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An ab initio method for determining the dynamical structure function of an interacting many-body quantum
system has been devised by combining a generalized integral transform method with quantum Monte Carlo
(QMC) methods. A kernel has been found that (i) lets the transform be calculable with QMC methods and (ii) is
a representation of the δ function, allowing an inversion of the transform with a much higher predictive power
than the inverse Laplace transform. As a first application, the excitation spectrum of bulk atomic 4He has been
computed, both in the low and intermediate momentum ranges. The peculiar form of the kernel allows us to
predict, without using any model, both positions and widths of the collective excitations in the maxon-roton
region, as well as the existence of the second collective peak. A prediction of the dispersion of the single-particle
modes described by the incoherent part is also presented.

DOI: 10.1103/PhysRevB.88.094302 PACS number(s): 67.25.D−, 02.70.Ss, 05.10.−a

I. INTRODUCTION

Many important physical properties of matter are closely
related to the underlying microscopic dynamics. The compu-
tation of some quantities such as, e.g., viscosity or magnetic
susceptibility, is routinely performed for classical systems.
For quantum many-body systems, thanks to the growing
computational capabilities, we currently have a number of
methods capable of a true ab initio treatment of ground states,
however, the detailed study of dynamical properties yet has
been elusive.

In this paper, we will focus on the problem of extending a
class of quantum Monte Carlo (QMC) algorithms to accurately
determine the dynamical structure function (DSF) for a generic
quantum many-body system and a generic excitation operator.
Such an extension is based on the use of the integral transform
(IT) technique with generalized kernels. The amount and
quality of information that can be extracted by the proposed
scheme is illustrated in the application to the study of the
coherent and incoherent density excitation spectra in 4He.

At present, QMC calculations provide benchmark results
for a wide variety of many-body systems, ranging from atoms
to ultracold gases to nuclei. The most dramatic limitation of
QMC methods is their inability to treat dynamical properties
in a similarly reliable way. This failure is essentially due to
the fact that QMC works in imaginary time rather than in real
time. This implies that quantities that do not directly translate
into imaginary-time language, when analytically continued to
real time, are affected by statistical noise that can be hardly
reduced, making calculations unfeasible.

The mainstream approach to the problem is to attempt a
numerical inversion starting from the imaginary-time autocor-
relation function, i.e., the Laplace transform of the DSF, which
is an easily accessible quantity in most QMC calculations. As
is well known, this is an ill-posed problem1 and sophisticated
regularization techniques2,3 are needed to correctly extract
the physical information. These regularization procedures
are fundamental in ill-posed problems as are the inversions
of integral transforms, however, their importance is strictly
connected to the “degree of ill-posedness” of the problem. The

Laplace transform case is one of the worst ones in this respect.
We can have an intuitive feeling of the reason considering that,
due to the infinite range of the kernel function, many details
of the structure of the excitation spectrum are washed out in
the transformed function and are difficult to recover by means
of the inversion procedure. Consequently, a large amount of
physical information is often required in the inversion process,
limiting the predictive power of the approach.

One of the physical problems where many inversion
schemes have been applied and continuously improved is
the resolution of the measured double-peaked structure of
S(q,ω) in superfluid 4He,4 corresponding to a higher-energy
collective roton mode. One of the most powerful and popular
inversion schemes, the maximum entropy method5,6 (MEM),
can not resolve this double-peaked structure. Only the genetic
inversion via falsification of theories7 (GIFT) finally has been
able to reproduce qualitatively this double-peak structure.
Other sophisticated techniques were developed over time, such
as the average spectrum method8 (ASM) and the stochastic
analytic continuation9 (SAC), but unfortunately there were no
applications to this particular problem.

Up to now, almost all the research efforts have been devoted
to improving inversion algorithms in order to alleviate the
inevitable uncertainties connected to the particular regulariza-
tion scheme used, but very little attention has been devoted
to lowering the ill-posedness of the problem beforehand. This
can be accomplished using kernel functions different from the
Laplace one.

Following this idea, the problem of computing various
charge and current DSF of few-nucleon systems has been
solved by using a generalized integral transform approach,
i.e., the Lorentz integral transform (LIT) method.10,11 The
success of this approach is due to the specific choice of the
Lorentzian function as a kernel of the IT. On the one hand, this
choice allows us to calculate the transform with bound-state
techniques, even in the continuum region, although avoiding
its discretization. On the other hand, and most important, the
fact that the kernel is a representation of the δ function allows
for a reliable and stable inversion, which is predictive on the
DSF, at a controlled resolution. We will give some ideas later

094302-11098-0121/2013/88(9)/094302(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.094302


ROGGERO, PEDERIVA, AND ORLANDINI PHYSICAL REVIEW B 88, 094302 (2013)

in the text on why this is the case. So far, the application of
this technique has been limited to a small number of particles
[up to N = 6 (Ref. 12) and 7 (Ref. 13)], due to computational
limits of the few-body bound-state techniques.

In the following, we will discuss how to extend the idea of
the LIT method to many-body systems, by developing a QMC
equivalent. This is a major change of perspective with respect
to past work on DSF calculations with Monte Carlo methods,
where the focus has always been on the improvement of the
inversion algorithm used rather than alleviating a priori the
ill-posedness of the problem by a wise choice of the transform
to calculate.

II. FORMALISM

At zero temperature, the contribution to the response of a
system of interacting particles, due to a perturbative probe
which transfers momentum q and energy ω to it, can be
expressed using a spectral representation

SÔ(q,ω) =
∑

ν

|〈�ν |Ô(q)|�0〉|2δ(Eν − ω) (1)

= 〈�0|Ô†(q)δ(Ĥ − ω)Ô(q)|�0〉, (2)

where |�ν〉 are the final states of the reaction with energy Eν ,
|�0〉 is the ground state of the system (with energy E0 = 0), Ô
is an excitation operator, and δ(Ĥ − ω) is the spectral density
of the Hamiltonian. The summation is extended to all discrete
and continuum spectrum states in the set.

The cost of a direct calculation of SÔ(q,ω) becomes rapidly
prohibitive, as the number of particles or the energy transfer ω

increase. The latter problem gets even more difficult when the
final state is in the continuum since one would need to solve
the many-body scattering problem.

One can instead consider an IT of SÔ(q,ω) with a generic
kernel K(σ,ω):

�(q,σ ) =
∫

K(σ,ω) SÔ(q,ω) dω. (3)

The substitution of the expression (1) for SÔ(q,ω) yields

�(q,σ ) =
∑

ν

〈�0|Ô†(q)|�ν〉K(σ,ω)〈�ν |Ô(q)|�0〉

= 〈�0|Ô†(q) K(σ,Ĥ ) Ô(q)|�0〉. (4)

Equation (4) can be viewed as a generalized sum rule which
depends on a continuous parameter σ . Provided that the kernel
and the excitation operator have suitable analytic properties,
the right-hand side of Eq. (4) can be expressed via the mean
value of an operator on a ground state. However, in few
cases the transform is actually calculable with bound-state
techniques. In nuclear physics, typical few-body bound-state
techniques have been used to calculate the transforms with
both the Stieltjes kernel14 as well as for the Lorentz kernel.10

However, while in the former case the inversion of the
transform, whose kernel has a similar form as the Laplace
one, has been shown to be problematic,15 in the latter case,
even a rather simple regularization procedure has allowed us
to obtain accurate and stable results.11

The reason can be easily understood. In the case of the
Stieltjes or of the Laplace kernel, the information about

SÔ(q,ω) in the ω domain is spread in a large-σ domain. On
the contrary, the Lorentz kernel, as well as any function that
is a δ-function representation, keeps that information in an
arbitrarily narrow-σ domain, governed by the width of the
kernel. (In the δ-function limit of the kernel, no inversion
would be needed!)

Very few δ-function representations have a practical imple-
mentation. In the past, the use of Gaussian kernels has been
investigated in different fields, from condensed matter16,17

to nonperturbative QCD,18,19 with limited results. Here, the
idea is to recast one possible δ-function representation in
the imaginary-time propagation language, typical of QMC
methods, similarly to what was suggested in Ref. 20.

Consider the following family of integral kernels

KP (σ,ω) = N

[
e−μ ω

σ

σ
− e−ν ω

σ

σ

]P

, (5)

where

μ = ln[b] − ln[a]

b − a
a ; ν = ln[b] − ln[a]

b − a
b , (6)

and the parameters P,a,b are integer numbers with b > a.
The normalization constant N is a function of P,a,b such that∫

dσ KP (σ,ω) = 1.
The efficiency of this transform is due to the fact that

KP (σ,ω) converges to δ(ω − σ ) in the P → ∞ limit, inde-
pendent on the choice of a and b. For a finite P at each value
of ω the kernel has a finite width that depends on P and that
represents a sort of resolution at which one can study the
DSF. Moreover, σKP (σ,ω) has a maximum around ω = σ .
Therefore, the main advantage is that one can choose both
the energy range of interest (the σ values) and the resolution
(larger values of P correspond to higher resolution) for the
study of the DSF. This makes the approach extremely flexible,
similarly to the case of the LIT method.

Using a binomial expansion, and rewriting powers as expo-
nential functions, leads to a form of the kernel that is a linear
combination of the so-called Sumudu transform kernels,21 and
is more transparent in view of a QMC calculation:

KP (σ,ω) = N

σ

P∑
k=0

(
P

k

)
(−1)ke− ln(b/a)[ a

b−a
P+k] ω

σ . (7)

In fact, by operating the substitution ω → Ĥ according to
Eq. (4), we are led to a simple linear combination of imaginary-
time propagators (h̄ = 1)

KP (σ,Ĥ ) = N

σ

P∑
k=0

(
P

k

)
(−1)ke−τPkĤ , (8)

taken at different imaginary-time points

τPk = ln(b/a)

[
a

b − a
P + k

]/
σ. (9)

A. SVD analysis

It is possible to characterize in a more quantitative way this
kernel as compared to other choices by looking at the singular
value expansion (SVE) of the kernel function or, better yet, at
the singular value decomposition (SVD), since we are dealing
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FIG. 1. Eigenvalues of the SVD for the Laplace kernel on an
N = 200 mesh-points grid. A δ function would give all eigenvalues
equal to one.

with a discrete set of data. We start by discretizing the integral
equation (3) on an N -point grid

�(σ ) =
∫

K(σ,ω)S(ω)dω → �i =
N∑
k

KikSk i ∈ [1,N ],

(10)

where we have defined

�i ≡ �(σi), Kik ≡ αkK(σi,ωk), Sk ≡ S(ωk), (11)

where αk are the coefficients used for the particular integration
scheme employed.

Now, we can apply the SVD to the kernel matrix K to
produce the following factorization:

K = U
V T , U,V,
 ∈ RNxN (12)

with U ,V orthogonal matrices and 
 = diag[λ1, . . . ,λN ]. The
positive-definite elements on the diagonal of 
 are called
singular values and can be organized in descending order:
λ1 > λ2 > · · · > λN , while the column vectors of U , and
V , ūi , and v̄i , are called left and right singular vectors,
respectively. Usually, when dealing with integral transforms
(Fredholm integral equation of the first kind), the rate of decay
of singular values λn is at least exponential in n (e.g., see
Fig. 1), and the singular vectors ūi and v̄i can be viewed as
discrete functions with an increasing number of sign changes.
In the SVE limit, these would be functions with an increasing
number of nodes, therefore corresponding to contributions
with increasing frequencies.

Using this decomposition, we can obtain the following
expressions for both the direct and inverse problems:

�̄ = KS̄ =
N∑
j

λj

(
v̄T

j S̄
)
ūj , (13)

S̄ = K−1�̄ =
N∑
j

ūT
j �̄

λj

v̄j , (14)

where (ā,b̄) denotes the usual scalar product of two vectors.
We will show that in this form it is easier to appreciate where
the ill-posed nature of the inverse problem resides.

The solution of the direct problem φ̄ is expressed on
the basis set spanned by the left singular vectors ūj with
coefficients that are proportional to the singular values and
thus are damped exponentially fast as the index j grows. In
this sense, usually it is said that the integral transform is a
smoothened version of the original signal.

On the contrary, in the inverse problem the coefficients
of the expansion on the basis given by the right singular
vectors v̄j are exponentially amplified raising the index j . A
necessary requirement in order to obtain anything meaningful
out of it is that the overlaps ūT

j φ̄ decay faster to zero than the
singular values, and this is a really stringent property when the
transform is computed with finite precision.

In practical situations, the singular-value decay is so fast
that just the first few have a meaning because after a while
the number gets completely corrupted by floating-point errors
(see Fig. 1), and thus one expects meaningful results just for
the first few terms in the sum [Eq. (14)]. This is a sign of
the fact that when one discretizes an ill-posed problem, the
corresponding discrete problem is numerically ill conditioned
or, in other words, the problem is not stable with respect to
uncertainties in the input.

The decay rate of the singular values towards zero can be
used as an indication of the degree of ill-posedness of the
problem: the faster the singular values go to zero, the worse
is the impact of the ill-posed nature of the problem. This can
be understood by initially noticing that for a δ-function kernel
all the singular values are one. When a function with a finite
width is used, the SVD yields eigenvalues that start deviating
more and more from this limit: the larger the width, the faster
the decay. However, the SVD picks up not just information
about the width, but also about the behavior of the function in
the tails.

As an example, in Fig. 2 we compare the SVD of a
Laplace kernel, two Lorentz kernels with different width, and
a Sumudu kernel of a given width. The plot clearly shows that
while the Sumudu kernel underperforms with respect to the
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FIG. 2. (Color online) Upper panel: Comparison between Lorentz
kernel (red curves) with width 20 (continuous line) and 10 (dashed
line), a Sumudu kernel with P = 2 and b = 2a = 2 (solid green
curve), and a Laplace kernel (solid black curve). Lower panel: The
corresponding singular values for the kernels of the upper panel.
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Lorentz kernels, it widely overperforms the Laplace kernel.
This is the key point of this paper: While it is not possible for
technical reasons related to the nature of quantum Monte Carlo
algorithms to use an optimal kernel form as a Guassian or a
Lorentzian, which are good representations of a δ function with
separately tunable center and width, we have found a kernel
that, as discussed in the following, is (1) suitable for being
used in projection QMC calculation, and (2) is a qualitatively
and quantitatively better choice than a Laplace kernel. This
prescription sets a more efficient way of analyzing QMC data
in order to obtain information about the response function. Its
application will result in an a priori milder ill-posedness of the
inversion problem, which will in any case benefit from very
efficient inversion schemes. The main advantage here is that
almost no previous knowledge of the spectrum is required, and
calculations can be predictive. However, there is an even more
important point: the fact that the kernel KP (σ,ω) tends to the δ

function when P → ∞, and Eq. (8) tells us that in principle if
we could perform a calculation for very large P , we might get
to the limit at which some information, such as the position
of the peaks, has no need for any inversion to be extracted.
This fact has been exploited, for example, in nuclear dynamics
calculations.22

B. Quantum Monte Carlo

As we mentioned, our aim is to extract dynamical informa-
tion from projection QMC methods. These are all based on the
well-known idea of filtering the ground state of a system from
an initial ansatz by means of an imaginary-time propagation.
This corresponds to solving the integral equation

�(R,τ ) =
∫

dR′G(R,R′,τ )�(R′,0). (15)

The solution can be obtained, for instance, by sampling
a spatial coordinate representation of the Green’s function
G(R,R′,τ ) = 〈R|e−τĤ |R′〉 to propagate a set of configurations
representing in turn an expansion of the function �(R,τ ) in
eigenstates of the position operator. This is the scheme usually
employed in diffusion Monte Carlo calculations. Alternatively,
it is possible to break up the Green’s function in a product of
short-time propagators in coordinate space:

�(R,τ ) =
∫

dR′ . . . dRnG(R,Rn,
τ )

×G(Rn,Rn−1,
τ ) . . . G(R′′,R′,
τ )ψ(R′,0),

(16)

with τ = n
τ . This formulation is implemented in the
so-called path-integral ground-state methods23 and in the rep-
tation Monte Carlo (RMC) algorithm,24 where the whole path
{R,R′,R′′, . . . ,Rn} is sampled from the product of the
short-time propagators G, possibly modified with the use
of a suitable importance function �T to be determined in a
variational calculation. The fact that estimating �(q,σ ) for
the particular choice (7) for the integral kernel reduces to the
computation of an imaginary-time correlation function makes
this second formulation more convenient and straightforward.
In particular, path-based methods yield estimates that never

depend on the (necessary) importance function used to
improve the convergence of the calculation.

In order to evaluate the transform (3) with the kernel
function (7) within a QMC approach, we need to compute
the imaginary-time correlation function, and then construct
the corresponding linear combinations.

A small width of the kernel (and thus a less ill-posed
problem to solve) might be achieved either using a large value
of P or by reducing the value of the ratio b/a. In both cases,
this would require the computation of the imaginary-time
correlation function for long imaginary time. This might
indeed be a serious complication. However, a kernel that
has a width smaller or comparable to the distance between
the typical structures of the DSF is in principle sufficient to
extract useful information from the transform. We have also
confirmed this in numerical tests. In the application described
in the following, we used the kernel σKP (σ,ω) with the typical
values of P = 2, a = 1, and b = 2.

III. APPLICATION TO LIQUID HELIUM

As a first benchmark application to a realistic physical
problem, we have considered the density excitation response
in bulk atomic 4He at T = 0. The system is modeled as a box
with periodic boundary conditions, containing N = 64 or 125
4He atoms interacting via the HFDHE2 pairwise potential,25,26

which quantitatively reproduces the binding energy of bulk
4He up to the freezing point, effectively including three-body
contributions. More accurate two-body interactions give an
overbinding of the system and need to be complemented
by a three-body force. Explicit three-body interactions can
be included in a quantum Monte Carlo calculation, but
the computational cost becomes much larger. Calculations
are performed at the experimental saturation density (n0 =
0.021 86 Å−3). The density excitation operator is defined as

Ô(q) ≡ ρ̂ =
N∑

i=1

eiq·ri , (17)

and the transformed DSF in Eq. (3) becomes

�(q,σ ) = 〈�0|
N∑

i,j=1

eiq·ri KP (σ,Ĥ )e−iq·rj |�0〉.

As it is customary in neutron spectroscopy, one can distinguish
the contribution coming from the so-called coherent part, given
by the terms with i 	= j , related to collective excitations,
and an incoherent part with i = j that essentially picks
up contributions from single-particle excitations. We have
obtained results for both the full and for its incoherent parts, in
the most studied region of the spectrum: the low-momentum
phonon-maxon-roton part q ≈ 0.3 ÷ 2.8 Å−1. Computations
have been performed by means of a reptation Monte Carlo
(RMC) algorithm, as described in Ref. 24. The variational
importance function includes two- and three-body correlations
expanded in a basis set27 and optimized using a variational
Monte Carlo procedure. Ground-state properties are well
reproduced: the ground-state energy per particle is εRMC

0 =
−7.23 ± 0.01 K, in good agreement with previous calculations
using the same potential,24 and with the experimental value
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ε
expt
0 = −7.17 K. The static structure factor S(q) is consistent

with experimental data and previous calculations.24,27

Turning to the result on S(q,ω), the striking difference
between the estimate obtained inverting the transform with
the Laplace kernel or the one in Eq. (5) can be seen in Fig. 5,
where we compare the results of the inversion obtained from
RMC data with both kernels [in the figure S(q,ω) has been
normalized to the static structure factor S(q)]. Apart from
the small shift of the peak due to the 0.04-Å−1 difference
in the momentum transfer (the momenta are limited by the
discretization imposed by the use of a finite simulation cell,
here L = 14.306 Å), the new kernel permits us to retrieve
the information on the second peak and gives a much more
realistic height and width of the one-phonon peak. It should be
noted that at T = 0 the peak corresponding to the collective
excitation should be substantially narrower than the measured
one at higher T . An estimate of the intrinsic peak width is

ω � 5 × 10−4 K.28 Therefore, the experimental width is
essentially due to the resolution of the apparatus.29

The power of the new kernel appears to be clear from the
inset in Fig. 3, where the two transforms obtained with the
Laplace kernel [K(σ,ω) = e−ω/σ ] and with the kernel in (5)
are shown. In the former case, no structure is visible, while a
clear signature of a resonance is visible in the latter case in the
interesting region. This is due to the fact that the new kernel
is a representation of the delta function. Even if we have used
P = 2 and therefore its width is rather large around the first
resonance energy (see Fig. 4), the inversion procedure is able to
recover a narrow peak. In addition, a second peak is recovered,
even if the width of the kernel is larger in that region.

Above we stated that our main point is on the improvement
that one can attain from a wise choice of the integral transform
to invert, and not on the particular inversion scheme used.
Nonetheless, a few comments are necessary here concerning
the methods used to invert the transform. We have used three
different methods: the entropy maximization maximum like-
lihood (EMML),30 the simultaneous algebraic reconstruction
technique30 (SMART) (both with the unique constraint of a
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FIG. 3. (Color online) S(q,ω) in liquid 4He at T = 0 and q =
0.44 Å−1. Black solid curve: inversion of IT with kernel in Eq. (5).
Red dashed curve: inversion of IT with Laplace kernel. Experimental
data (black dots) are from Ref. 29 (at T = 1.34 K and q = 0.4 Å−1).
In the inset, the corresponding ITs are shown.
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FIG. 4. (Color online) Plot of KP (σ,ω = 8 K) (full lines) and
KP (σ,ω = 20 K) (dashed lines), for different values of P . All curves
have been normalized to the maximum value of σK1(σ,ω).

positive definite DSF), and a simpler regularization method.
The latter consists in writing

S(q,ω) =
M∑
m

cm

1√
2π�m

e
−( ω−ωm√

2�m
)2

, (18)

evaluating its IT and performing a (nonlinear) best fit of the
parameters cm, ωm, and �m on �(σ ) calculated by RMC for
a large a large number of σ values (300 points). In Fig. 5, the
results obtained with the different inversions are shown. One
notices that the first narrow peak is rather stable against the
three methods. A second peak is also predicted in all cases.
Its position and width is very stable against the inversion with
EMML or SMART. As expected, the fit with the ansatz in (18)
is too rough to be reliable in a region where the kernel has too
large a width, as shown in Fig. 4.

In Fig. 6(a), we have plotted the dispersions of the collective
modes obtained using the new transform. The bars in the
figures indicate the computed widths of the excitations. Both
the peak positions and the linewidths are robust with respect to
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FIG. 5. (Color online) S(q,ω) in liquid 4He at T = 0 and q =
0.44 Å−1. Inversion with SMART or EMML (solid black line),
inversion with ansatz in Eq. (18) and M = 2 (dashed red line) and
M = 3 (dashed-dotted blue line).
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FIG. 6. (Color online) (a) Dispersion of the collective modes in
liquid 4He at equilibrium density and T = 0. Computed values for the
first (green diamonds) and second (red squares) peaks. Error bars are
estimates of the widths of the peaks. + and × are the corresponding
experimental data from Ref. 31 at T = 1.1 K. (b) Dispersion of the
first peak (red circles: box with N = 64; black squares: box with
N = 125) and second peak (red up triangles: box with N = 64; black
down triangles: box with N = 125) of the incoherent DSF. Full line:
free-particle excitation spectrum. (Inset) half-widths of the first peak
for both incoherent excitations (black circles: box with N = 64; red
squares: box with N = 125) and coherent ones (green diamonds: box
with N = 64).

EMML or SMART inversions. We found that for q � 2.4 Å−1,
methods converge to the same solutions.

The experimental low-lying part29 is extremely well
reproduced up to q ≈ 2.6 Å−1. The two-phonon branch is
clearly visible and well resolved. As it happens in Ref. 7, it
only qualitatively compares to the experiment. The calculated
widths of the second-branch excitations are much smaller than
what is obtained from experiments. At present, it is difficult
to judge the reason for this discrepancy. It can be ascribed to
temperature effects and inadequacy of the Aziz pair potential
to describe multiexcitation processes. It might be as well an
indication that the width of our kernel is not small enough in
that energy region to allow a more robust estimation.

The results in Fig. 6(a) were obtained combining two simu-
lations at 
τ = 0.002 and 0.001 K−1, respectively, obtaining
a mesh separation less than 0.5 until about 40 K. In order to
obtain meaningful results in the high-energy regime, a large
collection of RQMC data taken with different imaginary-time
steps is needed in order to increase the sampling points. Due
to this technical difficulty, at present we have not performed
an exhaustive research in the high-momentum-transfer limit.
However, preliminary calculations show that the spectrum has
the expected approximately free-particle-like behavior, and
that for q ≈ 6 Å

−1
and above the incoherent part of the DSF

accounts for the total scattering.
Indeed, a useful feature of these calculations is that one can

separately compute the incoherent part of the full response
function, in order to help interpreting the result in terms of
possible single-particle and collective excitations.

In Fig. 6(b), we have plotted the calculated excitation
spectrum of single-particle excited states. The spectrum shows
at least two distinct branches. A lower-energy excitation starts
from q ≈ 0.5 Å−1 and propagates with a velocity of the

same order of magnitude as the superfluid critical velocity.
A second branch can be observed starting at an energy slightly
below two times the roton energy, tending asymptotically to
the free-particle spectrum. In order to help the interpretation
of these peaks as single-particle excitations, in the inset of
Fig. 6(b) we show the relative half-width in energy of these
peaks as compared to that of the lower branch in the full
spectrum [Fig. 6(a)]. We see that for low-momentum transfer,
the dominant long-living excitations are the coherent ones,
while as we approach the roton minimum the incoherent
contributions start playing an important role.

Interestingly enough, the lower-energy branch crosses the
collective excitation spectrum exactly at the roton minimum,
thereby reinforcing the picture of the roton as a single-particle
excitation of an atom exiting the superfluid. The behavior
of these single-particle excitations might be significantly
affected by the quantum many-body correlations induced by
the particle-particle interaction.

At intermediate values of the momentum q � 2.8 Å−1,
the positions of the peaks become less stable with respect
to the specific inversion procedure employed. This might be a
signature of the fact that our resolution in that regime is too low.

In order to illustrate this fact, we report in Fig. 7 a typical
result obtained at high-momentum transfer. We compare our
results with experiments obtained at nonzero pressure and tem-
perature from Ref. 32. The experiment presents a well-distinct
peak along with a slowly decaying tail (generally interpreted
as due to single-particle excitations32,33). The theoretical curve
shows instead a single peak in a position that is not very far
from the overall centroid of the experimental response. In this
case, the existence of a collective peak can not be established
separately. In the graph, a typical σKP (σ,ω) (in the specific
case ω = 18 K) is also displayed. We point out once more that
for a given value of P the kernel function becomes broader
when increasing σ . In this case, it is evident that the width
makes the kernel qualitatively similar to the Laplace one.
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FIG. 7. (Color online) S(q,ω) for liquid 4He at T = 0 K and
q = 2.64 Å−1 (solid line), compared with the results of Ref. 32 for
q = 2.4 Å−1, T = 0.6 K, and at pressure 20 bar (dots). The red curve
(in arbitrary units) is an example of σKP (σ,ω) used for computing
the inverse response function in this energy range. Notice that the
last curve is plotted as a function of σ (in K) with a fixed value of
ω = 18 K.
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The computational cost required to use a narrower kernel
(corresponding to a larger value of P ) which would allow
us to resolve the structures observed at large q dramatically
increases due to the need of using longer imaginary-time paths.
This is the current limit of applicability of the method when
used along with unsophisticated inversion techniques.

IV. SUMMARY

We have proposed an IT method to extract, with a controlled
resolution, excitation spectra from numerical calculations that
implement imaginary-time propagation of an initial state, such
as DMC or RMC. We remark that the aim of this work is to
show that there is a complementary way to improve our ability
to obtain dynamical information from Monte Carlo simulation,
aside from the mere improvement of the inversion algorithm
itself: a wise choice of the integral kernel. In this respect, the
most important result is to have found a kernel, appropriate to
QMC calculations, which is a representation of the δ function,
and therefore allows a reliable inversion of the transform with
a high degree of predictability.

The application to the study of the excitations in 4He shows
the robustness and the higher resolution power attainable
with this kernel, even with the rather simple regularization

techniques used. In fact, at T = 0 an ab initio calculation
with the unique ingredient of a potential has allowed us to to
predict with a high degree of reliability the existence of a very
narrow peak at an energy of about 8 K for q = 0.44 Å−1 and
of a second peak at higher energy. The method has allowed us
to calculate coherent and incoherent contributions separately,
helping the interpretation of the spectrum in terms of collective
and single-particle phenomena.

Computations might be easily extended to the T 	= 0 case
by using standard path-integral Monte Carlo methods and a
slightly modified version of the kernel function (5). The limit
to the accuracy of the spectra is in principle only the available
computer power.
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