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Size of linear superpositions in molecular nanomagnets
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Molecular nanomagnets are zero-dimensional spin systems that exhibit quantum-mechanical behavior at
low temperatures. Exploiting quantum-information theoretic measures, we quantify here the size of linear
superpositions that can be generated within the ground multiplet of high- and low-spin nanomagnets. Amongst
the former class of systems, we mainly focus on Mn12 and Fe8. General criteria for maximizing such measures
are also outlined, and illustrated with reference to spin clusters of different geometries. The actual character
(micro or macroscopic) of linear superpositions in low-spin systems is inherently ill-defined. Here, this issue is
addressed with specific reference to the Cr7Ni and V15 molecules, characterized by an S = 1/2 ground state. In
both cases, the measures we obtain are larger than those of a single s = 1/2 spin but not proportionate to the
number and value of the constituent spins.
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I. INTRODUCTION

Molecular nanomagnets represent prototypical examples
of engineerable quantum systems. In fact, their physical
properties can be widely tuned by chemical synthesis, and
quantum coherence effects show up in their spin dynamics.1,2

These effects include quantum tunneling of the molecule spin,
resulting in a speed-up of the magnetization relaxation,3,4 and
quantum phase interference.5 Besides, microwave-induced
quantum coherences6,7 and Rabi oscillations8,9 were recently
observed in a wide class of spin clusters. These experimental
achievements, along with the microscopic understanding and
chemical control of the decoherence processes,10,11 will pos-
sibly enable the use of molecular nanomagnets for quantum-
information processing.12,13

Amongst molecular nanomagnets with dominant exchange
interaction, a prominent distinction is that between high-
and low-spin systems. In the former class of spin clusters,
the ground S multiplet may include classical-like states that
are macroscopically different from one another, and whose
linear superpositions can thus be regarded as Schrödinger
cat states.14 In the latter systems, antiferromagnetic interac-
tions result instead in ground states with low S and highly
nonclassical features, such as quantum entanglement15 or
Néel-vector tunneling.16–18 Hereafter, we theoretically inves-
tigate the size of linear superpositions that can be—or have
already been—generated in both these kinds of molecular
nanomagnets. In the case of high-spin molecules, we quantify
the actual macroscopicity of linear superpositions. In other
words, we determine to which extent their sizes are
proportionate to the number and value of the constituent spins,
and thus approach the theoretical maxima. We initially
focus on the most celebrated single-molecule magnets,
[Mn12O12(CH3COO)16(H2O)4]19 and [Fe8O2(OH)12(tacn)6]
Br8(H2O)9 (tacn=1,4,7-triazcyclononane).20 In both these
nanomagnets (hereafter referred to as Mn12 and Fe8), the
ground state is characterized by a ferrimagnetic ordering,

with the total spin S resulting from the inequivalence of
the two sublattices.1 The role played by such inequivalence
is further discussed in reference to a prototypical class of
spin rings, which includes the [Mn(hfac)2(NITPh)]6 molecule
(Mn6),21 and a general criterion for maximizing the size
of linear superpositions is outlined. In the case of low-
spin molecules, the actual character of linear superpositions
seems intrinsically ill-defined. In fact, these might appear
to be either micro- or macroscopic, depending on whether
one refers to the total spin of the ground state or to the
number of spins that form the cluster. Here, we quantify
the size of linear superpositions that have been recently
generated in two significantly different prototypes of S = 1/2
molecular nanomagnets, namely [Cr7NiF8{O2CC(CH3)3}16]6

and [VIV
15As6O42(H2O)]8 molecules, hereafter referred to as

Cr7Ni and V15. In both cases, the measures we obtain are
significantly larger than those of a single s = 1/2 spin, but not
proportionate to the number and value of the constituent spins.

The problem of quantifying the size of a linear superpo-
sition has been addressed from different perspectives, mainly
to assess the actual macroscopicity of quantum coherences
in infinite physical systems.22–27 There, the question whether
or not a linear superposition is macroscopic is answered by
considering the limit of different measures as the number N

of the microscopic subsystems tends to infinity. In the present
paper, we use two of such measures to quantify the size of
linear superpositions in zero-dimensional spin systems. The
first measure is based on the quantum Fisher information,27 and
quantifies both the nonclassicality of the linear superposition
|�〉 = (|�1〉 + |�2〉)/

√
2 and the classical-like character of its

components in terms of the respective quantum fluctuations
of single-spin operators. As showed in the following, the
advantage of such measure in the present context is at least
twofold. Firstly, it quantifies the distinguishability between
the two superposed states by means of a physically intuitive
quantity, such as the spin projection of the constituent ions.
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Secondly, it can be expressed in terms of spin-pair correlation
functions, that are now experimentally accessible in molecular
spin clusters.28 The second measure we consider quantifies
the size of a linear superposition in terms of the possibility
to distinguish between the two components |�1〉 and |�2〉
by means of local measurements. The size of |�〉 is thus
identified with the number of subsystems into which the spin
cluster can be partitioned, such that the which-component
information is available in each of the subsystems.29 The
notion of distinguishability can be itself translated in terms
of measurement outcomes, but in a way that makes it of
little experimental relevance in the present context. In fact,
the projective measurements of the individual spins (or of
arbitrary subsets of them) that would be required to estimate the
distinguishability are presently unfeasible in molecular nano-
magnets. On the other hand, this measure has the advantage of
being independent on the specific class of one-body operators
that we use with the Fisher information, and is thus suitable
for comparing the size of linear superpositions obtained in
completely different systems.

The paper is organized as follows. In Sec. II, we introduce
the measures that are used to quantify the size of the linear su-
perpositions. In Sec. III, we investigate spin clusters that allow
the generation of large linear superpositions. In particular, we
present the cases of Mn12 and Fe8 and discuss which general
features of a spin cluster maximize the considered measures.
Section IV is devoted to nanomagnets with low-spin and highly
frustrated ground states and, specifically, to Cr7Ni and V15.
Finally, we summarize our findings and draw the conclusions
in Sec. V.

II. SIZE OF LINEAR SUPERPOSITIONS
IN SPIN CLUSTERS

In the following, we consider linear superpositions of the
form

|�〉 = 1√
2

(|�1〉 + |�2〉), (1)

whose components are eigenstates of the spin Hamiltonian
H0 of the molecular nanomagnet. For the systems of interest,
H0 commutes with both S2 and Sz, and its dominant term
(HExc) includes the exchange couplings between the N spins.
The considered states |�1〉 and |�2〉 belong to the ground S

multiplet, and are characterized by defined values of Sz (M1

and M2, respectively).

A. Quantum Fisher information

The first criterion we use for quantifying the size of
the linear superposition is based on the quantum Fisher
information.27 For pure states, such quantity coincides, up
to a multiplicative constant, with the variance of the relevant
operator X:

F(�) = 4 max
X

[〈�|X2|�〉 − 〈�|X|�〉2]. (2)

Here, X = ∑N
i=1 n̂i · si is a generic sum of single-spin

components, with site-dependent orientations, that are spec-
ified by the versors n̂i . The quantum Fisher information

thus reads

F(�) = 4
∑

α,β=x,y,z

N∑
i,j=1

ni,αnj,β〈�|si,αsj,β |�〉

− 4

( ∑
α=x,y,z

N∑
i=1

ni,α〈�|si,α|�〉
)2

. (3)

For any given |�〉, we compute the one- and two-spin
expectation values that enter the above expression, and derive
the set of versors ni that maximize F(�). At a qualitative
level, the optimal operator X should be a well defined quantity
within the states |�1〉 and |�2〉, with very different expectation
values in the two cases. Therefore it efficiently distinguishes
between the two components of the linear superposition.

For a given spin cluster, the theoretical maximum of the
Fisher information is given by

Fmax = 4

(
N∑

i=1

‖n̂i · si‖
)2

= 4

(
N∑

i=1

si

)2

, (4)

where the norm of the spin operator is defined as its largest
eigenvalue (in modulus). This value corresponds to the state
|�max〉 = (|�max

1 〉 + |�max
2 〉)/√2, whose components read∣∣�max

k=1,2

〉 = ⊗N
i=1|n̂i · si = (−1)k+1si〉. (5)

These states are characterized by opposite expectation values
[〈�max

k |X|�max
k 〉 = (−1)k+1 ∑N

i=1 si] and vanishing fluctua-
tions of X.

In most of the cases considered hereafter, the operator X that
maximizes F(�) coincides with the staggered magnetization
S∗

z :

X = S∗
z = SA

z − SB
z =

NA∑
k=1

sA
k,z −

NB∑
l=1

sB
l,z, (6)

where A and B are two sublattices into which the spin cluster
is partitioned (NA + NB = N ). Each sublattice includes all
the spins si with the same sign of the expectation value
〈�k|sz,i |�k〉, for any given component k = 1,2 of the linear
superposition. The components of |�max〉 then take the form
of collinear spin states:∣∣�max

k

〉 = ⊗NA

i=1

∣∣mA
i = ±sA

i

〉 ⊗NB

j=1

∣∣mB
j = ∓sB

j

〉
, (7)

where the first and second signs correspond to k = 1 and 2,
respectively.

The quantum Fisher information can be used to quantify
the size of the linear superposition |�〉:27

DFI(�) = F(�)

4
∑N

i=1 si

. (8)

Given the above normalization, DFI(�) can take any value
in the interval [0,

∑N
i=1 si]. The maximum size of a linear

superposition that can in principle be generated in a given
spin cluster thus depends not only on the number N of the
constituent spins but also on their values si . The restriction to
operators X that are linear combinations of single-spin terms
allows us to relate the size DFI(�) to experimentally accessible
quantities, such as spin-pair correlation functions.28
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The absolute value of the Fisher information quantifies
the size of the linear superposition in terms of the quantum
fluctuations of the operator X. However, it does not discrim-
inate between the contribution to such fluctuations coming
from the components |�1〉 and |�2〉, and the one that results
from their linear superposition. In a Schrödinger cat state,
for example, the latter contribution should dominate on the
former one14: the superposed states should in fact approach
a classical character, and be characterized by the smallest
amount of quantum fluctuations allowed by the uncertainty
relations. In this perspective, a suitable figure of merit for
the linear superposition is represented by the relative Fisher
information, where the variance of the relevant operator in |�〉
is normalized to the average variance in |�1〉 and |�2〉:27

DRFI(�) = F�(�)
1
2 [F(�1) + F(�2)]

. (9)

Here, all the functionsF refer to the operator X that maximizes
DFI(�). The measure DRFI(�) is not bounded from above,
and diverges if the components of the linear superpositions are
eigenstates of X.

B. Distinguishability by local measurements

The size of the linear superposition |�〉 can also be
quantified in terms of the maximal number of subsystems
that carry the which-component information.29 The maximum
probability of successfully discriminating between |�1〉 and
|�2〉 through a measurement on the subsystem Al of the spin
cluster is given by

Pl = 1
2 + 1

4

∥∥ρ
(1)
l − ρ

(2)
l

∥∥
1, (10)

where ρ
(k)
l is the reduced density matrix of Al obtained from

the state |�k〉, and ‖X‖1 := ∑
i |λi | (with λi the eigenvalues of

X) is the trace norm. The size of |�〉 based on the distinguisha-
bility between the two components by local measurements is
given by

DLM(�,δ) = max
{Al}

n, (11)

where n is the number of subsystems Al into which the N -spin
cluster is partitioned. The maximization is performed over all
the partitions such that Pl > 1 − δ for all l = 1, . . . ,n, where⋃n

l=1 Al = S and S is the N -spin system. Given a spin cluster,
the present measure achieves its theoretical maximum for a
state such as |�max〉 [Eq. (5)], being DLM(�max,δ) = N for
any finite δ.

The size quantification based on the local distinguishability
has the advantage, with respect to DFI and DRFI, of being
independent on the specific class of operators X. It thus allows
the comparison between the sizes of linear superpositions that
we obtain for the molecular nanomagnets with those estimated
for different systems. On the other hand, the connection to
experimentally accessible quantities is less straightforward.
The maximum probability Pl is in fact obtained by a projective
measurement in the basis that diagonalizes ρ

(1)
l − ρ

(2)
l (see

Ref. 29 and references therein). In the case where Al

includes more than one spin, the expression of the relevant
observable might be a nontrivial function of the spin operators.
Besides, projective measurements of single spins, or of specific

subsystems of the spin cluster, are presently unavailable in
molecular magnetism.

III. HIGH-SPIN MOLECULES

The molecular nanomagnets where one can, in principle,
generate the largest linear superpositions are those character-
ized by a ground state with a large spin S. In particular, the
spin-polarized ground states (M1 = +S and M2 = −S) are
expected to have a classical-like character, and to be highly
distinguishable in terms of single-spin operators, as should be
the case with the components of a Schrödinger cat state. In the
first part of the present section, such expectations are tested for
the prototypical high-spin nanomagnets, namely, Mn12 and Fe8

(Sec. III A).1 In order to put in a wider perspective the results
concerning these two molecules, we discuss how the sizes of
linear superpositions can be possibly increased by suitably
modifying the exchange couplings or the geometry of the spin
cluster (Sec. III B).

A. Prototypical high-spin nanomagnets

The dominant part HExc in the spin Hamiltonian of Mn12 and
Fe8 corresponds to the isotropic exchange interaction between
neighboring spins. The total spin S can thus be regarded
as a good quantum number. Smaller terms, such as those
related to crystal field, can be treated at a perturbative level
and projected within the ground S multiplet.1 In particular,
the crystal field anisotropy is often assumed to be quadratic
in the total spin operators, and its main term reflects an
axial symmetry: HACF = DS2

z (with D < 0), where z is the
principal symmetry axis of the molecule. HACF removes the
degeneracy within the ground S multiplet of HExc, giving
rise to the characteristic double-well potential, with the two
degenerate ground states M = ±S. Hereafter, we consider
linear superpositions of the form Eq. (1), where |�1〉 and |�2〉
are eigenstates of H0 = HExc + HACF. Coherences between
such eigenstates can be induced by additional and smaller
terms in the spin Hamiltonian H that do not commute with
Sz, such as the rhombic crystal field HRCF = E(S2

x − S2
y ),

or by a transverse magnetic field. Alternatively, arbitrary
linear superpositions can be generated by multifrequency pulse
sequences, that exploit the removed degeneracy between the
different �M = ±1 transitions.12

1. The Mn12 molecule

The magnetic core of the Mn12 molecule essentially consists
of an external ring, formed by eight Mn3+ ions (each carrying
an s = 2 spin), and four internal Mn4+ ions (with s = 3/2).
Based on their relative orientation, these spins can be grouped
in two sublattices, labeled A and B, that are formed by
the external and internal spins, respectively [see Fig. 1(b)].1

The dominant part HExc of the spin Hamiltonian includes
the exchange interactions between neighboring spins belong-
ing to the same sublattice (HA and HB) or to different ones
(HAB):

HA = JA

8∑
i=1

sA
i · sA

i+1, HB = JB

4∑
i=1

i−1∑
j=1

sB
i · sB

j , (12)
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FIG. 1. (Color online) (a) Spin cluster corresponding to the Fe8

molecule. The eight s = 5/2 spins are divided into the two sublattices
A (light and dark blue) and B (red), defined by their relative
orientation in the system ground state. Equivalent spins are denoted by
the same color. Same line style corresponds to identical values of the
exchange coupling between neighboring spin pairs. (b) Spin cluster
corresponding to the Mn12 molecule, where sA

i = 2 and sB
j = 3/2,

with the same conventions as above.

HAB = JAB

4∑
i=1

sA
2i−1 · sB

i + J ′
AB

4∑
i=1

sA
2i ·

(
sB
i + sB

i+1

)
, (13)

where sA
i = 2, sB

j = 3/2 (sA
9 ≡ sA

1 and sB
5 ≡ sB

1 ). The attempts
made to estimate the above exchange couplings have not led
so far to unanimous conclusions.1,2 Hereafter, we report the
results obtained with two plausible but significantly different
sets of parameters. The comparison between the two cases
might provide some insight into the role played by competing
exchange interactions and spin frustration (see also Sec. III B).
The first set of exchange couplings we refer to is given by30

JA = −64.5 K, JB = 85 K, JAB = 215 K, J ′
AB = 85 K. The

ground-state multiplet of HExc = HA + HB + HAB belongs
to the S = 10 subspace. Taking as a reference the linear
superposition between the ground states M1 = 10 and M2 =
−10, the operator that maximizes F(�) [Eq. (3)] is X = S∗

z ,
corresponding to n̂i = ẑ (n̂i = −ẑ) for the spins belonging to
sublattice A (B).

We start by quantifying the classical-like character of the
maximally polarized ground state |M = 10〉. The classical
ground state (4) represents the main configuration in |M =
10〉, the overlap between the two being |〈M = 10|�max

1 〉| =
0.307. The average value and the quantum fluctuations of the
staggered magnetization provide alternative means to quantify
the resemblance between quantum and classical ground states.
Here, the expectation value of S∗

z is given by 〈M = 10|S∗
z |M =

10〉 = 17.6, out of a maximum of 〈�max
1 |S∗

z |�max
1 〉 = 22.

The variance is instead given by VM=10(S∗
z ) = 7.0 [where

V	(X) = 〈	|X2|	〉 − 〈	|X|	〉2], as opposed to the absence
of fluctuations [V�max

1
(S∗

z ) = 0] that characterizes the classical
ground state. Ground states with decreasing values of M > 0
are characterized by a decreasing resemblance to a classical
state. In particular, the expectation value 〈M|S∗

z |M〉 and the
variance VM undergo respectively a linear decrease and an
exponential increase as M varies from 10 to 1.

We next quantify the size of the linear superpositions
|�〉, where the components |�1〉 and |�2〉 are identified with
arbitrary M1 and M2 ground states, by means of the quantum
Fisher information. The dependence of the size DFI(�) on
M1 and M2 is reported in Fig. 2(a). The largest value of
DFI(�) is achieved by superimposing the maximally polarized

FIG. 2. (Color online) (a) and (c) Size DFI(�) of the linear
superpositions |�〉 formed by the ground states of the Mn12 (a) and
Fe8 (c) molecules as a function of the total-spin projections M1 and
M2 of the two components. In the cases M1 = M2, we set DFI = 0.
(b) and (d) Size of the same linear superpositions based on the relative
Fisher information, DRFI(�), for Mn12 (b) and Fe8 (d).

components (M1 = −M2 = 10). Such value can be compared
with the maximum, in principle, achievable within the present
spin cluster, through a suitable engineering of the spin
Hamiltonian, which is given by DFI(�max) = 22. Moreover,
the size of the linear superposition shows a strong dependence
on |M1 − M2|, while it depends only weakly on |M1 + M2|. At
a qualitative level, the same features characterize the relative
Fisher information DRFI(�) [see Fig. 2(b)].

We next compute DLM(�,δ = 10−2) [Eq. (11)], in order to
quantify the size of the linear superpositions |�〉 in terms of the
distinguishability between the two components through local
measurements. The probability Pl of discriminating between
|�1〉 and |�2〉 through single-spin measurements is reported
in Fig. 3(a) for the three inequivalent spins, as a function of
M1 = −M2. In particular, we find that only one of the spins
(sA

2 , green squares) reaches values of Pl > 0.99, and only for
M1 = 10.31 In order to estimate the size DLM for such case,
we need to consider different partitions of the spin cluster,
where the spins with least distinguishable states are grouped
together in larger subsystems Al , so as to achieve values of the
probability Pl above the threshold 1 − δ. The partition with the
largest number of subsystems that fulfils such requirement for
M1 = −M2 = 10 is defined by the four two-spin subsystems
Al = {sA

2l−1,s
B
l )} (purple squares), with 1 � l � 4, and by four

additional subsystems, each formed by an individual spin:
Al+4 = {sA

2l}. As a result, DLM(�,δ = 10−2) = 8.
The spin Hamiltonian we have considered so far is

characterized by the presence of a dominant antiferromagnetic
interaction (JAB) and, specifically, that between the spins sA

i

and sB
2i−1 (i = 1, . . . ,4). This tends to reduce the classical-like

character of the polarized ground states (M = ±10), and the
partial spin sums SA and SB corresponding to each sublattice.
Both these features possibly limit the sizes of the linear
superpositions between ground states (see also Sec. III B).
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FIG. 3. (Color online) Probability Pl of discriminating between
the two components |�1〉 and |�2〉 (with M1 = −M2 = M) of the
Mn12 (a) and Fe8 (b) spin clusters. In the case of Mn12, blue, green, and
red squares correspond to subsystems formed by individual spins: sA

1 ,
sA

2 , and sB
1 , respectively [see Fig. 1(b)]. The purple squares correspond

to subsystems formed by spin pairs such as (sA
1 ,sB

1 ). In the case of
Fe8, red, blue, and green squares correspond to subsystems formed
by individual spins: sA

5 , sB
1 , and sA

1 , respectively. The purple squares
correspond to the subsystem formed by the four central spins sA

5 , sA
6 ,

sA
1 , and sA

2 [see Fig. 1(a)].

In this respect, it is instructive to compare the above values
of DFI and DLM with those obtained starting from another
possible set of exchange couplings (JAB = 67 K, J ′

AB = 62 K,
JA = 6 K, and JB = 8 K), which has been derived from
high-energy inelastic neutron scattering.32 Here, the overlap
between quantum and classical ground states is enhanced
with respect to the previous value: |〈M = 10|�max

1 〉| = 0.589.
Correspondingly, all the sizes DFI(�), DRFI(�), and DLM(�)
of the linear superposition |�〉 between M1 = 10 and M2 =
−10 are to some extent increased (see Table I).

2. The Fe8 molecule

The magnetic core of Fe8 consists of eight Fe3+ ions,
each carrying an s = 5/2 spin [see Fig. 1(a)]. Experimental
evidence exists that the Fe8 molecule has a ground S = 10
multiplet, resulting from a ferrimagnetic ordering of the
spins.1 The spin-Hamiltonian calculations allow the further
specification of the spin ordering. This is characterized by

six spins (sublattice A, blue circles) oriented parallel to each
other and to the total spin, while the remaining two (sublattice
B, red circles) are oriented in the opposite direction. The
dominant part of the spin Hamiltonian includes the exchange
couplings represented in the Fig. 1(a), and is given by HExc =
HA + HAB , where

HA = JA

2∑
i=1

sA
4+i · (

sA
2i−1 + sA

2i

) + J ′
AsA

5 · sA
6 , (14)

HAB = JAB

6∑
i=5

2∑
j=1

sA
i · sB

j

+J ′
AB

[
sB

2 · (
sA

2 + sA
3

) + sB
1 · (

sA
1 + sA

4

)]
, (15)

with sA
i = sB

j = 5/2. A good agreement with the experimental
data is obtained with the following set of values for the
exchange constants: JA = 26 K, J ′

A = 36 K, JAB = 200 K,
and J ′

AB = 59 K.30,33,34 As in the case of Mn12, we take as
a reference the linear superposition between M1 = 10 and
M2 = −10. The operator that maximizes F(�) [see Eq. (3)]
in such case is X = S∗

z , corresponding to n̂i = ẑ (n̂i = −ẑ) for
the spins belonging to sublattice A (B).

We start by verifying to which extent the maximally polar-
ized ground state of HExc approaches the classical ground states
[see Eq. (7)]. These represent the main spin configurations
in the expression of |M = ±10〉, with an overlap given by
|〈M = 10|�max

1 〉| = 0.687.35 The expectation value of the
staggered magnetization is 〈M = 10|S∗

z |M = 10〉 = 18.0 (to
be compared with 〈�max

1 |S∗
z |�max

1 〉 = 20.0), while the variance
is VM=10(S∗

z ) = 6.77. On average, the ground state |M = 10〉
thus resembles its classical counterpart slightly more in the
Fe8 spin cluster than in Mn12. States with a lower M are
characterized by lower values and larger fluctuations of the
staggered magnetization: the value of 〈M|S∗

z |M〉 is, in fact,
proportional to M > 0, whereas VM decreases exponentially
for increasing M .

The sizes DFI(�) of the linear superpositions between pairs
of ground states |M1〉 and |M2〉 [Fig. 2(c)] are very similar to
those obtained for the Mn12 spin cluster [panel (a)]. The same
applies to the relative Fisher information, especially for the
most relevant case: M1 = −M2 = ±10 [panel (d)]. On the
other hand, both DFI(�) and DRFI(�) decrease faster than for
Mn12 with decreasing |M1 − M2|.

TABLE I. Size of the linear superposition |�〉 for different molecular nanomagnets. The molecules Cr7Ni and V15 are discussed in Sec. IV,
all the others in Sec. III. In the case of Fe4(2), we consider the linear superposition between the S = 5 ground states with M1 = 5 and M2 = 4,
generated in Ref. 9. The column corresponding to V15(2) refers to a linear superposition between the M1 = 3/2 and M2 = −3/2 eigenstates
of the S = 3/2 quadruplet. In all the other cases, the two components |�k〉 coincide with the states M1 = S and M2 = −S of the ground S

multiplet. For the Mn12 molecular nanomagnet, we have considered both the set of exchange parameters suggested in Ref. 30 [Mn12(1)] and
that derived in Ref. 32 [Mn12(2)]. As a single-ion magnet, we consider the Tb double-decker complex, with a J = 6 ground state (see Ref. 38).

Molecule Mn12(1) Mn12(2) Fe8 Mn6 Mn10 Tb Fe4(1) Fe4(2) Cr7Ni V15(1) V15(2)

M1 − M2 20 20 20 24 46 12 10 1 1 1 3
DFI(�) 14.4 19.3 16.5 16.0 23.0 6 8.603 0.366 3.986 1.478 1.544
DFI(�k) 0.318 0.170 0.339 0.115 0.0 0 0.200 0.282 1.494 1.361 1.244
DRFI(�) 45.4 113.0 48.7 139 – – 43.07 1.299 2.668 1.086 1.241
DLM(�,δ = 10−2) 8 9 5 7 10 1 3 1 2 1 3
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We finally consider the sizes DLM(�,δ = 10−2) based on
the distinguishability of the two components |�1〉 and |�2〉
by means of local measurements. The dependence of Pl on
M1 = −M2 is reported in Fig. 3(b) for each of the three
inequivalent spins in the cluster. Such probability is highest
for the external spins belonging to the sublattice A (1 � i � 4,
green squares), and lies above the threshold 1 − δ for M1 � 9.
The probabilities corresponding to the central spins (red and
blue squares) lie instead below the threshold for all values
of M1. In order to efficiently discriminate between the two
components |�k〉, one needs to perform a measurement on
the whole central core of the cluster (purple squares). Here,
the condition P5 > 0.99 is achieved for M1 � 9. Therefore
DLM(�,δ = 10−2) = 5 for M1 = 9 and M1 = 10, where the
optimum partition corresponds to Al = {sA

l } (l = 1, . . . ,4) and
A5 = {sB

1 ,sB
2 ,sA

5 ,sA
6 }. We can thus conclude that, while the

smaller number of spins does not result in a smaller size DFI(�)
for Fe8 than for Mn12, it does result in significantly smaller
linear superpositions in terms of DLM(�,δ) (see Table I), being
the spin polarization of the former molecule concentrated in
fewer spins.

B. Increasing the potential size of linear superpositions
in high-spin nanomagnets

Hereafter, we show how the size of the linear superposition
|�〉 can be possibly increased with respect to the above values.
In particular, we first consider the possibility of modifying
the exchange couplings in the spin Hamiltonians of Mn12

[Eqs. (12) and (13)] and Fe8 [Eqs. (14) and (15)], and provide
a general criterion for maximizing the sizes of |�〉 in spin
clusters with a given geometry and a given ferrimagnetic
ordering. Then, we discuss the dependence of such size
on relative dimension of the two sublattices, with specific
reference to a class of bipartite rings, which includes the Mn6

molecule as a prototypical system, and to the star-shaped Fe4

molecule.36 Finally, we discuss the limiting case represented
by a spin clusters with only ferromagnetic interactions, such
as the Mn10 molecular magnet.37

1. “Improved” Mn12 and Fe8 spin clusters

The sizes of the linear superpositions that can be generated
within the ground S multiplets of Mn12 and Fe8 can be possibly
increased by optimizing the exchange couplings [Eqs. (12)–
(15)], without modifying the geometry of the spin clusters, nor
their bipartition in the sublattices A and B.

As discussed in the previous section, the theoretical maxima
of the measures DFI(�) and DLM(�) are achieved by states of
the form |�max〉 [see Eq. (5)]. However, except for the limiting
case NB = 0, the components |�max

k 〉 in general cannot be
obtained as maximally spin-polarized ground states of an
exchange Hamiltonian. In fact, unlike such states, |�max

k 〉 does
not correspond to an eigenstate of S2, and is characterized by
the following relation between the total-spin and its projection
along z: 〈�max

1 |S2|�max
1 〉 = M(M + 1) + 2

∑NB

j=1 sB
j , where

M = ∑NA

i=1 sA
i − ∑NB

j=1 sB
j > 0.

Amongst the eigenstates of an exchange Hamiltonian, the
states that maximize DFI(�), are those with maximum values
of the partial spin sums, and with SA and SB antiparallel to

each other:

|�k = 1,2〉 = |SA =Smax
A , SB =Smax

B , M =±(SA−SB)〉, (16)

where Smax
χ=A,B = ∑Nχ

i=1 s
χ

i . These correspond to the actual
ground states of an exchange Hamiltonian in the limit of strong
ferromagnetic coupling between spins of each sublattice, and
weak antiferromagnetic interaction between spins of different
sublattices: JA,JB < 0, JAB > 0, and |JA|,|JB | � JAB . In
the case of Mn12, and given the sublattices represented in
Fig. 1(a), the maximum values of the partial spin sums
are Smax

A = 16 and Smax
B = 6. The corresponding sizes are

DFI(�) = 20.0, DRFI(�) = 143.0, and DLM(�) = 10. For the
Fe8 spin cluster, instead, Smax

A = 15 and Smax
B = 5. This results

in the following sizes of the linear superposition between
the M1 = 10 and M2 = −10 ground states: DFI(�) = 18.3,
DRFI(�) = 151.9, and DLM(�) = 8. Altogether, the amount
of quantum fluctuations in the linear superposition [and thus
DFI(�)] is close to that obtained for realistic values of the
exchange couplings, for both Mn12 and Fe8 (see Table I).
On the other hand, ground states such as those reported in
Eq. (16) represent a better approximation of classical-like
states, resulting in significantly increased values of the sizes
DRFI(�) and DLM(�).

2. The Mn6 and Fe4 molecules

Even in the absence of strong ferromagnetic interactions
within each sublattice, the ground states of HExc can approach
the above form [Eq. (16)] in systems with low spin frustration
and highly inequivalent sublattices. Rings formed by alternate
sequences of inequivalent spins represent a class of systems
that can possibly meet such requirements. In particular, we
consider the case where the spins sA and sB < sA, with NA =
NB = N/2, are coupled to each other by isotropic exchange
interaction between nearest neighbors (sB

N/2+1 ≡ sB
1 ):

HAB = JAB

N/2∑
i=1

sA
i · (

sB
i + sB

i+1

)
, (17)

while no intra-sub-lattice interaction is present (HA = HB =
0). The antiferromagnetic coupling (JAB > 0), combined with
the spin difference sA − sB , results in the formation an
S = N (sA − sB)/2 ground multiplet. A prototypical example
of such a spin cluster is represented by the Mn6 ring,
formed six Mn2+ ions (sA = 5/2) coupled to six organic
radicals (sB = 1/2).21 In order to highlight the role played
by the inequivalence between the two spins, this molecular
nanomagnet will be compared with analogous spin rings,
characterized by NA = NB = 6, sB = 1/2, and sA = 1,3/2,2.
We shall focus on the linear superposition that involves the
maximally polarized ground states (M1 = −M2 = S), for
which the optimal X coincides with S∗

z .
The size of the linear superposition |�〉 clearly depends

on the inequivalence between the two sublattices. In fact, the
value of DFI(�) [see Fig. 4(a)] grows linearly with sA. The
growth of the relative Fisher information [see Fig. 4(b)] is
instead exponential, reflecting a fast decrease with sA of the
quantum fluctuations in the ground states |�k〉. The largest
value of sA we consider (sA = 5/2) corresponds to the case
of the Mn6 nanomagnet. This spin cluster is characterized by
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FIG. 4. (Color online) (a) Size of the linear superposition of the
M1 = +S and M2 = −S ground states of the bipartite rings, as a
function of sA [where S = 6(sA − sB ) and sB = 1/2]. The values of
DFI(�) (red squares) display a linear dependence on sB (dotted curve).
(b) Size of the same linear superpositions, quantified by DRFI(�). The
dotted curve represents an exponential fit of the computed values (blue
squares).

a classical-like ground state, and by average values of the
partial spin sums SA and SB (14.7 and 2.68, respectively) that
approach the theoretical maxima, Smax

A = 15 and Smax
B = 3.

Also the size of the linear superposition approaches the value
that would result from the state of Eq. (16), namely DFI =
17.1. Finally, the size based on the distinguishability between
the components through local measurements is DLM(�,δ =
10−2) = 7. This corresponds to the partition of the spin cluster
into the following subsystems: Al = {sA

l }, with l = 1, . . . ,6,
and A7 = {sB

1 ,sB
2 ,sB

3 ,sB
4 ,sB

5 ,sB
6 }.

As an alternative example of molecular spin cluster with
highly inequivalent sublattices, we briefly mention the case of
Fe4.36 The magnetic core of such molecule consists of three
Fe3+ ions, each carrying an sA

i = 5/2 spin, antiferromagnet-
ically coupled to a fourth iron ion (sB

1 = 5/2). The exchange
term of the spin Hamiltonian reads

HAB = JAB

3∑
i=1

sA
i · sB

1 , (18)

and its ground S = 5 multiplet is characterized by a parallel
alignment of the external Fe ions (sublattice A). The largest
size corresponds to the linear superposition of the polarized
ground states (see Table I). These possess classical-like
features (|〈M = 5|�max

1 〉| = 0.829), and average values of
the partial spin sum SA that coincides with the theoretical
maximum (Smax

A = 15/2). Correspondingly, the size of the
linear superposition based on Fisher information reaches the
value that would result from the state of Eq. (16), namely DFI =
8.603. Instead, the size based on the distinguishability between
the components through local measurements is DLM(�,δ =
10−2) = 3. This corresponds to the partition of the spin cluster
into the following subsystems: Al = {sA

l }, with l = 1,2, and
A3 = {sB

1 ,sA
3 }. Here, the external iron ions carry a large amount

of which-component information, resulting in a probability
Pl > 0.99. The probability of discriminating between the
two components based on the state of the internal ion is
also large (0.937), but remains below such threshold. Linear
superpositions between the M1 = 5 and M2 = 4 ground states
of Fe4 have been recently generated by pulsed microwave
fields.9 The sizes of such linear superpositions, reported in
Table I, are comparable to those generated in the low-spin
molecules Cr7Ni and V15 with the S = 1/2 ground states.

3. Ferromagnetic spin clusters

Molecular spin clusters with only ferromagnetic inter-
actions can be regarded as the limiting cases of the ones
considered so far, with NA = N and NB = 0. Here, the
ground states with M = ±S = ±∑N

i=1 si coincide with
|�max

k=1,2〉, and the sizes of their linear superposition are
given simply by DFI(�) = S and DLM(�,δ) = N . As a
remarkable example of such a molecular nanomagnet, we men-
tion [Et3NH]2[Mn(CH3CN)4(H2O)2][Mn10O4(biphen)4Br12],
Mn10 in short.37 Such a spin cluster has an S = 23 ground
multiplet, and allows one in principle to generate the largest
linear superpositions, amongst the considered molecules (see
Table I). Single-atom nanomagnets, such as the lanthanide
double-decker complexes,38 can in turn be regarded as the
limiting case of a ferromagnetic spin cluster. There, while
the presence of a single magnetic ion implies DLM(�,δ) = 1
for all linear superpositions, the high value of the total
momentum J = L + S results in values of DFI(�) = J , which
are comparable to those of large molecular spin clusters. In
Table I, we report as a representative example the case of the
TbPc2 single-atom nanomagnet.

For a given spin cluster, the polarized ground states of an
exchange Hamiltonian with only ferromagnetic interactions
clearly maximize all the measures discussed so far. One might
notice, however, that the difficulty of generating a linear
superposition (e.g., by means of microwave pulse sequences)
increases with the difference between the components in
terms of total-spin projection. For a given S, the theoretical
maximum for the size of the linear superposition between the
M = ±S ground states is given by DFI(�max) = S + 2SB , and
is thus larger for ferrimagnetic (SB > 0) than for ferromagnetic
(SB = 0) spin clusters. Therefore the former systems might
enable the generation of linear superpositions with larger sizes,
if the constraint is on the value of M1 − M2, rather than on the
number (N ) and values (si) of the spins.

IV. LOW-SPIN MOLECULES

Molecular nanomagnets with dominant antiferromagnetic
interaction are typically characterized by frustrated and low-
spin ground states, resulting from the competition between
different exchange interactions. In these systems it is not
clear a priori to which extent quantum features, such as the
fluctuations of single-spin operators, are actually enhanced
by linearly superposing two ground states. Also, one might
wonder to which extent a linear superposition between the
M = ±1/2 ground states of an S = 1/2 spin cluster differs
from one that is generated with an individual s = 1/2
spin. These issues are investigated in the present section,
by exploiting the measures based on quantum fluctuations
of single-spin operators and state distinguishability through
local measurements. We specifically refer to the Cr7Ni6

and V15
8 molecules, where linear superpositions have been

experimentally demonstrated in recent years.

A. The Cr7Ni molecule

The magnetic core of the Cr7Ni consists of seven Cr ions
(s = 3/2) and a Ni (s = 1), spatially arranged so as to form a
regular octagon. The dominant term in the spin Hamiltonian of
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the molecule is represented by the isotropic exchange between
nearest neighbors39 (Eq. (17), with N = 8). Within each of
the S = 1/2 ground states, neighboring spins have antiparallel
expectation values: one can thus define two sublattices A and
B, formed by even- and odd-numbered spins, respectively,
with the latter ones including the Ni. Linear superpositions
between the M1 = 1/2 and M2 = −1/2 ground states have
been experimentally generated by pulsed microwave fields,6

and will be discussed hereafter.
We preliminarily note that each component |�k〉 is perfectly

equivalent to the linear superposition |�〉 in terms of quantum
fluctuations of single-spin operators. In fact, these states can be
transformed into one another by an overall spatial rotation, that
also transforms any combination X of single-spin operators
into another one. In particular, we find that

V�(S∗
z ) = V�k

(S∗
x ) = 45.836, (19)

out of a theoretical maximum of (
∑8

i=1 si)2 = (23/2)2 =
132.25. Linearly superposing the two ground states |�k〉 can,
however, increase the quantum fluctuations of a given single-
spin operator X. In particular, the particular X that maximizes
V� and at the same time minimizes V�k

is S∗
z = SA

z − SB
z ,

being 〈si,xsj,x〉 = 〈si,ysj,y〉 = 〈si,zsj,z〉 for all the spin pairs,
and 〈si,α〉 �= 0 only for α = x (α = z) in |�〉 (|�k〉). This
results in the following sizes of the linear superposition |�〉,
based on the quantum Fisher information:

DFI(�) = 3.986, DRFI(�) = 2.668. (20)

The former measure can be contrasted on the one hand with
the theoretical maximum for the present spin cluster, that is∑8

i=1 si = 11.5, and on the other hand with the size of the same
linear superposition generated with an individual s = 1/2 spin,
for which DFI(�) = 1/2. Such comparisons show that the
linear superposition between the ground states of Cr7Ni is quite
smaller with respect to those can be possibly generated in high-
spin nanomagnets, and remains farther from its theoretical
maximum (see Table I). However, the size of the state |�〉 in
this spin cluster is significantly larger than that of an individual
s = 1/2 spin.40

An analogous conclusion can be drawn from the dis-
tinguishability of the two components |�k〉 through local
measurements. The maximum number of subsystems into
which the ring can be divided such that each subsystem carries
the which-component information is, in fact,

DLM(�) = 2. (21)

In particular, any bipartition of the ring into groups of four
spins allows one to achieve values of the probability Pl > 0.99,
whereas this can be done with none of the partitions into a
larger number of subsystems.

B. The V15 molecule

The V15 spin cluster consists of N = 15 oxovanadium ions,
each carrying an s = 1/2 spin.8 The spins are arranged in three
layers so as to form a triangle (T ), sandwiched between two
hexagons (H1 and H2). The spins that form each hexagon are
coupled by a strong antiferromagnetic interaction, and are thus
approximately frozen in a singlet state (SH1 = SH2 = 0) at low
temperatures. Besides, they mediate an effective interaction

between the spins belonging to the triangle, described by the
following spin Hamiltonian:

HT = J

3∑
i=1

sT
i · sT

i+1 + Dẑ ·
3∑

i=1

sT
i × sT

i+1, (22)

where s4 ≡ s1. In this effective three-spin model, the two states
involved in the linear superposition |�〉 differ only with respect
to the component of the spin triangle:

|�k=1,2〉 = |�H1〉 ⊗ ∣∣�T
k

〉 ⊗ |�H2〉, (23)

where |�H1〉 and |�H2〉 both correspond to the singlet ground
state of the hexagons, and |�T

k=1,2〉 are different eigenstates of
HT . As a consequence, the expectation values of X and X2

take the following simplified forms:

〈�k|X|�k〉 = 〈
�T

k

∣∣XT

∣∣�T
k

〉
, (24)

〈�k|X2|�k〉 = 〈
�T

k

∣∣X2
T

∣∣�T
k

〉 + 2〈�H1|X2
H1|�H1〉, (25)

where the last expectation value accounts for the contribution
from each of the two hexagons, and Xχ = ∑

i n̂χ

i · sχ

i (with
χ = H1,H2,T ).

We first consider the linear superposition involving the two
ST = 1/2 eigenstates of the spin triangle with +1 eigenvalue
of the spin chirality Cz = (4/

√
3) sT

1 · sT
2 × sT

3 that are coupled
by a magnetic-dipole transition:∣∣�T

1

〉 = (|↑ ↓↓〉+ei2π/3|↓ ↑↓〉+e−i2π/3|↓ ↓↑〉)/
√

3,
(26)∣∣�T

2

〉 = (|↓ ↑↑〉+ei2π/3|↑ ↓↑〉+e−i2π/3|↑ ↑↓〉)/
√

3.

In this case, the fluctuations of X for the state |�〉 are max-
imized by n̂T

i = cos(2πi/3)ŷ + sin(2πi/3)ẑ and by n̂H1
i =

n̂H2
i = (−1)i ẑ. The corresponding value of the variance,

whose theoretical maximum is (
∑15

i=1 si)2 = (15/2)2 = 56.25,
is given by

V�(X) = 7/4 + 2 × 4.6641 = 11.08, (27)

where the former contribution comes from the triangle and
the latter one from the two hexagons.41 This results in the
following sizes of the linear superposition |�〉:

DFI(�) = 1.478, DRFI(�) = 1.086. (28)

The two components |�1〉 and |�2〉 are not efficiently
distinguishable by means of local measurements. In particular,
the two hexagons carry no which-component information (23),
and the two states |�T

k 〉 of the spin triangle can only be
distinguished with probability Pl > 0.99 by considering all
three spins. The size of linear superposition |�〉 based on
local measurements thus takes the same value that it would
have for an individual s = 1/2 spin:

DLM(�) = 1. (29)

Linear superpositions in the V15 molecule have also been
generated in the ST = 3/2 excited quadruplet.8 Hereafter, we
consider the case where the components coincide with the two
maximally polarized eigenstates of HT , namely,∣∣�T

1

〉 = |↑↑↑〉, ∣∣�T
2

〉 = |↓↓↓〉. (30)
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It is easily seen that the optimal operator XT coincides
in this case with the spin projection along z (n̂T

i = ẑ),
while the expressions of the optimized XH1 and XH2 coincide
with those reported above. Due to the enhanced contribution
from the spin triangle, the variance of X increases to V� =
11.58. Correspondingly, the sizes of the linear superposition
based on the Fisher information become

DFI(�) = 1.544, DRFI(�) = 1.241. (31)

Finally, being the two states |�T
k 〉 fully distinguishable at the

single-spin level, the size of |�〉 based on local measurement
is

DLM(�) = 3. (32)

Altogether, in spite of the large number of spins that form the
V15 cluster, the sizes of the linear superpositions that can be
generated within its lowest multiplets are either similar (DFI)
or identical (DLM) to those of a simple spin triangle. This is
due to the particular form of the low-energy eigenstates (23),
where each hexagon is approximately frozen in a singlet state.
The hexagons thus provide a sizable contribution to the size
based on the overall quantum fluctuations in the state |�〉, but
not to the ones that depend on the quantum features resulting
specifically from the linear superposition.

V. SUMMARY AND CONCLUSIONS

Resorting to different quantum-information theoretic mea-
sures, we have quantitatively investigated the size of linear
superpositions that can be generated in different molecular
nanomagnets (see Table I). Among the high-spin systems,
the sizes obtained for the spin-polarized ground states of
Mn12 and Fe18 are of the order of the spin number N42 and
thus comparable to those obtained in mesoscopic system.26,43

The considered measures can be maximized in ferrimagnetic
systems by tuning the exchange couplings, such that the
partial spin sum corresponding to each sublattice is maximal.
This feature characterizes the ground state of an exchange
Hamiltonian in either of the two following cases: (i) in an
arbitrary geometry, if the coupling between two spins is
either strongly ferromagnetic or weakly antiferromagnetic,
depending on whether the two spins belong to the same
sublattice or to different ones, and (ii) in the presence of
antiferromagnetic couplings only, if the spin cluster is bipartite
and the two sublattices are highly inequivalent (as in the case
of Mn6).

The systems where the size of the linear superpositions
are maximum, given the number and values of the constituent
spins, are represented by those with ferromagnetic exchange
interactions only (Mn10). On the other hand, ferrimagnetic
systems might allow the achievement of larger sizes if the
constraint is on the value of M1 − M2 instead (consider,
for example, the comparison between the cases of low-spin
molecules and Fe4 in Table I, all with M1 − M2 = 1). We note
that the difficulty of generating a linear superposition between
ground states increases with the difference between their spin
projections. The latter constraint might thus in practice more
relevant than the former one.

In the case of low-spin nanomagnets, we address the
question of to which extent the size of linear superposition
is enhanced by the composite character of the molecule
spin. Here, we have considered two molecular spin clusters,
namely Cr7Ni and V15, characterized both by an S = 1/2
ground state, but substantially different in terms of geometry,
exchange pattern, and spin correlations. In both cases, the
size of the linear superpositions between ground states is
larger than those achievable with an individual s = 1/2
spin, but not proportionate to the number and value of the
constituent spins. In particular, the ground states of V15

are poorly distinguishable by means of local measurements,
due to the presence of spin ensembles whose state is
approximately frozen in the low-energy multiplets of the
spin Hamiltonian.

The measures considered in the present paper can be
usefully complemented by those based on different criteria,
such as the fragility of the linear superposition with respect
to decoherence.23 In particular, the correlation between such
sizes and those derived from the fluctuations of single-spin
operators or from local measurements might be significant
if the environment couples locally to the electron spins.
This seems to be the case with the nuclear-spin bath, which
discriminates between |�1〉 and |�2〉 on the basis of the single-
spin expectation values corresponding to the two components,
rather than only on M1 − M2.47 A detailed understanding
of the different decoherence mechanisms48–50 represents a
preliminary requirement for exploring such connections fur-
ther, and for generating macroscopic and yet robust linear
superpositions in molecular nanomagnets.51

We finally comment on the possibility of estimating the
size of linear superpositions in molecular nanomagnets by
experimental means, and specifically by static measurements.
The fluctuations of the X operator can always be written
as combinations of spin-pair correlation functions, which
can be selectively accessed by inelastic neutron scattering.
Through this technique, one can thus quantify the size of a
linear superposition |�〉, provided that this corresponds to
the nondegenerate ground state of the system, and that the
temperature is lower than the energy gap between ground
and first-excited states. In the particular case of ferromagnetic
systems (NB = 0), the operator X coincides with Sz, and its
fluctuations with the z component of the magnetic suscepti-
bility. The measure based on the distinguishability between
two components can be indirectly estimated by chemically
selective techniques, such as nuclear magnetic resonance or
x-ray magnetic circular dichroism. These techniques give
access to single-spin expectation values,44–46 that can be used
to derive lower bounds for the which-component information
carried by each spin. Here, an experimental evidence of the
phase coherence between the two components should be
provided by different means.
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