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V. G. Ivanov,1,* M. V. Abrashev,1 N. D. Todorov,1 V. Tomov,2 R. P. Nikolova,3 A. P. Litvinchuk,4 and M. N. Iliev4

1Faculty of Physics, University of Sofia, BG-1164 Sofia, Bulgaria
2Institute of Solid State Physics, Bulgarian Academy of Sciences, BG-1184 Sofia, Bulgaria

3Institute for Mineralogy and Crystallography, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria
4Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5002, USA
(Received 8 May 2013; revised manuscript received 5 July 2013; published 3 September 2013)

The Brillouin-zone-center phonons and two-magnon excitations in CuB2O4 are studied experimentally
by polarized Raman spectroscopy. Most of the expected modes are clearly pronounced and their symmetry
unambiguously identified from the polarization selection rules. The experimentally observed transverse
optical phonon frequencies are in good agreement with those obtained by means of density functional
theory. The two-magnon scattering band is centered at 82 cm−1 and is clearly identified at temperatures
below the Néel temperature TN. The spectral shape of the two-magnon band confirms the existing theoretical
models of magnon dispersion in the commensurate phase of CuB2O4 and suggests an exchange integral of
J = 33 cm−1 (48 K) between the nearest-neighbor Cu(A) ions. The quantitative line-shape analysis of the
two-magnon band evidences for additional magnon self-energy contributions below the temperature T ∗ of the
commensurate-to-incommensurate phase transition.
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I. INTRODUCTION

Copper metaborate (CuB2O4) is an intriguing magnetic
insulator, which displays several competing spin interac-
tions. Apart from Cu-Cu antiferromagnetic exchange and an
easy-plane magnetic anisotropy, relativistic Dzyaloshinskii-
Moriya (DM) interactions come into play due to the lack of
crystallographic inversion symmetry. That is why CuB2O4

is a prototypical system for several important phenomena
in physics of magnetically ordered systems. For example,
it was the first compound where a static magnetic soliton
lattice has been confirmed experimentally.1 More recently,
extraordinary large magneto-optical dichroism2 and magneto-
electric effect3 have been observed in CuB2O4 upon partial
substitution of Ni for Cu, which give promise for a wide
range of applications in magnetic storage devices and in
optoelectronics.

The magnetic phase diagram of CuB2O4 has been exten-
sively studied by means of magnetic susceptibility, magneti-
zation, specific heat, and μ-SR measurements4 as well as by
neutron diffraction.1,5 A series of zero-field magnetic phase
transitions at temperatures TN = 21 K and T ∗ = 10 K has
been established. The neutron diffraction confirms that at
TN the system undergoes a transition to crystallographically
commensurate (C) antiferromagnetic phase existing down to
T ∗. At lower temperature T < T ∗, the system exhibits in-
commensurate (IC) helimagnetic ordering with a propagation
vector varying from q = (0,0,0) at T ∗ to (0,0,0.15) at 1.8 K.
To be more precise, the commensurate phase possesses a
weak ferromagnetic moment, which results from a small
canting of the neighboring spins from the ideal antiparallel
orientation. The presence of two magnetic subsystems, Cu(A)
and Cu(B) with magnetic moments of ≈0.86μB and 0.20μB ,
respectively,5 is also an important factor driving the C-IC phase
transition.6,7

Study of the spin-wave excitations (magnons) is also a
valuable tool toward understanding the interplay between
exchange interactions, magnetic anisotropy, and DM inter-

actions. The magnon dispersion curves in the commen-
surate antiferromagnetic phase of CuB2O4, along direc-
tions of high symmetry (0,0,q), (q,q,0), and (q,q,q), has
been examined by means of inelastic neutron scattering
(INS).8,9 Measurements confirm the existence of two-magnon
branches, which stem from the two magnetic sublattices. The
maximum magnon energies for the Cu(A) sublattice reach
8 meV, while for the Cu(B) sublattice they do not exceed
2 meV.

A logical further step toward unraveling the physics of mag-
netic ordering in CuB2O4 would be to explore the evolution
of the magnon spectra below the transition temperature T ∗
for the C-IC phase transition. In this work, we address this
problem by identifying and inspecting the two-magnon light
scattering band in the Raman spectra of copper metaborate at
temperatures ranging from 180 down to 4 K. According to
INS measurements, the two-magnon excitation spectrum of
the Cu(A) sublattice should extend approximately to 16 meV,
or 130 cm−1, which falls into the accessible spectral range of
present day Raman spectrometers.

The identification of the two-magnon band inevitably
relies on the assignment of the numerous �-point phonons
abundant in the Raman spectra of CuB2O4. To the best of
our knowledge, no previous study addresses optical phonons
in copper metaborate, and our work aims also at filling
this gap. We assign the optical phonons on the basis of a
careful comparison of the experimentally observed Raman
frequencies and polarization selection rules with the results
of the factor-group analysis and ab initio density func-
tional theory (DFT) calculations of the normal vibrations in
CuB2O4.

The paper is organized as follows. A detailed description
of the samples’ synthesis and their x-ray characterization,
the Raman experimental setups, and the methods of cal-
culation is given in Sec. II; Sec. III presents the experi-
mental Raman spectra and their theoretical interpretation.
Section IV summarizes the main results and conclusions of the
work.
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II. SAMPLES, EXPERIMENTAL SETUPS,
AND CALCULATION DETAILS

CuB2O4 single crystals were successfully grown by the
high-temperature solution growth method. The starting mate-
rials CuO and B2O3 were taken in 1:20 molar ratio, B2O3 being
used as a flux. The mixture of materials was first homogenized
for 48 h at 980 ◦C and then cooled to 750 ◦C at a cooling rate
of 1 ◦C/h. The crystals were grown in a platinum crucible
and the process took place in a resistive heating oven in air
atmosphere. The size of the crystals synthesized at the bottom
and walls of the crucible was up to 7 × 3 × 3 mm3.

The crystallographic characterization of the crystals
was carried out by x-ray single-crystal diffractometry.
A single crystal was mounted on a glass capillary and
diffraction data were collected at room temperature by an
ω-scan technique, on an Agilent Diffraction SuperNova
dual four-circle diffractometer equipped with an Atlas CCD
detector. A mirror-monochromatized Mo Kα radiation
from a microfocus source was used (λ = 0.7107 Å). The
determination of the cell parameters, data integration, scaling,
and absorption correction were carried out using the program
package CRYSALISPRO.10 The structure was solved by direct
methods (SHELXS-97) (Ref. 11) and refined by full-matrix
least-square procedures on F2. The single-crystal x-ray
diffraction confirmed the I 4̄2d crystal structure with lattice
parameters a = 11.4972 Å and c = 5.6290 Å and atomic site
positions close to those of Refs. 12 and 13.

The Raman measurements at room temperature were
carried out using micro-Raman spectrometer LabRAM HR800
Visible. An objective ×50 was used both to focus the incident
laser beam and to collect the scattered light. To check the
presence of resonance effects in the Raman spectra, He-Ne
(633 nm, 1.96 eV) and Ar+ [515 nm (2.41 eV), 488 nm
(2.54 eV), and 458 nm (2.71 eV)] lasers were used as excitation
sources. The Raman spectra at low temperatures were obtained
using triple T64000 micro-Raman spectrometer and Oxford
Instruments liquid helium flow cryostat.

The first-principles calculations of the electronic ground
state were performed within the generalized-gradient ap-
proximation (GGA) with Perdew-Burke-Ernzerhof14 local
functional using the CASTEP code.15 Ultrasoft pseudopo-
tentials were used. For self-consistent calculations of the
electronic structure, the integration over the Brillouin zone
was performed over the 5 × 5 × 3 Monkhorst-Pack grid in the
reciprocal space.16 A lattice relaxation has been performed
until forces on atoms did not exceed 10 meV/Å. After that,
the lattice dynamics was calculated by the finite displacements
method.17 This approach does not allow us to evaluate the
electric field response and calculate nonanalytical corrections
to longitudinal optical (LO) phonon frequencies.

III. RESULTS AND DISCUSSION

A. Phonon scattering

Copper metaborate possesses a relatively large unit cell for
its simple chemical formula and, consequently, a large number
of �-point phonons. The copper and boron atoms occupy
two sets of Wyckoff positions, whereas the oxygen atoms are
distributed among four sets of Wyckoff positions, as shown

TABLE I. Wyckoff position of the atoms in the unit cell of
CuB2O4 (I 4̄2d , No. 122, Z = 12). The irreducible representations
of the �-point phonon modes are �Total = 13A1 + 17A2 + 14B1 +
18B2 + 32E (Ref. 18).

Wyckoff
Atom notation Irreducible representations

Cu(A) 4b B1 + B2 + 2E

Cu(B) 8d A1 + 2A2 + B1 + 2B2 + 3E

O(1) 16e 3A1 + 3A2 + 3B1 + 3B2 + 6E

O(2) 8d A1 + 2A2 + B1 + 2B2 + 3E

O(3) 8d A1 + 2A2 + B1 + 2B2 + 3E

O(4) 16e 3A1 + 3A2 + 3B1 + 3B2 + 6E

B(1) 16e 3A1 + 3A2 + 3B1 + 3B2 + 6E

B(2) 8d A1 + 2A2 + B1 + 2B2 + 3E

Raman 13A1 + 14B1 + 17B2 + 31E

Infrared 17B2 + 31E

Acoustic B2 + E

Silent 17A2

in Table I. This results in a total number of 75 Raman-active
modes, which are classified according to their symmetry as18

�Raman-active = 13A1 + 14B1 + 17B2 + 31E (1)

with the corresponding Raman tensors

A1 =
⎛
⎝a 0 0

0 a 0
0 0 b

⎞
⎠, B1 =

⎛
⎝c 0 0

0 −c 0
0 0 0

⎞
⎠,

B2(z) =
⎛
⎝0 d 0

d 0 0
0 0 0

⎞
⎠, E(x) =

⎛
⎝0 0 0

0 0 e

0 e 0

⎞
⎠,

E(y) =
⎛
⎝0 0 e

0 0 0
e 0 0

⎞
⎠.

Due to the fact that B2 and E phonons are both Raman and
infrared active, TO-LO frequency splitting of these modes can
be expected in different scattering configurations. The induced
electric dipole moment of B2 modes is parallel to the [001]
crystal direction, whereas the dipole moment of E modes is
parallel to the (001) plane.

Our single crystals display elongated shape along the c axis
with naturally grown {100} and {001} surfaces. Additionally,
narrow {110} surfaces are visible under optical microscope. By
inspecting the polarization selection rules from these crystal
surfaces, the phonon symmetries can be uniquely identified
according to the analysis presented in Table II. The axes
x, y, z, x ′, and y ′ are parallel to [100], [010], [001], [110],
and [1̄10] crystal directions, respectively.

The polarized room-temperature Raman spectra in all
experimentally available scattering configurations are shown
in Fig. 1. A large number of phonon lines are observed in the
spectral interval between 100 and 1300 cm−1. By following the
selection rules given in Table II, we were able to unequivocally
assign 12 out of the 13A1, 11 out of 14B1, 14 out of the 17B2,
and 18 out of the 31E normal modes. The frequencies of
lines belonging to one and the same symmetry are marked
with identical colors in Fig. 1. Some of the strongest lines are
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TABLE II. Selection rules for the Raman-active modes in a
crystal structure of I 4̄2d space group in the experimentally available
scattering configurations.

(001) surface z(xx)z̄ z(xy)z̄ z(x ′x ′)z̄ z(x ′y ′)z̄

A1 a2 0 a2 0
B1 c2 0 0 c2

B2 0 d2(LO) d2(LO) 0
E 0 0 0 0

(010) surface y(xx)ȳ y(xz)ȳ y(zz)ȳ

A1 a2 0 b2

B1 c2 0 0
B2 0 0 0
E 0 e2(LO) 0

(110) surface y ′(x ′x ′)ȳ ′ y ′(x ′z)ȳ ′ y ′(zz)ȳ ′

A1 a2 0 b2

B1 0 0 0
B2 d2(TO) 0 0
E 0 e2(LO) 0

observed also in forbidden scattering configurations, which is
ascribed to polarization leakage.

The experimentally observed phonon frequencies are sum-
marized in Table III, and are compared with the results

of DFT normal-mode calculations. Only LO phonons of E

symmetry were observed experimentally. For B2 and E modes,
only transverse optical (TO) frequencies were calculated as
explained in Sec. II. The close correspondence, within 5%,
between the experimental frequencies of the TO modes and
the theoretical expectations corroborates the mode assignment
based on the polarization selection rules.

In order to exclude the possibility of any photoluminescence
contribution, Raman spectra were recorded with four different
excitation wavelengths spanning the visible range. Shown in
Fig. 2 are the spectra in the y(zz)ȳ configuration, where only
A1 phonon lines are allowed. The spectral line positions are
identical in different spectra, which proves their Raman origin.
Moreover, there is no significant intensity redistribution among
the spectral lines upon changing the excitation wavelength.
According to optical absorption measurements,19 the shortest
excitation wavelength in our experiment is nearly 100 nm off
resonance with the interband gap of CuB2O4. Therefore, no
resonant effects in the visible Raman spectra are to be expected
in agreement with our results.

B. Two-magnon scattering: Selection rules

Upon lowering the temperature, a broad spectral wing
emerges below 150 cm−1, as evident from Fig. 3. It evolves

FIG. 1. (Color online) Polarized room-temperature Raman spectra of CuB2O4 for 458-nm excitation. Frequencies are shown only for those
lines, which are allowed in a given scattering configuration. Raman lines of equivalent symmetries are labeled with one and the same color.
The unlabeled lines correspond to polarization leakage from other scattering configurations.
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TABLE III. Experimental and calculated frequencies (in cm−1) of �-point Raman-active modes in CuB2O4.

A1 B1 B2 (TO/LO) E (TO/LO)

Expt. DFT Expt. DFT Expt. DFT Expt. DFT

251 244 147 127 −/110 123/− −/142 133/−
332 328 – 242 150/150 131/− −/− 150/−
400 391 356 337 207/213 200/− −/190 176/−
470 469 386 380 262/264 216/− −/222 215/−
596 576 533 504 282/292 245/− −/262 230/−
704 692 – 583 317/330 313/− −/− 266/−
725 704 628 604 427/427 408/− −/− 308/−
785 770 695 692 490/490 465/− −/− 331/−
– 869 800 775 588/588 566/− −/396 346/−
897 918 855 833 −/704 679/− −/426 394/−
1009 952 – 1001 746/746 714/− −/443 429/−
1117 1048 1020 1015 −/− 847/− −/480 452/−
1122 1098 1096 1032 −/− 892/− −/502 466/−

1204 1091 −/− 920/− −/560 535/−
962/972 955/− −/573 564/−

1060/1060 974/− −/626 595/−
−/1191 1056/− −/676 669/−

−/− 725/−
−/− 768/−

−/781 774/−
−/890 861/−
−/− 891/−
−/− 903/−
−/− 923/−
−/− 941/−
−/− 963/−

−/970 966/−
−/991 988/−
−/− 1058/−
−/− 1082/−

−/1228 1113/−

FIG. 2. (Color online) Raman spectra of CuB2O4 obtained in
y(zz)ȳ scattering configuration at 300 K with four different laser
lines. Only A1 lines are allowed in this configuration.

into a broad band centered at 82 cm−1 at temperatures below
the Néel temperature TN = 21 K of the commensurate (C)
magnetic transition. It is seen in Fig. 4 that this band is present
with identical line shapes in xx(yy), x ′y ′, and xz(yz) scattering
configurations, and is practically missing in zz and x ′x ′, i.e.,
it corresponds to a mixture of B1 and E symmetries in the
D2d point group. The intensity of the band gradually increases
upon lowering the temperature and becomes comparable to
the intensity of phonon lines. The spectral position and the
width of the band do not show apparent discontinuities near
the C-IC transition temperature of 10 K. The correlation of
this band with the transition to commensurate phase allows
us to hypothesize that it originates primarily from magnetic
excitations of the antiferromagnetic ordering.

Generally speaking, two types of magnetic excitations, i.e.,
one magnon and two magnon, display Raman activity. The
mechanisms of the two types of magnetic Raman scattering,
however, are quite different and are easy to discriminate
experimentally. The one-magnon Raman scattering, in our
case, could be ruled out for several arguments. First, the
one-magnon scattering is promoted by virtue of spin-orbit
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FIG. 3. (Color online) Evolution of the Raman spectra of CuB2O4

in y(xx)ȳ scattering configuration and 488-nm excitation upon
decreasing the temperature from 180 to 4 K.

coupling and gives rise to Raman lines, which are much
weaker than the typical phonon bands. Second, as the
one-magnon scattering involves only �-point excitations, it
is characterized by very narrow lines, in contrast to the
≈50 cm−1 width of the experimentally observed band. Finally,
the frequency of the �-point magnons is proportional to the
magnetic-anisotropy field HA. According to electron spin
resonance (ESR) measurements7 HA = 3.9 T for the Cu(A)
(4b) sites, which corresponds to a magnon �-point energy
of μBHA = 1.8 cm−1. Obviously, this value is far below the

FIG. 4. (Color online) Raman spectra of CuB2O4 at 6 K in z(xx)z̄,
z(x ′x ′)z̄, z(x ′y ′)z̄, z(xy)z̄, y(xx)ȳ, y(xz)ȳ, and y(zz)ȳ scattering
configurations.

FIG. 5. The sublattice of the Cu(A) (4b) positions. Indicated are
the strong (J1) and the weak (J2) exchange interactions.

energy scale available in the Raman experiments. Therefore,
in this section we will provide rigorous arguments in favor of
the two-magnon origin of the 82-cm−1 band.

The two-magnon Raman scattering is usually manifested by
intense and broad bands. According to the Fleury-Loudon (FL)
mechanism,20 the two-magnon Raman process consists of a
spin exchange between antiferromagnetically interacting ions,
proceeding via two consecutive electric dipole transitions.
That is why the cross section of the two-magnon scattering
is comparable to that of the phonon Raman scattering. The
two inequivalent copper positions, Cu(A) (4b) and Cu(B)
(8d), form two weakly interacting magnetic sublattices.5 The
INS measurements and the theoretical calculations show that
the spin-wave excitations in the two subsystems are well
decoupled.8,9 While the maximum magnon energy in the
Cu(B) sublattice is estimated at ≈1.5 meV (12 cm−1), the
magnon spectrum of the Cu(A) subsystem is expected to
extend up to 8 meV (64 cm−1). Therefore, the band at 82 cm−1

falls deeply within the spectral range of the two-magnon
excitations of the Cu(A) sublattice.

Shown in Fig. 5 is the Cu(A) sublattice and the relevant ex-
change interactions between nearest neighbors.5 Each Cu(A)
ion is antiferromagnetically coupled by a strong exchange
J1 = kB × 45 K = 31 cm−1 with four neighbors. The “strong”
bonds are parallel to the ac and bc planes, respectively, and
are inclined at an angle θ ≈ ±13◦ with respect to the ab plane.
Two “weak” bonds of an exchange integral J2 = kB × 6.5 K =
9.4 cm−1 are formed with the two neighbors along the c

axis. Additionally, Dzyaloshinskii-Moriya (DM) interaction
D · (Si × Sj ) with D = kB × 2.9 K = 4.2 cm−1 is necessary
to explain the small inclination (≈3◦) of the neighboring
spins from the ideal antiparallel orientation dictated by the
J1 exchange. It is clear from the described hierarchy of
interactions that the J2 exchange and the DM interactions
are insignificant for the explanation of the 82-cm−1 band.
Therefore, we assume that the spectral shape and position
of the two-magnon band can be satisfactorily described by the
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TABLE IV. Effective Raman Hamiltonians for the two-magnon
Raman scattering in different polarization configurations.

Scattering configuration Effective Raman Hamiltonian

xx cos2 θ
∑

i Si · Si+d1

xy 0
xz cos θ sin θ

∑
i Si · Si+d1

x ′x ′ 1
2 cos2 θ

∑
i(Si · Si+d1 + Si · Si+d2 )

x ′y ′ 1
2 cos2 θ

∑
i(Si · Si+d1 − Si · Si+d2 )

simplified exchange Hamiltonian

H = J1

∑
i,d

Si · Si+d , (2)

where the index i runs over the translationally equivalent 00 1
2

positions and the vector d spans the four possible directions to
the set of 0 1

2
1
4 neighbors.

By following the FL approach,20 the effective Hamiltonian
describing the two-magnon Raman process is

HR ∝
∑
i,d

(einc · d)(escatt · d)Si · Si+d , (3)

where einc and escatt are the polarization vectors of the incident
and the scattered photons, respectively. Table IV summarizes
the forms of the Raman Hamiltonian for the experimentally
available polarization configurations. The polarization direc-
tions specified by the unit vectors x̂′ = 1/

√
2(x̂ + ŷ) and

ŷ′ = 1/
√

2(x̂ − ŷ) are tilted by 45◦ relative to the axes a

and b, respectively. The vectors d1 = ± cos θ x̂ − sin θ ẑ and
d2 = ± cos θ ŷ + sin θ ẑ specify the “strong” Cu-Cu bonds
parallel to the ac and bc planes, respectively.

Although the effective Hamiltonian for the x ′x ′ configu-
ration is nonzero, it commutes with the exchange Hamilto-
nian (2) and, consequently, does not contribute to inelastic
light scattering. Therefore, the FL interaction given by Eq. (3)
results in nonvanishing Raman scattering in the xx(yy), x ′y ′,
and xz(yz) polarization configurations in full agreement with
the experimentally established polarization selection rules
for the 82-cm−1 band. Moreover, the same type of Raman
Hamiltonians correspond to the xx and xz configurations,
which corroborates the similar spectral shape of the band in
the two configurations.

C. Two-magnon scattering: Line-shape analysis

A decisive piece of evidence for the two-magnon origin of
the band at 82 cm−1 could be deduced from a detailed analysis
of its spectral shape and position. Since the original work of
Fleury and Loudon,20 the calculation of spectral shape of the
two-magnon Raman scattering has been addressed in several
theoretical papers, especially in the context of the high-Tc

superconducting (HTS) cuprates.21,22 In the latter case, the
maximum of the two-magnon band has been calculated at
ω0 = 2.78J . The HTS cuprates are a prototypical example of
a quasi-two-dimensional (quasi-2D) S = 1

2 antiferromagnet on
a square lattice. They resemble the Cu(A) sublattice of CuB2O4

in two aspects: the S = 1
2 spin state of the Cu2+ ions, and the

Z = 4 coordination number. It means that the energy cost of a

simultaneous spin reversal of two nearest-neighbor Cu2+ ions
would scale to the exchange integral J in roughly the same
proportion in the two systems. The as-estimated Cu(A)-Cu(A)
exchange integral in CuB2O4 is J1 = 29 cm−1, which is in
near agreement with the value of 31 cm−1 obtained by electron
spin resonance (ESR). This analogy, however, does not apply
to the line shape of the two-magnon band due to a principal
topological difference between the two systems. As seen from
Fig. 5, Cu(A) positions in copper metaborate form a system
of strongly interconnected planes in contrast to the almost
isolated CuO2 layers in HTS cuprates. As a result, a significant
magnon dispersion is present along the crystallographic c axis
in CuB2O4 as opposed to the practically dispersionless along
c magnon branches in HTS cuprates.

By following the results of magnon dispersion
calculations,8 in the case of negligible magnetic anisotropy and
DM interactions, the magnon energy in the Cu(A) subsystem
of CuB2O4 is given by the equation

E(k) = ZSJ1

√
1 − γ (k)2, (4)

where

γ (k) = 1

2
cos

(
kzc

4

)[
cos

(
kxa

2

)
+ cos

(
kya

2

)]
. (5)

In the approximation of noninteracting magnons, the two-
magnon scattering intensity is proportional to the imaginary
part of the “undressed” Green’s function

G0(ω̄) =
∫

BZ

d3k
(2π )3

f (k)2

ω̄ − 	̄(k) − iδ
, (6)

where ω̄ = ω/ωmax is the Raman shift ω normalized by
the high-frequency cutoff ωmax = 2ZSJ of the two-magnon
spectrum, 	̄(k) = 2E(k)/ωmax, and f (k) is a configuration
dependent coupling coefficient between the electromagnetic
field and the two-magnon excitations. The integration in Eq. (6)
is performed over the magnetic Brillouin zone (BZ), which
in the case of CuB2O4 coincides with the crystallographic
BZ. We will determine the coupling coefficient f (k) by
transforming the spin operators in the Raman Hamiltonian (3)
into momentum representation:

Si =
∫

BZ

d3k
(2π )3

exp(ik · xi)Sk. (7)

For a specific scattering configuration, e.g., B1, we obtain

HR ∝
∫

BZ

d3k
(2π )3

f (k)Sa,k · Sb,−k, (8)

where a and b denote 00 1
2 and 0 1

2
1
4 Wyckoff positions,

respectively. The coupling coefficient is given by the equation

f (k) = cos

(
kzc

4

) [
cos

(
kxa

2

)
− cos

(
kya

2

)]
, (9)

which differs from the corresponding coupling coefficient for
a 2D antiferromagnet by the kz-dependent cosine prefactor.

As investigated extensively in Refs. 21 and 22, the non-
interacting magnon approximation (6) leads to unphysical
singularities of the two-magnon spectrum at ω = ωmax. It
is demonstrated that on account of the magnon-magnon
interactions, which are especially significant in the S = 1

2 case,
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FIG. 6. (Color online) Comparison between the experimental line
shape of the two-magnon band at 4 K (dots) and the model of
interacting magnons (10) (solid line).

the two-magnon scattering intensity R(ω) is described by the
imaginary part of a renormalized Green’s function

R(ω) ∝ Im

(
G0(ω)

1 + rG0(ω)

)
, (10)

where r is a dimensionless renormalization coefficient ac-
counting for the magnon self-energy effects. The origin of
the magnon self-energy may be twofold. First, an intrin-
sic “kinematic” interaction, originating from the nonlinear
character of the Dyson-Maleev23,24 representation of the spin
operators, is unavoidably present and is especially significant
in the low-spin systems. Second, r may incorporate any
additional interaction unaccounted in the simplified exchange
Hamiltonian (2).

Instead of calculating r on the basis of a microscopic
theory, we will consider it as a phenomenological parameter,
which can be estimated by fitting Eq. (10) to the experimental
spectra. The nearest-neighbor exchange integral J1 is also
considered as an adjustable parameter. Figure 6 shows the
as-fitted two-magnon band at T = 4 K in the xx (B1) scattering
configuration. The estimated values of the parameters are J1 =
33.1 ± 0.9 cm−1 and r = 1.29 ± 0.03. The close matching
between the theoretical model of interacting magnons and
the experimental line shape undoubtedly confirms the two-
magnon origin of the 82-cm−1 band. Evidently, the estimated
exchange integral is in perfect agreement with the experimental
results from ESR (Ref. 7) and INS.8

The fitted values of J1 at higher temperatures do not
show any systematic temperature dependence and are scattered
within estimated confidence intervals. As evident from Fig. 7,
however, the estimated values of r decrease steadily upon
increasing the temperature up to 15 K. This trend is best
pronounced around 10 K, i.e., in the vicinity of the IC-C
phase transition. The data suggest that additional interactions
contribute to the magnon self-energy in the IC phase.

A possible qualitative explanation of this effect is that
below T ∗ the wave vector k is not a “good” quantum
number of the magnon excitations. Magnons, specified by the

FIG. 7. Temperature dependence of the renormalization coeffi-
cient r in the vicinity of IC-C phase transition. The solid line is a
guide for the eye.

dispersion relation (4), relax through scattering into states of
wave vectors k ± q where q is the propagation vector of the
helimagnetic structure. Additionally, scattering from magnetic
solitons1 formed around T ∗ may also contribute to the magnon
renormalization.

IV. SUMMARY AND CONCLUSIONS

Most of the �-point Raman-active phonons in CuB2O4

are identified and their symmetries are determined on the
basis of polarized Raman measurements and first-principles
DFT calculations. The TO-LO splitting of some of the B2

modes has been observed and quantified. The phonon Raman
spectra do not display resonant behavior in the visible spectral
range.

The polarization selection rules and line-shape analysis
allow us to assign the broad band centered at ω0 = 82 cm−1 to
a two-magnon Raman process from the Cu(A) sublattice. The
experimental band profile is described to a great precision
within a model of interacting magnons and unequivocally
confirms the suggested Fleury-Loudon mechanism of spin-
light coupling, as well as the magnon dispersion relations
studied earlier theoretically and experimentally by INS. An
exchange interaction of 33 cm−1 between nearest-neighbor
Cu(A) atoms is estimated from the Raman spectra, which
corroborates the results of other experimental techniques.

Although the spectral shape of the ω0 = 82 cm−1 band
displays no apparent discontinuities upon crossing the C-IC
transition temperature, the quantitative line-shape analysis
evidences detectable magnon self-energy effects in the IC
phase. We hypothesize that the additional contribution to
the magnon self-energy is a result of the magnon k-vector
relaxation due to scattering from the helimagnetic spin lattice,
as well as from magnetic solitons, which are present at
temperatures around T ∗.
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