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Dynamical Jahn-Teller effect in a spin-orbital coupled system
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Dynamical Jahn-Teller (DJT) effect in a spin-orbital coupled system on a honeycomb lattice is examined,
motivated from recently observed spin-liquid behavior in Ba3CuSb2O9. An effective vibronic Hamiltonian,
where the superexchange interaction and the DJT effect are taken into account, is derived. We find that the DJT
effect induces a spin-orbital resonant state where local spin-singlet states and parallel orbital configurations are
entangled with each other. This spin-orbital resonant state is realized in between an orbital-ordered state, where
spin-singlet pairs are localized, and an antiferromagnetic ordered state. Based on the theoretical results, a possible
scenario for Ba3CuSb2O9 is proposed.
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I. INTRODUCTION

No signs for long-range magnetic ordering down to the low
temperatures, termed the quantum spin-liquid (QSL) state, are
one of the fascinating states of matter in modern condensed
matter physics.1 A number of efforts have been made to
realize the QSL states theoretically and experimentally. One
prototypical example is the well-known one-dimensional
antiferromagnets in which large quantum fluctuation destroys
the long-range spin order even at zero temperature and realizes
a spin-singlet state without any symmetry breakings. Another
candidate for the QSL states has long been searched for in
frustrated magnets. An organic salt κ-(BEDT-TTF)2Cu2(CN)3

with a triangular lattice2 and an inorganic herbertsmithite
ZnCu3(OH)6Cl2 with a kagome lattice3 are some examples.
Several theoretical scenarios for realization of the QSL, such
as Z2 spin liquid,4 spin-nematic state,5 spinon deconfinement,6

and so on, have been proposed so far.
A transition-metal oxide of our present interest is a new

candidate of the QSL state, Ba3CuSb2O9, in which S = 1/2
spins in Cu2+ ions are responsible for the magnetism.7,8 There
are no signs of magnetic orderings down to a few hundred
mK, in spite of the effective exchange interactions of 30–
50 K. Temperature dependencies of the magnetic susceptibility
and the electronic specific heat are decomposed into the
gapped component and the low-energy component; the latter
is attributed to the so-called orphan spins.8 It was believed that
the QSL behavior originates from the magnetic frustration
in a Cu2+ triangular lattice. Recent detailed crystal-structural
analyses reveal that Cu ions are regularly replaced by Sb ions,
and form a short-range honeycomb lattice.8 One characteristic
in the present QSL system is that there is the orbital degree
of freedom; twofold orbital degeneracy in Cu2+ is suggested
by the threefold rotational symmetry around a Cu2+. Almost
isotropic g factors observed in the electron-spin resonance
(ESR) provide a possibility of no static long-range orbital
orders and novel roles of orbital on the QSL.

In this paper, motivated from the recent experiments in
Ba3CuSb2O9, we examine a possibility of the QSL state in
a honeycomb-lattice spin-orbital (SO) system. Beyond the
previous theories for QSL in quantum magnets with the
orbital degree of freedom,9–14 the present study focuses on
the dynamical Jahn-Teller (DJT) effect, which brings about a
quantum tunneling between stable orbital-lattice states. This

is feasible in the crystal lattice of Ba3CuSb2O9, where O6

octahedra surrounding Cu2+ are separated from each other,
unlike the perovskite lattice where nearest-neighboring (NN)
two octahedra share an O2−. The SO superexchange (SE)
interactions between the separated NN Cu2+ are comparable
with the vibronic interactions, and a new state of matter is
expected as a result of the cooperation between the on-site
Jahn-Teller (JT) and intersite SE interactions. We derive the
low-energy electron-lattice model where the SE interaction,
the JT effect, and the lattice dynamics are taken into account.
It is discovered that a spin-orbital resonant state (SORS), where
the two degrees of freedom are entangled with each other, is
induced by the DJT effect. We examine connections of the
quantum resonant state to the long-range ordered states, and
provide a possible scenario for Ba3CuSb2O9.

In Sec. II, a model Hamiltonian for a spin-orbital-lattice
coupled system and calculation methods are introduced. In
Sec. III, numerical results are presented. Section IV is devoted
to a discussion and summary.

II. MODEL AND METHOD

First we set up the model which consists of the SE
interactions between the Cu ions in a honeycomb lattice, and
the local vibronic coupling between the Cu d orbitals and O6

octahedron. The Hamiltonian is given by H = Hexch + HJT.
In the first term for the SE interactions, the doubly degenerate
3d3z2−r2 and 3dx2−y2 orbitals are introduced at each site.
The SE interactions are derived from the extended dp-type
Hamiltonian where the 3d orbitals for a Cu ion and 2p orbitals
for a O ion are introduced, and the on-site electron-electron
interactions and the Cu-O and O-O electron transfers are
considered. All possible exchange paths between the NN Cu
pairs are taken into account. Details are given in the Supple-
mental Material (SM).15 The obtained Kugel-Khomskii-type
SO coupled Hamiltonian is given by

Hexch = JSE

∑
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FIG. 1. (Color online) (a) A honeycomb lattice structure for
Ba3CuSb2O9 (Ref. 16). (b) A contour map of the lower AP surface
on the Qu-Qv plane. A blue broken line shows a circle for ρ = ρ0.
The lower panel represents the AP along this circle as a function of
θ = tan−1[Qv/Qu]. Schematic O6 distortions at the potential minima
and maxima are also shown. (c) A schematic picture for the SORS.
Shaded bonds represent the spin-singlet and parallel-orbital bonds.

where NN ij sites along a direction l(=x,y,z) [see Fig. 1(a)16]
is denoted by 〈ij 〉l . We introduce the spin operator Si and the
pseudospin (PS) operator T i for the orbital degree of freedom
with amplitudes of 1/2. The eigenstate for T z = +1/2 (−1/2)
describes a state where the d3z2−r2 (dx2−y2 ) orbital is occupied
by a hole. For convenience, we introduce the bond-dependent
PS operators defined by

τ l
i = cos

(
2πnl

3

)
T z

i − sin

(
2πnl

3

)
T x

i (2)

and

τ̄ l
i = cos

(
2πnl

3

)
T x

i + sin

(
2πnl

3

)
T z

i , (3)

where (nz,nx,ny) = (0,1,2). The exchange constants are given
by the energy parameters in the dp-type Hamiltonian,15,17

and are normalized by the representative SE interaction JSE,
a coefficient of Si · Sj . It is shown that Hexch in NN two
sites favors an antiferromagnetic (AFM) and ferrotype orbital
configuration in a wide parameter region which includes a
parameter set for Ba3CuSb2O9.15,18 This is in contrast to
the results of the Kugel-Khomskii-type SO Hamiltonian in a
square lattice, where a ferromagnetic and antiferrotype orbital
configuration is realized. Among a number of terms in the
Hamiltonian, the Si · Si , τiτj , Si · Sj τiτj , and τ̄i τ̄j terms are
essential for the SORS of our main interest.

The second term of the Hamiltonian, HJT, describes the
local vibronic coupling in each CuO6 octahedra. We consider
the e × E JT problem where the degenerate d3z2−r2 and dx2−y2

orbitals are coupled with the E-symmetric O6 vibrations,
denoted by Qu and Qv . The harmonic vibration, the linear
JT coupling, and the anharmonic lattice potential are taken
into account. We focus on the low-energy vibronic mode, i.e.,

the rotational motion in the Qu-Qv plane along the bottom in
the lower adiabatic potential (AP) plane [see Fig. 1(b)]. The
Hamiltonian is a well-known form given by19–24

Hrot = − 1

2Mρ2
0

∂2

∂θ2
+ Bρ3

0 cos 3θ, (4)

with an oxygen mass M , an amplitude of the distortion ρ0,
an angle θ = tan−1(Qv/Qu) in the AP, and an anharmonic
potential B. This model represents the angle motion under the
threefold potential, which takes minima (maxima) at θ0ν =
2πν/3 (θ1ν = π + 2πν/3) with ν = (0,1,2). These angles
correspond to the cigar-type [(3z2 − r2)-type] and the leaf-type
[(x2 − y2)-type] lattice distortions, respectively, as shown in
Fig. 1(b). The low-energy states in Hrot are well described by
the six Wannier-type vibronic functions,25 |	μν〉, localized
around θμν , as shown schematically in the lower panel of
Fig. 1(b). Then, the low-energy vibronic Hamiltonian is
given by

HJT =
∑

iμ=(0,1)

σμ

2

[
−JAH

∑
ν

|	iμν〉〈	iμν |

+ JDJT

∑
ν �=ν ′

|	iμν〉〈	iμν ′ |
]

, (5)

where (σ0,σ1) = (1, − 1). The first and second terms describe
the potential in the angle space and the tunneling motions,
respectively. The energy constants, JAH and JDJT, are positive
and are of the order of Bρ3

0 , and 1/(Mρ2
0 ), respectively.

A condition JDJT/JAH < 1/2 is required to reproduce the
original energy levels, but we regard JDJT/JAH(≡ jD) as a
free parameter, for convenience. The lowest energy state is a
doublet, corresponding to the clockwise and counterclockwise
rotations in the θ space. The so-called vibronic reduction factor
proposed by Ham,26,27 i.e., a reduction of the PS moment due
to the DJT effect, is 1/2. The detailed derivation of HJT is
given in the SM.15

There are three principal energy parameters in the Hamilto-
nian: the SE interaction JSE, the anharmonic potential JAH, and
the DJT effect JDJT. The magnitude of JSE is about 1–10 meV,
which is smaller than the exchange interaction in the high-Tc

cuprates because of a large distance between the NN Cu sites.
Both the energy scales of JAH and JDJT are 1–30 meV.28,29

Since the three parameters are in the same order of magnitude,
competitions and cooperation among them are realized.

The Hamiltonian is analyzed by the exact-diagonalization
(ED) method combined with the mean-field (MF) approxi-
mation, and the quantum Monte Carlo simulation (QMC)30,31

with the MF approximation, termed the ED + MF and the
QMC + MF methods, respectively. We introduce mainly the
results by the ED + MF method. The MF-type decouplings
are introduced in the exchange interactions which act on the
edge sites of clusters. The Hamiltonian for a six-site cluster
under the MFs is diagonalized by the Lanczos algorithm, and
the MFs are determined consistently with the states inside
of the cluster. This method is equivalent to the hierarchical
mean-field method32,33 where the no long-range ordered phase
obtained by the large cluster size34,35 is reproduced. The
adopted parameter values are JSE/JAH = 0.15 and are given
in Ref. 15. Amplitude of the DJT effect, i.e., jD = JDJT/JAH,
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is varied. We find that the obtained results do not depend
qualitatively on the parameter JSE/JAH between 0.075 and
1. The exchange Hamiltonian Hexch is also analyzed by the
MF approximation and by the ED method as supplementary
calculations.

III. RESULT

Spin and orbital structures are monitored by the staggered
spin moment given by

Ms = 1

6

∑
i

(−1)iSz
i , (6)

and the two PS moments defined by

Mτ+ = − 1
6

(
τ z

A + τ z
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C + τ x
D + τ

y

E + τ
y

F

)
(7)

and
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6

(
τ x

A + τ
y

B + τ
y

C + τ z
D + τ z

E + τ x
F

)
, (8)

where subscripts A–F indicate sites in the cluster [see the
inset of Fig. 2(b)]. We note that Mτ+ and Mτ− take their
maxima of 0.5 in the threefold orbital-ordered states shown
in Figs. 2(d) and 2(e), respectively. A difference between the
two, MPS ≡ 〈Mτ+ − Mτ−〉, is regarded as an amplitude of
the symmetry breaking. The numerical results are plotted in
Fig. 2(a). There is a critical value of jD , termed jDc(=0.75).
For jD � jDc, Mτ+ ∼ 0.5 and Mτ− ∼ −0.25, implying a
symmetry breaking due to the threefold orbital order shown in
Fig. 2(d). This orbital order is also suggested by the analyses
of Hexch. With increasing jD , absolute values of M+ and M−
are reduced. These reductions are reproduced by the QMC +
MF method. Above jDc, 〈Mτ+〉 = 〈Mτ−〉, interpreted as a
superposition of the two PS configurations.

As for the spin sector, neither a finite staggered moment
[see Fig. 2(a)], nor a finite local moment 〈Sz

i 〉 at each site,
are obtained in a whole parameter region of jD . As shown
in Fig. 2(b), there are two inequivalent NN spin correlations
〈Si · Sj 〉 for jD < jDc: Large values are shown in the bonds
where the PSs are parallel with each other. On the other hand,
for jD > jDc, 〈Si · Sj 〉 for all bonds are equivalent. Spin-dimer
correlations defined by Kij ;kl = 〈(Si · Sj )(Sk · Sl)〉 are also
plotted in Fig. 2(b) where KAB;BC, KAB;CD, and KAB;DE are the
bond-correlation functions for the NN bonds, the second-NN
bonds, and the third-NN bonds, respectively. The second-NN
bond correlation function KAB;CD is the largest in a whole
parameter region, and KAB;CD in jD < jDc is larger than that
in jD > jDc. The results in jD < jDc are interpreted as a
valence-bond solid state, where spin-singlet pairs are localized
at the bonds, in which the NN PSs are parallel with each
other. This SO structure is also confirmed in the analysis by
the QMC + MF method. Above jDc, this classically localized
PS state associated with the localized single pairs is changed
into a quantum superposition of the PS configurations. The
spin-singlet dimers are no longer localized in specific bonds,
suggested by a reduction of KAB;CD and enhancements of
KAB;BC and KAB;DE.

We expect from these data that, above jDc, the local spin-
singlet state and the parallel PS configuration are strongly
entangled with each other. This is directly confirmed by the

(a)

(b)

(c)

(d)

(e)

FIG. 2. (Color online) (a) Staggered spin moment Ms , and two
PS moments Mτ+ and Mτ−. (b) Spin correlations 〈SA · SB〉 and
〈SB · SC〉 (bold lines), and spin-dimer correlations KAB;BC, KAB;CD,
and KAB;DE (thin lines). The inset shows a six-site cluster. (c) SO
correlation function G, and the threefold orbital order parameterMPS.
The broken line indicates jDc. (d), (e) Two kinds of the threefold
orbital-ordered states.

SO correlation function defined by36

G =
⎡
⎣1

6

∑
〈ij〉l

Gl
ij

⎤
⎦

2

, (9)

with

Gl
ij = 16

[〈
(Si · Sj )

(
τ l
i τ

l
j

)〉 − 〈Si · Sj 〉
〈
τ l
i τ

l
j

〉]
. (10)

The results are presented in Fig. 2(c). Spin and orbital sectors
are decoupled at jD = 0, and are strongly entangled near
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FIG. 3. (Color online) (a) Phase diagram on the plane of JDJT/JAH

and JSE/JAH. (b) Phase diagram on the plane of JDJT/JAH and
hM/JAH. The circles and triangles represent the phase boundaries
with and without the interaction between the octahedra, respectively.
The parameter of this interaction is chosen to be K/JAH = 0.1 [see
the details in the SM (Ref. 15)].

and above jDc. This is consistent with the picture where
the spin-singlet state and the parallel PS configuration are
realized as a quantum mechanical superposition.9,11,36 The
phase diagram on a plane of JDJT-JSE is shown in Fig. 3(a).
The SORS diminishes both in the weak and strong JSE limits;
that is, the SORS is realized by interplay of JSE and JDJT.

To examine a connection of the present SORS to the long-
range spin ordered state in the honeycomb-lattice Heisenberg
model, we release the orbital degeneracy by applying the
artificial external field on the orbital-lattice sector. The is
given by

HM = −hM

∑
iμνν ′

σμFνν ′ |	iμν〉〈	iμν ′ |, (11)

where Fνν ′ = i√
3

∑
l εlνν ′ with the Levi-Civita completely an-

tisymmetric tensor εlνν ′ .15 The artificial field makes clockwise
and counterclockwise rotations in the θ space inequivalent,
and lifts the ground-state degeneracy. Then, the Hamiltonian
is reduced into the AFM Heisenberg model without the orbital
degree of freedom. The phase diagram on a plane of jD and hM

is shown in Fig. 3(b). It is obtained that the Néel order appears
for large hM . The SORS is realized in between the spin ordered
state and the orbital-ordered state which is realized in small
jD and hM .

So far, each O6 lattice vibration is assumed to be indepen-
dent from each other. Here we show that the SORS is realized
in more realistic parameter space, when the crystal lattice effect
is taken into account. The interactions Hinter between the NN
O6 octahedra are modeled by introducing the spring constant
between the NN octahedra K (see details in Ref. 15). As shown
in Fig. 3(b), the SORS is shifted to the lower side of jD and hM .
Without the artificial field (hM = 0), jDc is decreased down to
0.35. This result satisfies the condition of jD < 0.5, in which
HJT is valid as an effective Hamiltonian for the low-energy
vibronic states of Hrot.

We have shown that the present SORS emerges under the
quantum orbital state. A similar orbital state is known in
the honeycomb-lattice “orbital-only” model without the spin
degree of freedom, given by

Horb = J
∑
〈ij〉l

τ l
i τ

l
j . (12)

Instead of a conventional long-range order, a quantum su-
perposition of the orbital PSs is realized in Horb.37 Here, we

(a)

(b)

(c)

:Spin-orbital resonant phase

:Orbital ordered phase

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0

0.01

0.02

0.03

 0  0.1  0.2  0.3  0.4  0.5  0.6

FIG. 4. (Color online) (a) Phase diagram for the model where the
generalization of the electron transfer η and the staggered magnetic
field h are taken into account (see text). The SE interaction model
Hexch and the orbital-only model Horb correspond to (η,h) = (π/3,0)
and (π/2,∞), respectively. A shaded area shows the SO resonant
phase. (b) The dynamical spin-correlation function Ks(ω), and
(c) the dynamical orbital-correlation function Kτ (ω) in the orbital-
ordered phase (jD = 0.01) and in the SO resonant phase (jD = 0.5).
Parameter values are chosen to be the same as those in Fig. 3(b).
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connect the present SE Hamiltonian Hexch in Eq. (1) to Horb,
and examine a relation between the two orbital states. We
generalize the electron transfer as tpd → tpd (η) by introducing
a parameter η, and apply the staggered magnetic field as

Hh = −h
∑

i

(−1)iSz
i . (13)

Detailed procedures are explained in the SM.15 In the (η,h)
parameter space, the present model and the orbital-only model
are located at (η,h) = (π/3,0) and (π/2,∞), respectively. In
Fig. 4(a), the phase diagram as functions of h, η, and jD

is presented. The SORS at (η,h) = (π/3,0) and jD > jDc =
0.75 continuously connects to the orbital resonant state in
the orbital-only model realized in (η,h) = (π/2, �JAH). This
result implies that the present SORS belongs to the same class
of the orbital resonance state in the orbital-only model, and
supports the physical picture given in Fig. 1(c). It is worth
noting that the orbital resonant state in Horb remains in the
infinite size limit.37 We suppose that the present SORS is
survived even in large cluster systems.

IV. DISCUSSION AND SUMMARY

Based on the calculations, we propose a scenario for
Ba3CuSb2O9.7,8 The x-ray diffraction experiments suggest a
short-range honeycomb-lattice domain of the order of 10 Å,
which justifies the present finite-size cluster analyses to mimic
the realistic situation. The observed positive Weiss constant is
not trivial in conventional orbital-degenerate magnets where
the ferromagnetic interaction is dominant,38 and can be
explained by the present calculation where the exchange paths
are properly taken into account in a realistic lattice. As for the
no long-range SO orders in the hexagonal samples, the present
SORS is a plausible candidate. The temperature dependence
of the magnetic susceptibility is decomposed into the Curie
tail and a gapped component. The former is attributed to the
orphan spins, and the latter is explained by the present SORS
where the short-range spin singlets are realized. Existence
of the gapped magnetic excitation is also suggested by the
specific heat, the inelastic neutron scattering, and the nuclear
magnetic resonance measurements.8,39 The time scale for
the SO dynamics in SORS is governed by the local DJT
effect JDJT ∼ 1–10 meV and the intersite exchange interaction
JSE ∼ 1–10 meV, both of which are in between the ESR
time scale (∼10−9 s) and the x-ray time scale (∼10−15 s).
This fact can explain the contradicted experimental results:
the almost isotropic ESR signal and the anisotropic extended
x-ray absorption fine structure data,8 which are in contrast to
the conventional strong JT coupling systems.40,41

Finally, our theory provides a number of forceful predic-
tions in Ba3CuSb2O9 and other materials. There will be a
crossover frequency/magnetic field in ESR, corresponding
to JDJT and JSE, where the anisotropy in the g factor is

changed qualitatively. Dynamics of the orbital-lattice coupled
vibronic excitation is expected to be observed directly by
inelastic light/x-ray scattering spectra around 1–10 meV. A
key ingredient in the present SORS is the SO entanglement.
To demonstrate the SO entanglement from the viewpoint of
dynamics, we show, in Figs. 4(b) and 4(c), the dynamical
spin-correlation function Ks(ω) and the dynamical orbital-
correlation function Kτ (ω), respectively. We define

Ku(ω) = − 1

π
Im

〈
Mu

1

ω − (H + Hinter) + E0 + iη
Mu

〉
,

(14)

where Mu = Ms for spin (u = s), Mu = 1
6

∑
i T

z
i for orbital

(u = τ ), an infinitesimal constant η, and the ground-state
energy E0. Gapped spin excitations and low-lying orbital ex-
citations are seen in SORS and are consistent with the inelastic
neutron and x-ray scattering experiments, respectively.8,42 In
SORS (jD = 0.5), in contrast to the orbital-ordered phase
(jD = 0.01), an intensive orbital excitation is seen around the
lowest spin-excitation energy, where we obtained that the SO
correlation function G is much larger than that in the ground
state. This SO entangled excitation will be confirmed by
combined analyses of the inelastic neutron and x-ray scattering
experiments. We also predict that the SORS is suppressed
by applying the strong uniaxial pressure which breaks an
energy balance between spin and orbital. Finally, in addition
to Ba3CuSb2O9, the present SORS scenario is applicable to
other materials, where octahedra are not shared and JT centers
are separated from each other. One plausible candidate is
orbital-degenerate magnets in the ordered double-perovskite
crystal lattice.

In summary, we find that the SORS is realized by the DJT
effect in a honeycomb-lattice SO model. The present study
provides systematic explanations for the recent experiments in
Ba3CuSb2O9. With increasing DJT, the local orbital moments
are reduced, and the long-range orbital-ordered state is trans-
ferred to the quantum resonant state at the quantum-critical
point. This interplay between the local quantum state and
the classical order is analogous to the well-known quantum-
critical phenomena in the Kondo-lattice model. This theory
also proposes a route to the QSL state in orbitally degenerate
systems without geometrical frustration.
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