnetization jump to saturation in the
ground state (note that the full plateau is not shown in Figs. 3–5,
where data near the upper end of this plateau are presented
only). However, the deviation from ideal geometry has a
significant influence on the magnetization jump at h1 present
for J1 = J3. Instead of the jump, there is a (small) finite
region, h1l � h � h1h, where the low-temperature magnetiza-
tion shows steep increase between two plateau values. While
the strong-coupling approach predicts the boundaries of this
region h1l and h1h only qualitatively and underestimates the
width of the region h1h − h1l , the localized-magnon approach
gives much better results for h1l and h1h. Further, we notice
that the specific heat c(T ) shows a two-peak temperature
profile, typical for localized-magnon systems, also for the
distorted models. The double-peak structure is even present for
magnetic fields within the region h1l < h < h1h. All effective
Hamiltonians are capable to reproduce the low-temperature
peak of c(T ) related to an extra low-energy scale set by
the manifold of almost localized-magnon states. Again the
localized-magnon approach yields much better agreement with
the full model than the strong-coupling approach. Note that the
effective model H can reproduce qualitatively even the second
high-temperature maximum of the specific heat, see Figs. 3
and 5. However, for the description of the low-temperature
thermodynamics, the simpler effective modelHeff is favorable,
since both effective localized-magnon based models yield
almost perfect agreement with the full model.

Before we will discuss the low-temperature physics of the
models at hand in more detail in the next section, let us
summarize the main findings of the present section relevant
for the further considerations: we have presented three types
of effective models that are capable to describe frustrated
quantum antiferromagnets of the monomer universality class14

at high fields and low temperatures. All effective models refer
to a reduced Hilbert space (only two states for each trapping
cell are taken into account), the strong-coupling approach
assumes J/J2 to be small, whereas the localized-magnon
approach needs a more modest requirement: the deviation from
the ideal geometry should be small. Comparisons of exact
diagonalization data illustrate the quality of the suggested
models. The fairly simple and well investigated spin-1/2
XXZ model with uniform nearest-neighbor interaction in a
z-aligned magnetic field on a chain or on a square lattice,
respectively, provides an accurate low-temperature description
of the frustrated initial spin-1/2 Heisenberg models. In the
limit of sufficiently strong J2, the even simpler spin-1/2
isotropic XY model is adequate.

We may conclude the above considerations by the state-
ment: instead of a classical hard-core models adequate
to describe the low-energy degrees of freedom for ideal
geometry, we are faced with quantum models in the case
of nonideal geometry. However, these quantum models are
well-known standard ones, they are unfrustrated and they
allow a straightforward application of efficient methods of
quantum magnetism such as Bethe ansatz, density matrix

renormalization group, or quantum Monte Carlo techniques.
Moreover, for the effective models, the particle number is
smaller than that of the initial models. Finding of effective
Hamiltonians is a key result of our paper from which several
consequences follow to be discussed below.

IV. HIGH-FIELD LOW-TEMPERATURE
THERMODYNAMICS

Now we discuss in more detail the properties of the con-
sidered frustrated quantum antiferromagnets in the high-field
low-temperature regime using the effective models derived in
the previous section. For that, we use the fact that the effective
models, the spin-1/2 isotropic XY or XXZ Heisenberg model
on a chain or on a square lattice, were extensively studied
by different analytical and numerical methods in the past.
Hence we can use this knowledge to discuss the physical
properties of the much more complicated initial frustrated
models in the relevant regime. In particular, we provide
some theoretical predictions for the high-field low-temperature
properties of azurite as well as a new intriguing scenario for a
magnetic-field driven Berezinskii-Kosterlitz-Thouless physics
in the two-dimensional case. To achieve these goals, we have
performed numerical calculations for the effective models
with specific parameter sets corresponding to the considered
frustrated quantum antiferromagnets.

A. The one-dimensional case

The spin-1/2 isotropic XY chain in a transverse field is
a famous exactly solvable quantum model.40 Therefore the
one-dimensional systems considered here can be described
analytically even in the thermodynamic limit N → ∞ if the
strong-coupling approach is adequate, i.e., if J2 is sufficiently
large. In Fig. 6, we report some thermodynamic quantities for
the distorted diamond-chain Heisenberg antiferromagnet (2.1)
with J1 = 0.85, J2 = 6, J3 = 1.15 (cf. the inset in the upper
panel of Fig. 3) obtained by using the effective Hamiltonian
Heff given in Eqs. (A3) and (A4).

From the upper panel of Fig. 6, it is obvious that the ground-
state magnetization jump at h1 = 7 existing for ideal geometry,
J1 = J3, transforms into the smooth magnetization curve of
the spin-1/2 isotropic XY chain in a transverse magnetic field
for the distorted model. This smooth magnetization curve
has an infinite slope with exponent 1/2 when approaching
continuously the plateaus at h1l = h1 = 7 and h1h = h1 +
(J1 − J3)2/(2J2) = 7.0075. Furthermore, the finite residual
ground-state entropy per site at the saturation field, s(T =
0,h = h1) = ln(2)/3 ≈ 0.231, present for J1 = J3, is removed
immediately by distortions, i.e., s(T = 0,h) = 0. However,
with a slight increase of the temperature, the whole manifold of
almost localized-magnon states becomes accessible for h1l �
h � h1h, thus producing a tremendous entropy enhancement,
see the corresponding panel in Fig. 6. The behavior of the
specific heat, shown in the lower panel of Fig. 6, depends on the
value of h. For h1l � h � h1h, one has c(T ) ∝ T for T → 0,
which corresponds to the gapless spin-liquid phase of the
effective spin-1/2 isotropic XY chain in a transverse magnetic
field. Otherwise, there is an exponential decay of c(T ) for
T → 0 (within the gapped phase of the effective spin-1/2
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FIG. 6. Magnetization per site m(T ,h), entropy per site s(T ,h),
and specific heat per site c(T ,h) at high fields and low temperatures for
the distorted diamond-chain Heisenberg antiferromagnet (2.1) with
J1 = 0.85, J2 = 6, J3 = 1.15 according to the effective Hamiltonian
Heff (A3) and (A4).

isotropic XY chain in a transverse field). Correspondingly,
the character of maxima in c(T ) seen in the lower panel of
Fig. 6 (representing the extra low-temperature maxima of the

full model) is different. It is that one for the spin-1/2 isotropic
XY chain in the spin-liquid phase when h1l � h � hlh, but
it is the one for (weakly interacting) spins in a field if h is
significantly below (above) h1l (h1h). A crossover between
these types of behavior produces interesting behavior of the
position and the height of the low-temperature maximum
of c(T ,h).

Qualitatively the behavior shown in Fig. 6 remains in the
case of XXZ (pseudo)spin interactions as well as in the two-
dimensional case, although quantitative details are obviously
different [cf., for example, Figs. 10 and 11 which show
results for the (effective) square-lattice XXZ model using
a slightly different/complementary format of representation].
But, clearly, it is much harder to obtain analytical41,42 or
numerical results for XXZ models.

B. Azurite

Next, we apply the elaborated effective description to
discuss some low-temperature properties of natural mineral
azurite Cu3(CO3)2(OH)2,43 where the magnetization curve is
experimentally accessible even beyond the saturation field.31

It is known that the magnetic properties of azurite can be
explained using the diamond-chain Hamiltonian (2.1) with
the following set of parameters: J1 = 15.51 K, J2 = 33 K,
J3 = 6.93 K with h = gμBH, g = 2.06, μB ≈ 0.67171 K/T,
see Refs. 23 and 33. Note, however, that also a small exchange
interaction Jm = 4.62 K between the sites m,3 and m + 1,3
[see Fig. 1(a)] may be relevant. Neglecting Jm the exchange
parameters of our effective Hamiltonian Heff , see Eqs. (3.6)
and (3.7), are J = 0.845 K, Jz = 0.287 K, and the effective
magnetic field is h = (1.384H − 44.778) K, where H is the
experimentally applied magnetic field measured in teslas.
This effective Hamiltonian is appropriate to describe the
low-temperature properties of azurite above 30 T. Note that
in Ref. 23, slightly larger values of the effective parameters J
and Jz were obtained (taking into account Jm = 4.62 K) by
analyzing the excitations above the one-third plateau state and
by fitting to the values of the upper edge field of the one-third
plateau and of the saturation field.

We present results for the azurite parameters for various
temperatures, including T = 0.08 K related to the measured
magnetization curve,31 in Figs. 7–9. In the inset of Fig. 7, we
first compare the results of different approaches for N = 6
(i.e., N = 18). Again, we observe that the results for H , H,
and Heff agree very well, whereas the data for the strong-
coupling approach, Heff , deviate noticeably. Hence we further
focus on data obtained from our effective Hamiltonian Heff

(3.6), (3.7) for N = 20, i.e., N = 60, with the parameters
J = 0.845 K, Jz = 0.287 K, and h = (1.384H − 44.778) K.
The magnetization curve at T = 0.08 K is shown in Fig. 7,
the field dependencies of the specific heat per site c and the
entropy per site s at T = 0.08 and 0.4 K are shown in Fig. 8,
and in Fig. 9, we present the temperature dependencies of the
specific heat c and the entropy s for three values of the magnetic
field, H = 31, 32.5, and 34 T. Remember that the effective
model Heff covers the low-temperature region, whereas the
high-temperature maximum in c(T ) and the corresponding
entropy s → ln 2 ≈ 0.693 are not provided by Heff .
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FIG. 7. (Color online) Low-temperature (T = 0.08 K) magne-
tization curves for the distorted diamond-chain Heisenberg antifer-
romagnet (2.1) with azurite parameters J1 = 15.51 K, J2 = 33 K,
J3 = 6.93 K (Jm = 0), and the gyromagnetic ratio g = 2.06. Inset:
N = 6, i.e., N = 18; main panel: N = 20, i.e., N = 60.

There are well pronounced features below 1 K, which
can be attributed to traces of independent localized-magnon
states: a steep increase of the magnetization (see Fig. 7),
an enhanced low-temperature entropy that reaches ln(2)/3 ≈
0.231 (see Fig. 9), and a low-temperature maximum in the
specific heat (see Fig. 9). The large entropy change caused by
variation of the magnetic field (see Fig. 8) implies an enhanced
magnetocaloric effect as it was noticed already in Refs. 17
and 23. (Note that recently the magnetocaloric effect in an
XXZ chain has been examined rigorously.44) It is in order to
mention here recent experiments on the magnetocaloric effect
for other (frustrated) quantum Heisenberg antiferromagnets.45

Corresponding experimental magnetocaloric studies for azu-
rite would be of great interest.

C. The two-dimensional case

The effective Hamiltonians for the distorted square-kagome
lattice are well-known spin-1/2 square-lattice models: the
N -site square-lattice isotropic XY model (A6), the 3N -site

FIG. 8. (Color online) Field dependence of the entropy per site
(thick) and specific heat per site (thin) for the distorted diamond-
chain Heisenberg antiferromagnet (2.1) with azurite parameters J1 =
15.51 K, J2 = 33 K, J3 = 6.93 K (Jm = 0), and the gyromagnetic
ratio g = 2.06 at low temperatures, T = 0.08 and 0.4 K.

FIG. 9. (Color online) Temperature dependence of the entropy per
site (thick) and specific heat per site (thin) for the distorted diamond-
chain Heisenberg antiferromagnet (2.1) with azurite parameters J1 =
15.51 K, J2 = 33 K, J3 = 6.93 K (Jm = 0), and the gyromagnetic
ratio g = 2.06 at high magnetic fields, H = 31, 32.5, and 34 T.

XXZ model on a decorated square lattice (B3), and the
N -site square-lattice XXZ model (3.10). All models contain a
Zeeman term with a magnetic field in z direction. The first and
the third models have been studied quite extensively in the past
(also in the context of hard-core bosons; then the magnetization
corresponds to the particle number and the magnetic field to
the chemical potential).46–53

It is generally known that the classical version of the
isotropic XY model (without field) undergoes a Berezinskii-
Kosterlitz-Thouless (BKT) transition54 at Tc ≈ 0.898|J|.55

The BKT transition occurs in the quantum spin-1/2 case
too, although, at a lower temperature, Tc ≈ 0.343|J|.46,48,50

The quantum model is gapless with an excitation spectrum
that is linear in the momentum. The specific heat shows T 2

behavior for T → 0, it increases very rapidly around Tc,
and it exhibits a finite peak somewhat above Tc. This kind
of the low-temperature thermodynamics survives for not too
large z-aligned magnetic field |h| < 2|J| (see, e.g., Figs. 3
and 8 in Ref. 52). Also, for the spin-1/2 square-lattice XXZ

model with dominating isotropic XY interaction in a z-aligned
magnetic field, the BKT transition appears.53

These known results can be translated to the considered
case, i.e., the distorted square-kagome spin model (2.1) in
the high-field low-temperature regime. Again, we use exact
diagonalization for the effective model Heff (3.10) and (3.11)
of N = 20 sites for the set of parameters J1 = 0.8, J2 =
2, J3 = 1.2 to analyze the low-temperature features of the
initial N -site square-kagome model (remember that N = 20
corresponds to N = 120). From the previous section, we know
that Heff for this set of parameters works perfectly well at
least up to T = 0.1, cf. Fig. 5. Our results are collected in
Figs. 10 and 11. Instead of the former jump of the ground-state
magnetization per site between 1/3 and 1/2 present at h1 = 5
for J1 = J3 = 1, the magnetization m(T ,h) shows a smooth
(but steep) increase varying the field h from h1l ≈ 4.996 to
h1h ≈ 5.027, see Fig. 10(a). Due to the distortion, the former
2N -fold degeneracy of the ground states at saturation field
is lifted and, as a result, there is no residual entropy at
T = 0. Since these 2N energy levels remain close to each
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FIG. 10. (Color online) (a) Magnetization per site m(T ,h),
(b) entropy per site s(T ,h), and (c) specific heat per site c(T ,h)
at high fields and low temperatures (T = 0.001,0.004,0.01) for
the distorted square-kagome Heisenberg antiferromagnet (2.1) with
J1 = 0.8, J2 = 2, J3 = 1.2. The data are obtained from the effective
Hamiltonian Heff (3.10) and (3.11) with N = 20.

other, in the field region h1l � h � h1h by a slight increase
of T all these states become accessible and the entropy
shows clear traces of the former residual entropy of size
ln(2)/6 ≈ 0.116, see Figs. 10(b) and 11(a) and cf. also Ref. 13.
Concerning the behavior of the specific heat of the distorted
square-kagome model for T → 0, we use the knowledge for
the energy spectrum of the effective easy-plane XXZ model:
the spectrum is gapless with a linear dispersion of excitations
in the field region h1l � h � h1h and, as a result, the specific
heat is ∝T 2 at low temperatures. Outside that field region
the spectrum is gapped leading to an exponential decay of

FIG. 11. (Color online) (a) Entropy per site s(T ,h) and (b) spe-
cific heat per site c(T ,h) at high fields (h = 4.99,5.01,5.02,5.03)
and low temperatures for the distorted square-kagome Heisenberg
antiferromagnet (2.1) with J1 = 0.8, J2 = 2, J3 = 1.2 according to
exact diagonalization data for the effective Hamiltonian Heff (3.10),
(3.11) with N = 20. Temperature dependence of c(T ,h) is shown
also for N = 16 (thin curves) and N = 10 (very thin curves).

the specific heat for T → 0. The tiny features at extremely
low temperatures for h = 5.01 and h = 5.02 in Fig. 11(b) are
finite-size artifacts related to finite lattices considered here.

With respect to the BKT transition the low-temperature
maximum of the specific heat, cf. Figs. 10(c) and 11(b),
deserves a more detailed discussion. For the gapped spectrum,
there is a broader maximum in c(T ). By contrast, in the
gapless field region h1l � h � h1h, the maximum occurs at
lower temperatures and it is more pronounced, i.e., it becomes
peaklike [compare, e.g., the curves for h = 4.99 and 5.01
in Fig. 11(b)]. As mentioned above, this well-pronounced
maximum is located somewhat above the BKT transition
point Tc.

Comparing the data for N = 10, 16, and 20, see Fig. 11(b),
one clearly sees that the maximum in the c(T ) curves
corresponding to h1l < h < h1h shows significant finite-size
effects (in particular, the height of the maximum increases
noticeably with system size N ), whereas in the gapped regime
the c(T ) curves are insensitive to the system size also around
the maximum. The size dependence of the height of the
maximum can be interpreted as signature of the BKT transition
(see also the discussion in Ref. 46).

Using the maximum in the specific heat as an indicator of
the BKT transition in the distorted square-kagome Heisenberg
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FIG. 12. (Color online) Sketch of the phase diagram of the dis-
torted square-kagome Heisenberg antiferromagnet (J1 = 0.8, J2 = 2,
J3 = 1.2) at high magnetic field (thick dashed green line) as it is
indicated by the position of the maximum T ∗ of the specific heat
c(T ,h) (thick solid blue curve). Thin dashed red curve corresponds
to the value of c(T ∗,h) divided by 1000. By filled violet circles the
values of h1l and h1h are indicated.

antiferromagnet, we can construct a sketch of the phase
diagram of the model in the h-T plane, see Fig. 12. The
largest transition temperature Tc appears for zero effective field
h, which corresponds to h ≈ 5.011 of the initial model, see
Eq. (3.11). A finite effective field |h| > 0 yields a decrease in
Tc, finally Tc becomes zero entering the gapped phase at h1l or
at h1h. As mentioned above, these features appear only at very
low temperatures. By lowering of J2 and/or increasing of |J1 −
J3|, one can get effective exchange parameters being larger by
one order of magnitude, see Eq. (3.11), and correspondingly
enlarged Tc. Discussing the field dependence of Tc, sketched
in Fig. 12, in terms of the initial model, we may conclude that
in the highly frustrated quantum Heisenberg antiferromagnet
on the square-kagome lattice with deviations from ideal ge-
ometry the BKT transition appears only for nonzero magnetic
fields, i.e., we are faced with a magnetic-field driven BKT
transition.

V. CONCLUSIONS

Motivated by recent experiments on frustrated quantum
Heisenberg antiferromagnets and recent theories of localized-
magnon systems, we have investigated the high-field low-
temperature regime of various frustrated quantum spin systems
belonging to the monomer class of localized-magnon systems.
In the case of the ideal geometry, i.e., when the localization
conditions are strictly fulfilled, their low-temperature physics
is well described by noninteracting (pseudo)spins 1/2 in a
field. This description is equivalent to the mapping onto
hard-core objects used in previous papers. Deviations from
ideal geometry, which are relevant for possible experimental
detection of the features related to localized magnons, set
a new low-energy scale determined by the distortion of the
exchange constants. An effective description of the corre-
sponding low-energy physics for the distorted systems is
given by nonfrustrated XXZ models, i.e., collective quantum
phenomena emerge. New generic features due to the deviation

form ideal geometry appear for magnetic fields in the vicinity
of the former saturation field h1 of the undistorted systems,
namely: (i) the ground-state magnetization curve exhibits
a smooth (but steep) part (instead of perfect jump at h1),
(ii) there is a drastic enhancement of the entropy at very
small but nonzero temperatures (instead of nonzero residual
ground-state entropy at h1), and (iii) the specific heat exhibits
a power-law decay (instead of zero specific heat at h1 and
exponentially vanishing specific heat just in the vicinity of h1).
It is worth noting that strong variation of entropy with varying
magnetic field leads to a noticeable magnetocaloric effect at
low temperatures around the saturation field. Moreover, we
mention that the characteristic extra low-temperature peak
in the specific heat survives in distorted systems. The most
prominent collective phenomenon is the appearance of a BKT
transition driven by the magnetic field in the considered two-
dimensional distorted localized-magnon system, the square-
kagome Heisenberg antiferromagnet. Likely, such a scenario
is not restricted to this particular model, rather it should be
also present in other two-dimensional quantum Heisenberg
systems built by weekly coupled localized-magnon cells. We
may conclude that the findings of our paper can be useful
searching for experimental manifestation of localized-magnon
effects.
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APPENDIX A: EFFECTIVE HAMILTONIANS WITHIN
THE STRONG-COUPLING APPROACH

1. Diamond chain

In the case of the diamond chain, the following two states of
each vertical bond are taken into account: |u〉 = |↑1↑2〉 with
the energy J2/4 − h and |d〉 = (|↑1↓2〉 − |↓1↑2〉)/

√
2 with

the energy −3J2/4. Furthermore, h0 = J2. For the projector
onto the ground-state manifold, we have

P = ⊗N
m=1Pm,

Pm = Pm ⊗ (|↑3〉〈↑3|)m, (A1)

Pm = (|u〉〈u| + |d〉〈d|)m.

The set of relevant excited states |ϕα〉, α �= 0, is the set of the
N2N states with only one flipped spin |↓3〉 on those sites which
connect two neighboring vertical bonds. Moreover, εα = ε0 +
h0 = ε0 + J2. After introducing (pseudo)spin-1/2 operators
for each vertical bond,

T z = 1
2 (|u〉〈u| − |d〉〈d|), T + = |u〉〈d|,

(A2)
T − = |d〉〈u|,
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Eq. (3.1) becomes

Heff =
N∑

m=1

[
J
(
T x

mT x
m+1 + T y

mT
y

m+1

) − hT z
m + C

]
(A3)

with

J = (J1 − J3)2

4J2
, h = h − h1 − (J1 − J3)2

4J2
,

C = −h − J2

4
+ J

2
− (J1 − J3)2

8J2
, (A4)

h1 = J2 + J, J = J1 + J3

2
.

The effective Hamiltonian in strong-coupling approach cor-
responds to an unfrustrated spin-1/2 isotropic XY chain in a
transverse magnetic field.40 This result coincides with that one
obtained in Ref. 23.

2. Dimer-plaquette chain

In the case of the dimer-plaquette chain, the relevant two
states of each vertical bond are the same, but the projector onto
the ground-state manifold obviously contains the projector on
the up-state for both spins on each horizontal bond [J4 bond
in Fig. 1(b)], i.e., Pm = Pm ⊗ (|↑3〉〈↑3| ⊗ |↑4〉〈↑4|)m, where
Pm is defined in Eq. (A1). Instead of a flipped spin on the
site, which connects two neighboring vertical bonds being an
excited state for the diamond chain, we consider here two
classes of excited states. The first one contains the singlet
state on the horizontal bond, |s〉 = (|↑3↓4〉 − |↓3↑4〉)/

√
2. The

energy of this excited state is εα = ε0 + J2 − J4. The second
one contains the Sz = 0 component of the triplet state on
the horizontal bond, |t〉 = (|↑3↓4〉 + |↓3↑4〉)/

√
2. The energy

of this excited state is εα = ε0 + J2. As a result, we again
obtain the one-dimensional spin-1/2 isotropic XY model in
a transverse field given by Eq. (A3), however, with different
parameters,

J = − (J1 − J3)2

8(J2 − J4)

J4

J2
,

h = h − h1 − (J1 − J3)2

8(J2 − J4)

2J2 − J4

J2
,

(A5)

C = −3

2
h − J2

4
+ J4

4
+ J

2
− (J1 − J3)2

16(J2 − J4)

2J2 − J4

J2
,

h1 = J2 + J, J = J1 + J3

2
.

Note that we get J → 0 if J4 → 0 as it is expected from
physical arguments.

3. Square-kagome lattice

In the case of the square-kagome lattice, we take into
account the following two states of each square: |u〉 =
|↑1↑2↑3↑4〉 with the energy J2 − 2h and |d〉 = (|↑1↑2↑3↓4〉 −
|↑1↑2↓3↑4〉 + |↑1↓2↑3↑4〉 − |↓1↑2↑3↑4〉)/2 with the energy
−J2 − h, and h0 = 2J2. For the projector Pm in Eq. (A1),
we now have Pm = Pm ⊗ (|↑5〉〈↑5| ⊗ |↑6〉〈↑6|)m, Pm =
(|u〉〈u| + |d〉〈d|)m, see also Fig. 2. Similar to the case of
the diamond chain the relevant excitations have one flipped

spin on those sites connecting two neighboring squares either
in the horizontal or in the vertical direction. Their energy is
εα = ε0 + h0 = ε0 + 2J2. The resulting effective Hamiltonian
(3.1) has the form

Heff = J
∑
(mn)

(
T x

mT x
n + T y

mT y
n

) − h
N∑

m=1

T z
m + NC, (A6)

where the first sum runs over all nearest neighbors on a square
lattice and

J = − (J1 − J3)2

16J2
, h = h − h1 − (J1 − J3)2

8J2
,

C = −5

2
h + 3

2
J − (J1 − J3)2

16J2
, (A7)

h1 = 2J2 + J, J = J1 + J3

2
.

Again we get a basic model of quantum magnetism, the square-
lattice spin-1/2 isotropic XY model in a transverse magnetic
field.

It is interesting to note that the effective interaction constant
J may have different signs. Its sign depends on the coupling
geometry of the initial frustrated quantum Heisenberg antifer-
romagnet, on the specific expression for the one-magnon state
|d〉, as well as on the specific excited states |ϕα〉 involved in
Eq. (3.1).

APPENDIX B: EFFECTIVE HAMILTONIANS WITHIN
THE LOCALIZED-MAGNON APPROACH

1. Dimer-plaquette chain

In the case of the dimer-plaquette chain, the Hamiltonian
given in Eq. (3.3) reads

H =
N∑

m=1

[
−h

2
− J2

4
− (h − J2)T z

m −
(

h − J

2

)(
sz
m,3 + sz

m,4

)

+ J1 − J3√
2

(
T x

msx
m,3 + T y

ms
y

m,3

) + JT z
msz

m,3 + J4sm,3 · sm,4

− J1 − J3√
2

(
sx
m,4T

x
m+1 + s

y

m,4T
y

m+1

) + J sz
m,4T

z
m+1

]
.

(B1)

This Hamiltonian corresponds to a spin-1/2 XXZ model in a
magnetic z-field on a simple chain of 3N sites with a unit cell
of three sites.

The starting point for the construction of the N -site
effective model is

Hmain =
N∑

m=1

[
− h1

2
− J2

4
− (h1 − J2)T z

m

−
(

h1 − J

2

)(
sz
m,3 + sz

m,4

) + JT z
msz

m,3

+ J4sm,3 · sm,4 + J sz
m,4T

z
m+1

]
(B2)

with h1 = J2 + J . That is an Ising-Heisenberg chain
Hamiltonian,57 cf. also Eq. (3.5). Next, we take into
account the perturbation V and consider excited states
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|ϕα〉. In contrast to the strong-coupling treatment where
the excited states correspond to one horizontal bond in the
state |s〉 or |t〉, now we are faced with a more complicated
situation, since the excited states and their energies depend
on the states of the neighboring vertical bonds. If both
neighboring vertical bonds are in the state with T z = 1/2,
the first excited state | . . . (|u〉|s〉)m(|u〉|↑3↑4〉)m+1 . . .〉 has
the energy εα = ε0 + J2 − J4, and the other excited state
| . . . (|u〉|t〉)m(|u〉|↑3↑4〉)m+1 . . .〉 has the energy εα = ε0 + J2.
Similarly, if both neighboring vertical bonds have T z = −1/2,
the excited state | . . . (|d〉|s〉)m(|d〉|↑3↑4〉)m+1 . . .〉 has the
energy εα = ε0 + J2 − J4 + J , and the excited state
| . . . (|d〉|t〉)m(|d〉|↑3↑4〉)m+1 . . .〉 has the energy εα =
ε0 + J2 + J . Furthermore, if T z

m = 1/2 and T z
m+1 = −1/2,

the excited state | . . . (|u〉|sud〉)m(|d〉|↑3↑4〉)m+1 . . .〉,
|sud〉 = (|s〉 + x|t〉)/√1 + x2, x = (J4 −

√
J 2

4 + J 2)/J
has the energy εα = ε0 + J2 + J/2 − J4/2 −

√
J 2

4 + J 2/2,

and the other excited state | . . . (|u〉|tud〉)m(|d〉|↑3↑4〉)m+1 . . .〉,
|tud〉 = (−x|s〉 + |t〉)/√1 + x2 has the energy εα = ε0 +
J2 + J/2 − J4/2 +

√
J 2

4 + J 2/2. If T z
m = −1/2 and T z

m+1 =
1/2, the excited state | . . . (|d〉|sdu〉)m(|u〉|↑3↑4〉)m+1 . . .〉,
|sdu〉 = (|s〉 − x|t〉)/√1 + x2 has the energy εα =
ε0 + J2 + J/2 − J4/2 −

√
J 2

4 + J 2/2, whereas the excited
state | . . . (|d〉|tdu〉)m(|u〉|↑3↑4〉)m+1 . . .〉, |tdu〉 =
(x|s〉 + |t〉)/√1 + x2 has the energy εα = ε0 + J2 +
J/2 − J4/2 +

√
J 2

4 + J 2/2. Taking into account all these
formulas in Eq. (3.1), after some calculations, we arrive at the
effective Hamiltonian given in Eqs. (3.6) and (3.9).

2. Square-kagome lattice

For the square-kagome lattice, the Hamiltonian H (3.3)
reads

H =
∑

m

[
− 3

2
h − (h − 2J2)T z

m −
(

h − 3

2
J

)(
sz

m,5 + sz
m,6

) + J

2
T z

msz
m,5 + J1 − J3

2

(
T x

msx
m,5 + T y

ms
y

m,5

) + J

2
sz

m,5T
z
mx+1,my

+ J1 − J3

2

(
sx

m,5T
x
mx+1,my

+ s
y

m,5T
y

mx+1,my

) + J

2
T z

msz
m,6 − J1 − J3

2

(
T x

msx
m,6 + T y

ms
y

m,6

) + J

2
sz

m,6T
z
mx,my+1

− J1 − J3

2

(
sx

m,6T
x
mx,my+1 + s

y

m,6T
y

mx,my+1

)]
. (B3)

It corresponds to a spin-1/2 XXZ model on a decorated square
lattice (which is also known as the Lieb lattice58), see Fig. 2.
The Hamiltonian Hmain is given by Eq. (B3) with J1 = J3 = J

and h = h1 = 2J2 + J . The states with one flipped spin on
those sites connecting two neighboring squares constitute the
set of relevant excited states. The energy of the excited states
depends on the states of these two squares. Namely, it acquires

the value εα = ε0 + 2J2 − J if both squares are in the |u〉
state, the value εα = ε0 + 2J2 − J/2 if one of the squares is
in the |u〉 state and the other one in the |d〉 state, and the value
εα = ε0 + 2J2 if both squares are in the |d〉 state. Taking this
into account, we can calculate the second term of Eq. (3.1) and
arrive at the Hamiltonian (3.10) with the parameters given in
Eq. (3.11).
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