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Second harmonic generation in magnetic nanoparticles with vortex magnetic state
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Nonlinear optical properties of a regular array of triangular-shaped vortex magnetic nanoparticles is studied
using the optical second harmonic generation (SHG) technique. We demonstrate that the SHG azimuthal
anisotropy is consistent with the 3m symmetry of individual Co nanodots placed in a square surface lattice.
Qualitatively different SHG magnetic hysteresis loops are obtained for circular and linear polarizations of the
fundamental radiation. In the first case, a wide SHG hysteresis at zero DC magnetic field H is observed,
which is attributed to a macroscopic magnetic toroid moment in Co nanodots induced by a noncentrosymmetric
distribution of the magnetization. On the contrary, for the linear pump polarization the SHG loop is similar to
observed commonly in linear magnetooptics for vortex magnetic structures and reveals a rather narrow width at
H = 0. A phenomenological SHG description based on the introduction of the SHG polarization induced by a
magnetic toroid moment in vortex magnetic nanostructures is presented.
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I. INTRODUCTION

Optical second harmonic generation has demonstrated its
unique possibilities to the studies of magnetic nanostructures.
Various types of effects have been observed using this tech-
nique, including size effects,1–3 geometrical resonances,4–6

plasmon excitation,7,8 etc. Composition of nanomaterials with
unique properties is of high interest, as they can bring about
very special physical and technological realizations. Much
attention is attracted to magnetic nanostructures, first of all
due to a possibility of making magnetic memory devices based
on such systems.9 It was demonstrated10 that depending on
their composition and geometry, nanostructures can reveal
magnetic toroid moment, similarly to ferrotoroid domains
observed in Ref. 11. Besides, chirality of vortex magnetic
nanoelements can be switched by an external magnetic field.12

On the contrary to the uniform magnetization, magnetic toroid
moment intrinsically exists in magnetic structures with spa-
tially noncentrosymmetric distribution of the magnetization.
It is an additional mechanism that results in the breaking
down of the time reversal symmetry in such structures and
hence should lead to the appearance of new interesting optical
effects.

Vortex magnetization was studied mostly in individual
nanodots using magnetic force microscopy and magnetic
transmission soft x-ray microscopy,13 while the task remained
to achieve a uniform vorticity within an ensemble of magnetic
nanoparticles. This problem was solved by the composition of
regular arrays of magnetic nanodots of noncentrosymmetric
shape.14,15 Here the idea of an asymmetry of nanodots’
structure for the formation of magnetic vortices was exploited.
The symmetry with respect to spatial inversion and time
reversal operations is broken in such structures due to a
nonuniform magnetic moment distribution. That leads to the
existence of nonreciprocal optical effects first observed in
Ref. 14. Optical second harmonic generation (SHG) is known
for its intrinsically high sensitivity to the main properties
of nanostructures, including magnetic and magnetoplasmonic
ones.16–20 The SHG was shown to be a promising tool for
studying structures with antiferromagnetic or ferrotoroidal

ordering.21,22 A violation of spatial inversion symmetry is also
necessary for the SHG process.

In this paper the SHG probe is applied to visualize the vortex
magnetization state of regular arrays of triangular-shaped
cobalt nanoparticles. The main point here is that due to a
chosen design of the samples, a macroscopic magnetic vortex
state can be formed by application of an external DC magnetic
field. We demonstrate that the vortex magnetic state modifies
the SHG hysteresis loops and thus allows us to distinguish the
vortex magnetic state of a regular array of magnetic nanodots.
A phenomenological description of the SHG process in such
structures is discussed.

II. SAMPLES AND EXPERIMENTAL SETUP

The structure under study is a 2D square lattice of
triangular-shaped cobalt dots made by the electron beam
lithography and lift-off technique on the surface of an
amorphous silica plate. The deposition procedure is described
in detail in Ref. 23. The thickness of the magnetic structures
is 30 nm, a typical size of the Co triangle’s side is 0.7 μm, and
the period of the lattice is 1.4 μm.

The composed nanostructures reveal a vortex magnetiza-
tion state in the absence of the external magnetic field. A
noncentrosymmetric shape of a single element along with the
regular distribution of nanoparticles on the substrate, result in
the macroscopic vortex magnetization after the external DC
magnetic field is applied along the sides of the triangular
particles. The corresponding magnetic state visualized by
MFM technique is shown in Fig. 1. On the contrary, after
the structure was magnetized along the height of the triangles,
the particles with clockwise and counterclockwise vortices are
formed, so that the average vortex magnetization is zero. Thus
the appearance of vorticity in the optical response of such
structures can be studied when using different magnetization
geometry.

SHG experiments were performed using the linearly or
circularly polarized radiation of a Ti:Sapphire laser operating
at the wavelength of 780 nm, with the pulse duration of 100 fs
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FIG. 1. (Color online) (a) Scheme of the light interaction with the
sample; (b) MFM image of a homogeneous vortex magnetic state of
the sample.

and the average power of 100 mW. The pump radiation was
focused on the surface of the sample into a spot of 50 μm in
diameter, the angle of incidence being 40◦. Second harmonic
radiation at 390 nm reflected from the sample passed through
an analyzer and necessary set of colored filters and was
detected by a PMT. The anisotropy of the SHG response was
studied when the sample was rotated around its normal, the
polarization of the fundamental and second harmonic radiation
being fixed.

Magnetization-induced effects in SHG were studied in the
transversal geometry, as the magnetic field was applied in
the plane of the sample, along the side or the height of the
Co triangles. Computer controlled electromagnet was used to
change the magnetic field so that the magnetic hysteresis loops
in the SHG intensity could be measured.

III. EXPERIMENTAL RESULTS

A. SHG anisotropy measurements

Prior to the magnetic measurements, the azimuthal SHG
anisotropy was studied in transmission through the sample at
normal incidence. The measurements were performed for the
demagnetized sample, i.e., after the removal of the magnetic
field applied along the height of the triangles. In other words
both average vortex moment and magnetization were zero
and the SHG anisotropy revealed purely the symmetry of a
nonmagnetic SHG response.

Figure 2(a) shows the SHG anisotropic patterns as the
linearly polarized fundamental radiation was used, its polar-
ization plane being parallel or perpendicular with respect to
the second harmonic polarization. A clear sixfold symmetry
of the SHG patterns can be seen, that is consistent with the 3m

symmetry of triangular-shaped particles. Zero azimuthal angle
corresponds to the case as linear fundamental polarization is
parallel to the sides of the triangular particles.

Azimuthal dependencies for the parallel and crossed po-
larizations of the fundamental and SHG radiation shown
in Fig. 2(a) are shifted on the angular scale. This proves
that the observed azimuthal dependencies are attributed to
anisotropy of the studied structure. An isotropic background
is probably the result of the Hyper-Rayleigh scattering at the
SHG wavelength in our spatially inhomogeneous structure.24

Figure 2(b) presents the SHG anisotropic patterns measured
for the left- or right-circularly polarized fundamental radiation.
A clear threefold symmetry of the SHG pattern exists, which
proves again that the SHG symmetry is governed by the
symmetry of the second-order nonlinear-optical response of

0.5

1.0

1.5

2.0

0
30

60

90

120

150
180

210

240

270

300

330

0.5

1.0

1.5

2.0

0 50 100 150

1.0

1.5
p-s

s-p

0.8

0.9

1.0

1.1

Azimuthal angle (deg.)

S
H
G
in
te
ns
ity
(a
rb
.u
n.
)

.

S
H
G
in
te
ns
ity
(a
rb
.u
n.
)

.

S
H
G
in
te
ns
ity
(a
rb
.u
n.
)

.

(a)

(b)

FIG. 2. (Color online) Azimuthal anisotropy patterns of linearly
polarized SHG measured for the normal incidence of the funda-
mental radiation with (a) linear polarization that is parallel (black
squares) or perpendicular (circles) with respect to fundamental
beam polarization, and (b) left (black squares) or right (circles)
circularly polarized fundamental radiation. Azimuthal orientation of
the samples corresponds to the case as the sides of the Co triangles
are parallel to the plane of incidence of the fundamental beam. Lines
are the result of the approximation.

an individual magnetic particle. This conclusion is reasonable
if we take into account that the size of a particle is comparable
with the wavelength of the fundamental light, thus the effects
of the particles shape along with the retardation effects within
it form the coherent SHG response of the whole ensemble.

B. Magnetic-field induced SHG effects

1. Linearly polarized fundamental radiation

Magnetization-induced nonlinear optical effects were stud-
ied in the geometry of the transversal magneto-optical Kerr
effect for specularly reflected SHG. In order to reveal the vortex
magnetization state, the SHG measurements were performed
for the two cases, as the sample was magnetized along the
side of the triangles (which leads to a macroscopic vortex
magnetization of an array of nanodots) and along their height
(so that the vortices are randomly oriented in the structure).

The SHG hysteresis loop for the magnetization along
the triangles’ side shown in Fig. 3 were measured for the
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FIG. 3. SHG hysteresis loop measured under the excitation of the
magnetic structure by p-polarized fundamental radiation and for the
DC magnetic field that is parallel to the side of Co triangles.

p-polarized fundamental and SHG waves. This corresponds
to the macroscopic vortex magnetization, which is maximal
for H = 0. The shape of the SHG hysteresis loop is similar
to commonly observed for vortex magnetic structures and
reveals a very small width at zero magnetic field. Similar
SHG dependence was observed after the Co triangles were
magnetized along their height so that a random vortex
magnetization was formed.

At the same time, a strong modulation of the SHG intensity
induced by the homogeneous magnetic field can be seen in both
cases. It can be characterized by the SHG magnetic contrast,
that is commonly introduced as ρ2ω = I2ω(+)−I2ω(−)

I2ω(+)+I2ω(−) , where
I2ω(+) and I2ω(−) are the SHG intensities for the opposite
directions of the external magnetic field.17 In the considered
structures and for the saturating magnetic fields of ±1.2 kOe
we obtain ρ2ω ≈ 10%, that is a typical value for ferromagnetic
metals.

2. Circularly polarized fundamental radiation

While vortex magnetization of nanoparticles is not much
pronounced for the linear polarizations of the pump radiation,
our experiments show that the opposite vortex magnetic states
can be clearly distinguished when using the circularly polar-
ized pump beam. Figures 4(a) and 4(b) show the dependencies
of the p-polarized SHG intensity on the external magnetic field
for that case. It can be seen that the shape of the SHG hysteresis
loops differs from that obtained for the linearly polarized
fundamental radiation (see Fig. 3 for comparison). The most
clear difference is that the SHG hysteresis loop at H = 0 is
rather wide for the circular fundamental radiation. The quantity
that can lead to this difference is the macroscopic toroid
moment T that is induced by average vortex magnetization
of nanoparticles and will be discussed in the next section.
Here it is worth noting that T reaches its maximal value for
the zero magnetic field.

To check whether this difference in the SHG hysteresis
loops is due to the nonzero macroscopic magnetic vorticity,
a similar experiment was performed for magnetization along
the triangles’ height, i.e., for the zero macroscopic vortex mag-
netization. The corresponding experimental SHG dependence
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FIG. 4. (Color online) Hysteresis loops of the SHG intensity
measured under the excitation of the magnetic structure by (a) left
circularly (LC) and(b) right circularly (RC) polarized fundamental
radiation, DC magnetic field being parallel to the side of the Co
triangles; (c) the DC magnetic field is parallel to the height of the
triangles. P -polarized SH wave was detected.

shown in Fig. 4(c) is qualitatively similar to that measured
for the linear pump polarization. In other words, we see
that the macroscopic vortex magnetic moment results in the
appearance of nonzero width of the SHG hysteresis loop at
zero magnetic field. That allows us to distinguish different
handedness of the vortex magnetization.

IV. PHENOMENOLOGICAL DESCRIPTION OF SHG
IN VORTEX MAGNETIC STRUCTURES

In order to describe the experimental results on the SHG
anisotropy from the structures under study we will consider
the SHG response from triangular shaped nanodots. It is clear
from the experiment that the SHG anisotropy and thus the SHG
magnetic field dependencies are determined by the nonlinear
optical response of an individual triangular particle. This may
be attributed to the fact that the size of the dot is comparable to
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FIG. 5. (Color online) The result of micromagnetic simulations of
spatial distribution of magnetic dipole moments in a single triangular-
shaped nanodot for different values of the external magnetic field
shown by an arrow (a)–(d). Schematic view of the magnetic field
dependencies of Pcr , PM , and PT (e).

the wavelength of the fundamental radiation, while the lattice
period is sufficiently larger.

Phenomenologically, the spatial distribution of magnetiza-
tion may be defined by introducing the moments:

U
(n)
ij...mη = 1

V

∫
rirj ...rm︸ ︷︷ ︸

n−1

MηdV , (1)

where V is the volume of a particle, rl is the lth component
of the radius vector, and Mη is the ηth component of the
magnetization. The first rank tensor in Eq. (1) corresponds
to the average magnetization U (1) ≡ 〈M〉 = 1

V

∫
MdV and

equals to zero for vortex magnetic particles at H = 0. The
results of micromagnetic simulations in a single triangular
shaped magnetic dot for different values of the external
magnetic field are shown in Figs. 5(a)–5(d). The simulations
were performed using the ITL/NIST micromagnetics public
code project.25 A vortex magnetic structure is formed in the
absence of magnetic field [Fig. 5(a)], the vortex core being
placed in the geometrical center of a particle. Figure 5(c)
shows the spatial distribution of M obtained for a magnetic
field that is close to the saturation value Hsat. It can be seen that
the vortex structure is destroyed and averaged magnetization
〈M〉 �= 0. Figure 5(b) shows an intermediate situation.

It is easy to show that the symmetric part of the second-
rank tensor U

(2)s
iη = 1

2 {riMη + Mirη} is zero for the vortex
magnetic particles, which are considered in our experiments.
This stems from an antisymmetric distribution of M for a
vortex magnetic state, −M(r) = M(−r). On the contrary, the

antisymmetric part U (2)as
iη = 1

2 {riMη − Mirη} �= 0 in that case.
It is known that an antisymmetric second-rank tensor is dual
to a polar vector, which allows us to introduce a magnetic
toroid moment T ∝ ∫

[r × M]dV . This true vector can be
used for the characterization of vortex magnetic distribution
in magnetic dots.

Following the approach developed for a uniformly magne-
tized medium, the magnetization induced part of the SHG po-
larization can be described as PM=χ̂ (2)ME(ω)E(ω)M.26 Here
and below for the sake of simplicity M denotes the averaged
magnetization 〈M〉. Analogously, the T-induced contribution
to the nonlinear polarization is PT =χ̂ (2)T E(ω)E(ω)T. Here
χ̂ (2)T and χ̂ (2)M are the corresponding parts of the second
order susceptibility. Thus the SHG intensity from a single
vortex magnetic dot can be described as a following function
of the external magnetic field H :

I2ω(H ) ∝ |P(M)|2 = |Pcr + PM (H ) + PT (H )|2, (2)

where Pcr is a nonmagnetic (crystallographic) component of
the nonlinear polarization. The three terms in Eq. (2) are
described by various dependencies on the magnetic field. The
first one is constant, PM (H ) is antisymmetric in H and is zero
for H = 0. The third contribution is symmetric with respect
to H = 0 and has the opposite signs for the different branches
of the hysteresis loops. Schematically, these dependencies are
shown in Fig. 5(d).

It should be stressed that PT and PH reveal different
dependencies on the external magnetic field. Indeed, T is a
real vector that is oriented along the normal to the surface of
vortex Co particles, it reaches its maxima at H = 0 and is zero
for the saturating H values. The toroid moment changes its
sign as the vorticity of magnetic particles is changed, so that
PT has the opposite orientations for different branches of the
SHG hysteresis loops.

On the contrary, PM is induced by an axial susceptibility
tensor that introduces additional magnetic symmetry opera-
tions. In particular, reversal of magnetization leads to change
of the sign of PM and is responsible for the appearance of
magneto-optical Kerr effects at the SHG wavelength that can
be seen for the saturating magnetic fields (see Figs. 3 and 4).

To describe the SHG anisotropy and hysteresis loops, the
symmetry of all the SHG susceptibility tensors χ̂ (2)cr , χ̂ (2)T and
χ̂ (2)M should be analyzed for the case of a triangular-shaped
Co nanodot. The crystallographic susceptibility χ̂ cr tensor has
the following components that contribute to the p-polarized
SHG that is measured in the experiment:16

χcr
yyz = χcr

yzy, χcr
yyy = −χcr

yxx
(3)

χcr
zxx = χcr

zyy,χ
cr
zzz.

The symmetry of these components determine the 3m sym-
metry of an individual triangular nanodot, so that Pcr ∝
|a + b sin 3ψ | for both linear and circular polarization of the
fundamental radiation,16 where ψ is the azimuthal angle of
rotation. The corresponding approximation is shown by solid
lines in Fig. 2 and is in good agreement with the experiment.

As a nonzero magnetic field oriented along the side of a
triangular-shaped Co particle, M ‖ (OX) (see the coordinate
frame in Fig. 1), the average homogeneous magnetization
reduces the symmetry of the SHG response from 3m to a mirror
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plane symmetry. Thus the following magnetization-induced
SHG susceptibility components appear:17

χM
yxxX,χM

yyyX,χM
yzzX,χM

yyzX = χM
yzyX,

(4)
χM

zxxX,χM
zyyX,χM

zzzX,χM
zyzX = χM

zzyX,

where the last subscript index denotes the orientation of M.
Finally, the following nonzero components induced by the

T vector exist:

χT
yyzZ = χT

yzyZ, χT
yyyZ = −χT

yxxZ
(5)

χT
zxxZ = χT

zyyZ,χT
zzzZ;

The χ̂ (2) components expressed by Eqs. (3)–(5) determine the
SHG magnetic field dependencies for a particular combination
of polarizations of the fundamental and SHG radiation. In
general, one can write for the ith Cartesian component
of P:

Pi = χcr
ijkEjEk + eiφ1χT

ijklEjEkTl + eiφ2χM
ijklEjEkMl, (6)

where φ1 and φ2 are the relative phase shifts and the summation
over the indices is supposed.

In the simplest case of a nonabsorbing nonlinear medium
and linearly polarized SHG and fundamental radiation, the
phase shifts φ1 and φ2 are 90◦, so that there is no interference
between PM , PT and the crystallographic contribution to P in
Eq. (2). Therefore there should be no linear in magnetization
effect in the SHG intensity induced by M and T. On the
contrary, for a circularly polarized incident light and the two
orientations of the plane of incidence (mirror plane YOZ and
perpendicular to the mirror plane XOZ) we get:

E(YOZ) = −ex ± i(ey sin θ + ez cos θ ), (7)

E(XOZ) = ey ± i (ex sin θ + ez cos θ ) , (8)

where θ is the angle of incidence and “±” stands for two
circular polarizations of the fundamental wave. In this case the
phase shift between Cartesian components of the electric field
E leads to the interference between Pcr and PM . Thus linear in
M and T effects in the SHG intensity and the corresponding
SHG magnetic hysteresis loops can be observed for the circular
polarization of the fundamental light.

It is worth noting that this effect exists in noncentrosymmet-
ric dots and vanishes for laterally isotropic (circular) particles.
Moreover, SHG hysteresis also vanishes in nonabsorbing dots
if the plane of incidence of the fundamental beam coincides
with the mirror plane of the particle due to the symmetry

considerations described above, while this restriction is
avoided if the magnetic medium is nontransparent.

Thus the symmetry analysis has shown that in the case of the
circularly polarized fundamental beam, nonzero components
of the susceptibility tensors χ̂T and χ̂M exist. The SHG
magnetic hysteresis loops shown in Fig. 4 can be approximated
by the expression (2). In our approximation model we assumed
that P M (H ) ∼ M(H ) = A1 · arctan(H − Hc), where M(H )
is average magnetization and Hc is coercivity and P T (H ) =
A2 · e− H2

σ . Solid lines in Figs. 4(a) and 4(b) are the result
of the corresponding approximation of the experimental
data, which are in reasonable agreement. It stems from the
approximation (Fig. 4) that the phase shift φ1 is 98◦±5◦ and
φ2 is 102◦±5◦, which is close but still differ from the π/2 value
for nonabsorbing media. The obtained amplitudes A1 and A2

equal 0.15 ± 0.02 and 0.09 ± 0.03 correspondingly (when the
amplitude of nonmagnetic response is normed to 1).

Thus we may conclude that the appearance of the magnetic
toroid moment is clearly seen in the SHG response for
the circular polarization of the fundamental radiation and
corresponds to a nonzero width of the SHG magnetic hysteresis
loop at zero value of the external magnetic field. At the same
time, such an effect for the linear polarization is much less
pronounced.

V. CONCLUSION

Summing up, we have studied the SHG hysteresis loops
in a regular array of Co triangular nanodots for different
polarizations of the fundamental radiation. We demonstrate the
appearance of two magnetization-induced effects, the first one
being linear in the average magnetization and the second one
induced by a macroscopic magnetic toroid moment. We show
that for circularly polarized pump radiation the SHG hysteresis
loop at H = 0 reveals a nonzero width, which undoubtedly
indicates the appearance of the toroid moment in the formation
of the SHG response. A phenomenological description of the
SHG process in vortex magnetic structures is developed.
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