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Berry phases, current lattices, and suppression of phase transitions
in a lattice gauge theory of quantum antiferromagnets
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We consider a lattice model of two complex scalar matter fields za, a = 1,2, under a CP 1 constraint |z1|2 +
|z2|2 = 1, minimally coupled to a compact gauge field, with an additional Berry-phase term. This model has been
the origin of a large body of works addressing novel paradigms for quantum criticality, in particular “spin-quark”
(spinon) deconfinement in S = 1/2 quantum antiferromagnets. We map the model exactly onto a link-current
model, which permits the use of classical worm algorithms to study the model in large-scale Monte Carlo
simulations on lattices of size L3, up to L = 512. We show that the addition of a Berry-phase term to the lattice
CP 1 model completely suppresses the phase transition in the O(3) universality class of the CP 1 model, such that
the original spin system described by the compact gauge theory is always in the ordered phase. The link-current
formulation of the model is useful in identifying the mechanism by which the phase transition from an ordered
to a disordered state is suppressed.
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I. INTRODUCTION

Models of several complex scalar matter fields minimally
coupled to compact and noncompact gauge fields have been
intensively studied in condensed-matter physics over the last
decade.1–12 The main motivation for this has been that these
models appear to find their realization in quite disparate
condensed-matter systems. Examples are a low-dimensional
quantum spin system emerging as effective low-energy de-
scriptions of insulating phases of Mott-Hubbard insulators,2,3

multicomponent superconductors and superfluids,5–12 and
plasma analogs of the norms of non-Abelian fractional
quantum Hall states.11,12 Of particular interest has been the
issue of whether or not such theories feature phase transitions
which are unconventional in the sense of being difficult
to describe within a Landau-Wilson-Ginzburg paradigm of
phase transitions.2,3,5,7 The notion of deconfined quantum
criticality,2,3 whereby a phase transition takes place by
deconfinement of basic building blocks (spinons) for various
ordering fields, rather than through the standard mechanism
of spontaneous symmetry breaking, has been central in this
context.

A key step in many of the investigations of T = 0 phase
transitions in quantum spin models is to rewrite the spin
operator in terms of two complex scalar matter fields zja, a =
1,2, namely Sj = Snj , where S is the length of the spin and
nj is a unit vector living on the 2-sphere, given by

nj = z∗
jaσ abzjβ . (1)

The local constraint |nj | = 1 translates into theCP 1 constraint
|zj1|2 + |zj2|2 = 1. The above “spinon” representation of the
spin operator immediately introduces a gauge symmetry in the
problem, since Sj is invariant under the local transformation
zja → zjae

iφj . The associated U(1) gauge field is compact,
defined modulo 2π . Based on the above, one arrives at the
following gauge-theory action of a quantum spin system on a
bipartite lattice:13,14

S = 1

g

∑
〈i,j〉

ni · nj + i2S
∑

j

ηjAjτ . (2)

Here, 1/g is a measure of the nearest-neighbor spin coupling
in the problem and ηj = ±1 is a staggering factor whose sign
depends on which sublattice the spin is located. The second
term is the Berry-phase term that one obtains in a functional
integral formulation, where Ajτ is a local portion of the closed
curve enclosing the areas subtended by a fluctuating quantum
spin as the system evolves in imaginary time from τ = 0 to
τ = β, where β is the inverse temperature. We will consider
the system in the limit β → ∞. The local portion of the
curve is taken between neighboring sites in the imaginary-time
direction, once this direction has been discretized. Note that
both ni and Ajτ depend on the spinon fields zjα , which
makes calculations quite awkward. A reformulation of the
model such that it is expressed in terms of the spinon fields
and an independently fluctuating gauge field was proposed in
Ref. 15, and it is this version of the model that we will consider
in the present paper. It is essentially a lattice CP 1 model
augmented by a term mimicking the imaginary Berry-phase
term in Eq. (2). This term will have a decisive influence on the
phase transition of the model.

II. THE MODEL AND MAPPING

The model we will consider in this paper is given by13,14

Z =
∏
jμ

∫ 2π

0

dAjμ

2π

∏
ja

∫
dzjadz∗

ja

× exp

[
g−1

∑
jaμ

(z∗
jae

−iAjμzj+μ,a + c.c.)

+ i2S
∑

j

ηjAjτ

]
, (3)

with the local CP 1 constraint

|zj1|2 + |zj2|2 = 1 ∀j. (4)

The lattice is cubic, and we use μ ∈ { x,y,τ } as a (positive)
direction index, as well as a unit vector in that direction. The
meaning should be clear from the context. The scalar matter
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fields zja live on the lattice sites, while Ajμ is a z-independent
U(1) gauge field living on the links (j,j + μ). ηj is a Neel
staggering factor being +1 (−1) on spatial sublattice A (B).
The first term of the action resembles that of a lattice CP 1

model, while the second is an additional Berry-phase term. The
connection between Eqs. (2) and (3) is given in Refs. 13 and 14.

Note the absence of any Maxwell-like term in the above
model. Several previous treatments of the problem have
added a Maxwell term, either compact or noncompact, to
the action. The rationale for doing this is that integrating out
the Fourier components of the matter field at large momenta
(short-distance physics) must yield a term involving only the
gauge field. Since the term needs to be gauge invariant, a
noncompact or compact Maxwell term is often written down.
We will refrain from this in the present paper, since there
appears no Mawell-like term of the gauge field in the basic
action given by Eq. (2), and therefore not in Eq. (3). Moreover,
the Monte Carlo procedure integrates out the short-distance
physics of the matter field in the problem, so if a Maxwell-like
term is generated dynamically,15 it will be implicitly included
in the description. We emphasize that the conclusions we draw
in this paper are based on simulations of the model given by
Eq. (3) with the constraint given by Eq. (4). It may be that a
gauge-theory formulation of a more general microscopic spin
model than the Eq. (2) model will feature different results; see
also comments below.

Due to the imaginary Berry-phase term, direct simulation of
this model is technically difficult. However, a major advance
on the problem can be made by mapping it exactly onto a
real-valued link-current (LC) model, which in turn can be
efficiently dealt with using a worm algorithm.16 Details of this
mapping are given in Appendix A. The mapping also obviates
the need that arises of introducing, by hand, a Maxwell term
in order to regularize the functional integrations in a direct
representation. The result reads

Z =
∑
{J }

∏
jaκ

g−Jjaκ

Jjaκ !

∏
j

Nj1!Nj2!

(Nj1 + Nj2 + 1)!
, (5)

with the constraints ∑
κ

Ijaκ = 0, (6)

Ij1x + Ij2x = 0, (7)

Ij1y + Ij2y = 0, (8)

Ij1τ + Ij2τ + 2Sηj = 0, (9)

where

Ijaκ ≡ Jjaκ − Jj+κ,a,−κ = −Ij+κ,a,−κ ∈ Z. (10)

Moreover, Jjaκ ∈ N0 denotes the non-negative integer current
of component a on the link going from lattice site j to
a neighboring lattice site j + κ , with κ ∈ { ±x,±y,±τ }.
Note that, contrary to the I current, the J current going
in the opposite direction on the (j,j + κ) link is another
degree of freedom; generally, Jjaκ 
= Jj+κ,a,−κ . Finally, we
have introduced Nja =∑κ Jjaκ and the notation {J } for the
set of all possible, permissible current field configurations. In
our simulations, we set S = 1/2.

It will turn out that the term 2Sηj on the left-hand side of
Eq. (9) will play a crucial role in the following. If we view the
quantities Ijατ as currents in the imaginary-time direction on
the space-time lattice, then the case ηj = 0 corresponds to the
case where there is no imposed background current lattice in
the τ direction. The phase transition of the model then proceeds
via a current-loop blowout in the background of zero current
lattice, and will be discussed in detail below. This transition
has a well-known analogy, namely, the phase transition from
a superconductor to a normal metal via a vortex-loop blowout
in a type-II superconductor in zero magnetic field. However,
as soon as ηj 
= 0, i.e., when a Berry-phase staggering factor
is introduced, the situation is drastically altered. Now, there is
a background current lattice imposed on the system in the τ

direction. This, it will turn out, suffices to destroy the phase
transition in much the same way as a vortex-loop blowout
transition may be suppressed by the presence of a vortex lattice
in a type-II superconductor; see Secs. III and V for a more
detailed discussion.

It is also worth noting how different the loop-current model
given above, starting from Eq. (3), is compared to what we
would find were we to add a Maxwell term right from the start
in Eq. (3). In the latter case, there would be no constraints
given by Eqs. (7) to (9). Instead, these constraints would be
replaced by long-range interactions between current segments
living on the links of the space-time lattice.12 A loop-model
formulation of the CP 1 model (i.e., with no Berry-phase term)
has previously been provided in Ref. 17.

The observable we choose to study is the winding number
in the μ direction, given by

Wμ ≡ 1

Lμ

∑
j

Ij1μ = − 1

Lμ

∑
j

Ij2μ, (11)

where Lμ is the system size in the μ direction. The winding
number of the LC model is related to the gauge-invariant phase
stiffness of the original model, given by Eq. (3), which in terms
of the link currents is given by

Υμ = 1

Lμ

d
2lnZ ′

dδ2
μ

∣∣∣∣
δμ=0

= 1

Lμ

〈
W 2

μ

〉
. (12)

Here, the primed Z indicates that we have introduced a gauge-
invariant phase twist (θj1,θj2) → (θj1,θj2) + [δ · r(j ), − δ ·
r(j )] in the phases of zja ∼ eiθja . Here, r(j ) is the coordinate
vector r at lattice site j , and δμ is the μ component of δ. We
expect the stiffness to scale as Υμ ∼ L2−d

μ = L−1
μ at criticality,

while Υμ ∼ O(1) in the ordered phase.18 Hence, we have that
〈W 2

μ〉 = O(1) at criticality, and we can use the scale-invariant
crossing point of 〈W 2

μ〉 curves to determine the critical point,
if there indeed is one.

In the simulations, we have chosen Lx = Ly = Lτ = L and
computed the average of the winding number in the x and y

direction,

W 2
xy ≡ 1

2

(
W 2

x + W 2
y

)
. (13)

This suffices to investigate spatial spin ordering, which
is the relevant component of the winding number when
considering the competition between Neel order and the
emergence of a valence-bond solid.
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III. SIMULATION TECHNIQUE

Link-current models can be efficiently simulated using
worm algorithms.19 The most efficient worm algorithms at
the moment are, to our knowledge, the geometrical worm
algorithms.20,21 However, the great number of local degrees of
freedom (24) when moving the worm through the lattice of the
LC model, together with the lattice site coupling factors Nja ,
renders a geometrical approach that is too memory demanding.
Hence, a “classical” worm algorithm16 was chosen.

The non-negativity of the J currents means that extra care
must be taken when the head of the “worm” is updated. To
fulfill “Kirchhoff’s law,” given by Eq. (6), the Ijaκ current
is updated with + 1 if the new site is in the positive lattice
direction, and −1 if the new site is in the negative lattice
direction. This requirement can be met in two ways for each
component. Namely, one can either have Jjaκ ← Jjaκ ± 1 or
Jj+κ,a,−κ ← Jj+κ,a,−κ ∓ 1. The two possibilities are chosen
with equal probability at each proposed move, with the
extra constraint that only the J ← J + 1 update can be
chosen if J = 0. This constraint does not alter the probability
distribution of the updates of the two matter-field components,
as the situation is symmetric with respect to a = 1 ↔ 2.

If we disregard the staggering factor ηj for a moment, the
effect of Eqs. (7) to (9) is basically that both components share
the same “worm” and are updated at the same time, but with
opposite signs. In total, we may therefore have four possible
J -current update “routes” when moving the head of the worm
to a neighboring site.

The fixed staggering field η can easily be dealt with if we
treat it as a background staggering current field, as illustrated
in Fig. 1(d). If we initialize the J -current field such that (for
instance) IA1τ = −1 and IB1τ = 1 and I = 0 for all other
currents, then we can treat worm moves in all directions in

FIG. 1. Some background current field examples for a L = 4
lattice. Dark and light cylinders represent Iτ = 1 and Iτ = −1,
respectively.

the same way, as explained above, and Eq. (9) will still be
fulfilled when the worm forms a closed loop. Thus, one way of
viewing the effect of the Berry-phase term in the link-current
representation is that the link currents Ijaτ , which fluctuate
in a vacuum in the standard CP 1 model, instead fluctuate
in the background of a current lattice when the Berry phase
is introduced. This has some resemblance to the vortex-loop
blowout that drives the superfluid-normal fluid phase transi-
tion, or the superconductor-normal metal phase transition in a
type-II superconductor. The standard CP 1 model corresponds
roughly to the absence of rotation or magnetic field in the
superfluid or superconductor, respectively, while the presence
of the Berry-phase term corresponds to the presence of rotation
or magnetic field; see Appendix A for details.

By using the identity exp ln x = x on the summand of
Eq. (5), it is easy to see that the LC model can be written on a
form resembling a partition function of the canonical ensem-
ble, with an analogous inverse temperature β = ln g. Doing
this has made it possible to use standard Ferrenberg-Swendsen
multihistogram reweighting22 to improve our numerical data.

Pseudorandom numbers were generated by the Mersenne-
Twister algorithm.23 Errors were determined using the jack-
knife method.

IV. BERRY-PHASE SUPPRESSION OF THE PHASE
TRANSITION IN THE LC MODEL

We claim that in the presence of the Berry-phase term in
Eq. (3), there is no phase transition in the LC model, and
that it is the staggering field η which is responsible for this.
We show this by starting with the CP 1 lattice model (i.e., the
LC model without the Berry-phase term), which has a phase
transition24 (see also Appendix C), and gradually increase a
background current field in the τ direction. We show that even
a weak background field destroys the phase transition, and
this happens regardless of whether the background field is
staggered or not.

〈W 2
xy〉 curves for the CP 1 model are shown in Fig. 2

for system sizes L = 16,32,64,128,256. All of the curves

FIG. 2. Finite-size scaling for 〈W 2
xy〉 curves for the CP 1 model.

L = 16,32,64,128,256. The horizontal line at 〈W 2
xy〉 = 0.511 indi-

cates the (approximate) size-independent crossing point.
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FIG. 3. Finite-size scaling for the phase stiffness 〈W 2
xy〉L−1 for

the CP 1 model, showing the behavior on each side of the critical
point ln gc ≈ 0.4145. Error bars are smaller than symbol sizes. Lines
are guides to the eye.

intersect at approximately the same point, (ln gc,〈W 2
xy〉) ≈

(0.4145,0.511), as expected from finite-size scaling (FSS) for
a phase transition. The phase transition is verified in Fig. 3,
where the phase stiffness 〈W 2

xy〉L−1 is shown to go to a finite
value for a coupling less than the critical coupling ln gc and to
zero for a coupling greater than ln gc.

A background field is introduced by initializing a fraction
f of the lattice with a nonzero current Ij1τ = 1, i.e., f =
L−1∑

j Ij1τ ; see Fig. 1. If such a field (with f > 0) is included
in the model, the situation changes dramatically. Let 〈W 2

xy,f 〉
denote 〈W 2

xy〉 in this case. Figure 5 shows 〈W 2
xy,f 〉 curves for

f = 1/64 and f = 1/16, which is to be compared with Fig. 2.

FIG. 4. Log-log plot of ln g∗
f as a function of system size L for

f = 0, . . . ,1 as well as the LC model. The LC curve lies slightly
above the f = 1 curve. Error bars are smaller than symbol sizes.
Lines are guides to the eye.

FIG. 5. Finite-size scaling for 〈W 2
xy,f 〉 curves for the f =

1/64 model (black) and the f = 1/16 model (gray). L =
16,32,64,128,256 for f = 1/64 and L = 16,32,64,128 for
f = 1/16. The horizontal line at 〈W 2

xy〉 = 0.511 indicates the
(approximate) size-independent crossing point value of the CP 1

model (f = 0).

The curves shift to the right as the system size is increased,
with no signs of converging even for large systems; there are
no size-independent crossing points.

The divergence of the 〈W 2
xy,f 〉 curves becomes clearer

if we define a pseudocritical (finite-size critical) coupling
ln g∗

f by choosing the value of 〈W 2
xy,f 〉(ln g∗

f ) = 0.511 ≈
〈W 2

xy,0〉(ln gc) for all f , and plot ln g∗
f as a function of system

size. This is shown in Fig. 4 for system sizes L = 16, . . . ,256
and several f values up to 1 (maximal uniform background
current field), in addition to the result for the LC model
(maximally staggered background current field). It is seen
from Fig. 4 that ln g∗

f increases monotonically with L for
all values of f , and more so for large values of f than for
small values of f . The increase in ln g∗

f is clearly seen also

FIG. 6. Finite-size scaling for the phase stiffness 〈W 2
xy,f 〉L−1 for

the f = 1/64 model at different couplings. Error bars are smaller
than symbol size. Lines are guides to the eye.
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FIG. 7. Finite-size scaling of 〈W 2
xy〉L−1 curves for the LC model

(f = 1 with staggered background field) for some ln g values. L ∈
{ 16,32,64,90,128,180,256,360,512 }. Lines are guides to the eye.

for f = 1/64, which is the smallest value we have considered.
The range of values that ln g∗

f display in a given interval of L

values increases with f . For ln g∗
f to take on values spanning

a decade for f = 1/64 would require enormous system sizes,
beyond the capability of present-day computers. For f = 1,
the case relevant for quantum antiferromagnets on a bipartite
lattice, it is seen from Fig. 4 that the range of values is much
larger in the interval L ∈ [16, . . . ,256].

In analogy with Fig. 3, Fig. 6 shows the phase stiffness
scaling for the f = 1/64 model at three selected couplings.

FIG. 8. 〈W 2
xy〉L−1 as a function of (ln g)−1 for the biggest system

sizes simulated at the given ln g (which is assumed to be close
to the value in the thermodynamic limit). L = 90 for (ln g)−1 =
1−1 = 1, L = 180 for (ln g)−1 = 1.3−1 ≈ 0.77, L = 256 for
(ln g)−1 = 1.6−1 ≈ 0.63, and L = 512 for (ln g)−1 = 1.9−1 ≈ 0.53
and (ln g)−1 = 2.2−1 ≈ 0.45. See Fig. 7. Lines are guides to the eye.

The stiffness always approaches a finite value for f > 0, indi-
cating that there is no phase transition in the thermodynamic
limit. In particular, this holds for f = 1. For this case, we
have explicitly shown that the behavior is essentially the same,
regardless of whether ηj is staggered or not. Phase stiffness
curves for the LC model are shown in Fig. 7, while the stiffness
as a function of (ln g)−1 is plotted in Fig. 8. Data for larger
ln g [smaller (ln g)−1] values are hard to obtain given the
system sizes that are required, but we find it reasonable to
assert, based on the extensive computations presented here,
that 〈W 2

xy〉L−1 > 0 for (ln g)−1 > 0. Note, in particular, how
differently the curves in Fig. 7 behave from those in Fig. 3.

We conclude that for f = 0, we obtain the phase transition
of the standard lattice CP 1 model. In Appendix C, we show
that the critical exponents that we obtain are consistent with
those of the 2 + 1-dimensional O(3) model.25 For any nonzero
value of f , the pseudocritical coupling appears to drift with
system size, eventually appearing to diverge.

V. DISCUSSION

Finally, we briefly summarize how to understand the
suppression of the phase transition in the model defined by
Eq. (3). The effect originates with the Berry-phase term in
the action and how it appears in the LC model; see Eq. (9).
As noted above, in the link-current representation, the effect
of the Berry phase may be viewed as the introduction of
a background staggered current lattice on top of which the
statistically fluctuating link currents are imposed; see Eq. (9).
The ordered phase of the quantum magnet is characterized by
a nonzero winding number given by Eq. (12).

A background current lattice of the form introduced by
the Berry phase facilitates the blow out of closed current
loops across the system at all coupling constants in the
thermodynamic limit. The current lattice forms a template
on which small closed current loops can connect across the
system to form closed current loops with a linear extent scaling
with the system size. This effectively represents a current-loop
blowout, which is equivalent to ordering the original spin
system. The picture is identical to the (dual) picture of type-II
superconductor in a magnetic field. At zero field, there is a
genuine phase transition from an ordered to a disordered state
driven by the proliferation of vortex loops. In a finite magnetic
field, the situation is altered, and the field-induced vortex lattice
forms a template on which small vortex loops can connect
across the system to effectively form large closed loops, thus
(potentially) disordering the system.

The situation where the currents loops effectively are blown
out, even at couplings where only small closed current loops
would exist in a zero background current lattice, renders
the system permanently ordered, thus suppressing the phase
transition. An alternative way of viewing it more directly in
the spinon-gauge-field description is that the Berry-phase term
suppresses instanton configurations in the compact gauge field,
and equivalently suppresses hedgehog configurations in the
action. The same result is obtained also in the easy-plane limit,
where the CP 1 constraint |z1|2 + |z2|2 = 1 is replaced by
individually constant matter-field amplitudes. In that case, the
instantons that are suppressed correspond to the suppression
of skyrmion-antiskyrmion configurations.
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APPENDIX A: EXACT LINK-CURRENT MAPPING
OF THE MODEL, EQ. (3)

We start out with a symmetrized form of the partition
function,

Z =
∏
jμ

∫ 2π

0

dAjμ

2π

∏
ja

∫
dzjadz∗

ja

× exp

⎡
⎣(2g)−1

∑
jaκ

(z∗
jae

−iAjκ zj+μ,a + c.c.)

+ i2S
∑

j

ηjAjτ

⎤
⎦ , (A1)

which is obtained from Eq. (3) by using

Aj−μ,μ = −Aj,−μ. (A2)

Writing the complex scalar fields in polar form,

zja = ρjae
iθja , (A3)∫

dzjadz∗
ja =

∫ 2π

0
dθja

∫ ∞

0
dρja ρja, (A4)

the constraint given by Eq. (4) reads

ρ2
j1 + ρ2

j2 = 1 ∀j. (A5)

We note that Eq. (A5) describes the unit circle arc in
the first quadrant of the ρj1ρj2 plane (since ρja � 0).
We may, therefore, introduce a new field φ ∈ [0,π/2),
given by

(ρj1,ρj2) = (cos φj , sin φj ), (A6)

such that∫ ∞

0

∫ ∞

0
dρj1dρj2ρj1ρj2

∣∣∣∣
ρ2

j1+ρ2
j2=1

=
∫ π

2

0
dφj cos φj sin φj .

(A7)

The partition function given by Eq. (A1), with the constraint
given by Eq. (4) incorporated, can therefore be written

Z =
∏
jμ

∫ 2π

0

dAjμ

2π

∏
ja

∫ 2π

0
dθja

∏
j

∫ π
2

0
dφj

× cos φj sin φj exp

⎛
⎝Sg + i2S

∑
j

ηjAjτ

⎞
⎠ , (A8)

where

Sg = (2g)−1
∑
jκ

[cos φj cos φj+κ (ei(θj+κ,1−θj1−Ajκ ) + c.c.)

× sin φj sin φj+κ (ei(θj+κ,2−θj2−Ajκ ) + c.c.)]. (A9)

Next, we split expSg into its individual exponential factors,
and Taylor expand each of them:

expSg =
∏
jκ

∞∑
kj1κ = 0
lj1κ = 0

∞∑
kj2κ = 0
lj2κ = 0

{
[(2g)−1 cos φj cos φj+κ ]kj1κ+lj1κ

kj1κ !lj1κ !

[(2g)−1 sin φj sin φj+κ ]kj2κ+lj2κ

kj2κ !lj2κ !

× ei(kj1κ−lj1κ )(θj+κ,1−θj1−Ajκ )ei(kj2κ−lj2κ )(θj+κ,2−θj2−Ajκ )

}
. (A10)

Here, kjaκ and ljaκ may be seen as Taylor expansion index fields.
Inserting Eq. (A10) into Eq. (A8) and rearranging (and relabeling) the terms, the partition function reads

Z =
∑
{ k,l }

∏
jμ

∫ 2π

0

dAjμ

2π

∏
ja

∫ 2π

0
dθja

∏
j

∫ π
2

0
dφj

∏
jaκ

eiθja (kjaκ−ljaκ−kj+κ,a,−κ+lj+κ,a,−κ )
∏
j

ei2Sηj Ajτ

∏
jaκ

ei(kjaκ−ljaκ )Ajκ

×
∏
jκ

cos(kj1κ+lj1κ+kj+κ,1,−κ+lj+κ,1,−κ )+1 φj

∏
jκ

sin(kj2κ+lj2κ+kj+κ,2,−κ+lj+κ,2,−κ )+1 φj

∏
jaκ

(2g)−(kjaκ+ljaκ )

kjaκ !ljaκ !
. (A11)

Here, {k,l} denotes the set of all possible Taylor expansion index field configurations.
It is convenient to introduce (what will turn out to be) the non-negative bond subcurrents,

Jjaκ ≡ kjaκ + lj+κ,a,−κ ∈ N0, (A12)

as well as the total bond currents,

Ijaκ ≡ Jjaκ − Jj+κ,a,−κ ∈ Z, (A13)

and the factor

Nja ≡ 1

2

∑
κ

kjaκ + ljaκ + kj+κ,a,−κ + lj+κ,a,−κ = 1

2

∑
κ

Jjaκ + Jj+κ,a,−κ . (A14)
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Using these definitions, as well as Eq. (A2) and some more rearranging of terms, the partition function, given by Eq. (A11),
can be written in the form

Z =
∑
{ k,l }

∏
jμ

∫ 2π

0

dAjμ

2π

∏
ja

∫ 2π

0
dθja

∏
j

∫ π
2

0
dφj

∏
ja

eiθja

∑
κ Ijaκ

∏
j

ei[2Sηj Ajτ +
∑

μ(Ij1μ+Ij2μ)Ajμ]

×
∏
j

cos2Nj1+1 φj sin2Nj2+1 φj

∏
jaκ

(2g)−Jjaκ

kjaκ !ljaκ !
. (A15)

Note that the summation goes over positive directions only
in the gauge-field factor.

The partition function is now in a form where the integrals
are decoupled and may be performed easily.

The integration of the θ field in Eq. (A15) gives just a
Kronecker δ (up to an irrelevant scaling factor) at each lattice
site. Hence, we obtain the total bond-current conservation
constraint, or “Kirchhoff’s law,”∑

κ

Ijaκ = 0, ∀j,a. (A16)

Note also that this, by the definition of Eq. (A13), implies that
Eq. (A14) may be simplified to

Nja =
∑

κ

Jjaκ ∈ N0. (A17)

In the same way as for the θ integration, the gauge-field
integration gives Kronecker δs, leading to the coupling of the
components,

Ij1x + Ij2x = 0, Ij1y + Ij2y = 0,
(A18)

Ij1τ + Ij2τ + 2Sηj = 0.

The φ field is integrated out by∫ π
2

0
dφj cos2Nj1+1 φj sin2Nj2+1 φj = Nj1!Nj2!

2(Nj1 + Nj2 + 1)!
,

(A19)

where we have used the identity∫ π
2

0
cosm x sinn xdx = 

(
m+1

2

)

(

n+1
2

)
2
(

m+n+2
2

) , m,n > 0.

(A20)

We will ignore the physically irrelevant multiplicative factor
of 2 in the denominator of Eq. (A19) in the final expression
for the partition function.

The last factor we have to deal with is∑
{ k,l }

∏
jaκ

(2g)−Jjaκ

kjaκ !ljaκ !
. (A21)

We have included the sum over all possible k,l field con-
figurations, as we want to change Eq. (A21) to a sum
over all possible J -current field configurations, {J }, instead.
(There is no problem with this, as all of the other terms in
the partition function and the constraints are—as we have
seen—exclusively J dependent.) Using the definition of the
positive bond currents, given by Eq. (A12), as well as some

standard combinatorial results, we may rewrite Eq. (A21) as

∑
{k,l}

∏
jaκ

(2g)−Jjaκ

kjaκ !ljaκ !
=
∑
{J }

∏
jaκ

Jjaκ∑
kjaκ=0

(2g)−Jjaκ

kjaκ !(Jjaκ − kjaκ )!

=
∑
{J }

∏
jaκ

(2g)−Jjaκ

Jjaκ !

Jjaκ∑
kjaκ=0

(
Jjaκ

kjaκ

)

=
∑
{J }

∏
jaκ

(2g)−Jjaκ

Jjaκ !
2Jjaκ

=
∑
{J }

∏
jaκ

g−Jjaκ

Jjaκ !
. (A22)

Collecting all of the above gives the desired results given
by Eqs. (5) to (9).

APPENDIX B: LINK-CURRENT REPRESENTATION
OF THE MODEL WITH BASIC REPRESENTATION

OF THE BERRY PHASE

The basic form of the Berry-phase contribution to the action
is given by26

SB = 2S
∑
ia

ηi

∫ β

0
z∗
a(ri ,τ )dza(ri ,τ )τdτ, (B1)

which, when discretizing imaginary time and ignoring irrele-
vant constants, may be written

SB = 2S
∑
ja

ηj z
∗
jaτ zj+τ,aτ

= 2S
∑

j

ηj (cos φj cos φj+τ e
i(θj+τ,1−θj1)

+ sin φj sin φj+τ e
i(θj+τ,2−θj2)), (B2)

in the β → ∞ limit. We have introduced the fields θ and φ

defined in Eqs. (A3) and (A6) . Note that Eq. (B2) may not be
symmetrized.

Replacing the Berry-phase term of partition function (A8),
i2S

∑
j ηjAjτ , with Eq. (B2), the link-current mapping may

proceed in the same way as in Appendix A. The details of how
to approximate the form of the Berry phase given in Eq. (B2)
to the form of the Berry phase given in Eq. (3) are provided in
Chap. 13 of Ref. 14.

Taylor expanding expSB gives an additional expansion
index field mja ∈ N0 coupling in the τ direction, so the
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partition function equivalent to Eq. (A15) reads

Z =
∑

{ k,l,m }

∏
jμ

∫ 2π

0

dAjμ

2π

∏
ja

∫ 2π

0
dθja

∏
j

∫ π
2

0
dφj

∏
ja

eiθja (mj−τ,a−mj,a+
∑

κ Ijaκ )
∏
j

ei
∑

μ(Ij1μ+Ij2μ)Ajμ

×
∏
j

cos2Nj1+1+mj1+mj−τ,1 φj sin2Nj2+1+mj2+mj−τ,2 φj

∏
jaκ

(2g)−Jjaκ

kjaκ !ljaκ !

∏
ja

(2Sηj )mja

mja!
. (B3)

The field integrals can be done as before, leading to the new
constraints

mj−τ,a − mj,a +
∑

κ

Ijaκ = 0, (B4)

Ij1μ + Ij2μ = 0. (B5)

Using Eq. (A22) (which is independent of the m field, and
thus still valid) and Eq. (A20), we are left with the partition
function

Z =
∑

{ J,m }

∏
ja

(2Sηj )mja

mja!

∏
jaκ

g−Jjaκ

Jjaκ !

∏
j

×
∏

a 
[
Nja + 1 + 1

2 (mja + mj−τ,a)
]


[∑

a Nja + 1 + 1
2 (mja + mj−τ,a)

] , (B6)

which should be compared to Eq. (5). The main problem with
this formulation is that a sign problem arises from the factors
η

mja

j = ±1, rendering the model hard to deal with in Monte
Carlo simulations.

APPENDIX C: CRITICAL EXPONENTS
FOR THE CP 1 MODEL

If we define the global magnetization m ≡
N−1∑

j nj ,N ≡ L3, and use the definition of nj in
terms of Pauli matrices and the z fields, given by Eq. (1), we
end up with the relation

〈
m2

x + m2
y

〉 = 2

N

∑
j

h(j ), (C1)

where

h(i − j ) ≡ 〈zi1z
∗
j1z

∗
i2zj2 + c.c.〉. (C2)

Now, for the CP 1 model, we have

〈zi ′1z
∗
j ′1z

∗
i ′2zj ′2〉 = Z−1

CP 1Wi ′j ′ , (C3)

where

Wi ′j ′ =
∏
jμ

∫ 2π

0

dAjμ

2π

∏
ja

∫
dzjadz∗

jazi ′1z
∗
j ′1z

∗
i ′2zj ′2

× exp

⎡
⎣g−1

∑
jaμ

(z∗
jae

−iAjμzj+μ,a + c.c.)

⎤
⎦ , (C4)

with the usual CP 1 constraint of Eq. (4). In the link-
current formalism, Eq. (C4) becomes (using the procedures
of Appendix A)

Wi ′j ′ =
∑
{ J }

∏
jaκ

g−Jjaκ

Jjaκ !

∏
j 
=i ′,j ′

[ Nj1!Nj2!

(Nj1 + Nj2 + 1)!

]
Qi ′j ′ ,

(C5)

Qi ′j ′ =

⎧⎪⎨
⎪⎩

(Ni′1+1)!(Ni′2+1)!

(Ni′1+Ni′2+3)!
, i ′ = j ′

∏
a (Ni′a+ 3

2 )(Nj ′a+ 3
2 )

(Ni′1+Ni′2+2)!(Nj ′1+Nj ′2+2)!
, i ′ 
= j ′,

(C6)

with the constraints

Ij1μ + Ij2μ = 0, (C7)

∑
κ

Ij1κ =

⎧⎪⎨
⎪⎩

−1, j = i ′

1, j = j ′

0, j 
= i ′,j ′.
(C8)

We get W∗
i ′,j ′ by interchanging i ′ ↔ j ′ in the last constraint.

Equation (C8) means that h(i − j ) must be sampled for a
field configuration where all of the current loops/worms but
one are closed. The open worm has its head (tail) at lattice site
i and tail (head) at j . Since the worm is already following the
probability distribution given by the partition function ZCP 1 ,
the weight associated with this “background” distribution must
be divided out before we can sample h properly. Hence, to

FIG. 9. Log-log plot of the finite-size scaling of 〈m2
xy〉 for the

CP 1 model at ln g = 0.414504 ≈ ln gc (markers), plotted together
with a scaling curve ∼L−2×0.513 (light gray).
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sample 〈m2
xy〉 ≡ 〈m2

x + m2
y〉/2, we store

M2 ← M2 +
⎧⎨
⎩

(Ni1+1)(Ni2+1)
(Ni1+Ni2+2)(Ni1+Ni2+3) , i − j = 0

1
(Ni1+Ni2+2)(Nj1+Nj2+2)

∏
a

(Nia+ 3
2 )(Nja+ 3

2 )
Nia !Nja ! , i − j 
= 0

(C9)

at each Monte Carlo step, along with

Z ← Z + 1 (C10)

each time the worm closes (i = j ). The unbiased Monte Carlo estimator 〈m2
xy〉MC is then given by

〈
m2

xy

〉
MC = M2

NZ
. (C11)

From FSS, we expect 〈m2
xy〉 ∼ L− 2β

ν at criticality. We find β/ν = 0.513(4) in an FSS analysis for system sizes up to L = 360;
see Fig. 9.27 This is in reasonable agreement with the O(3) universality class result of Ref. 28, β/ν = 0.5187(6).
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