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Thermodynamics of the Zr-O system from first-principles calculations
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We investigate the electronic and thermodynamic properties of Zr and its oxides from first principles to
elucidate phase stability in the Zr-O system. Hexagonally close-packed Zr is unusual in its ability to dissolve very
high concentrations of oxygen over its interstitial octahedral sites, forming a variety of ordered suboxides that
undergo both first-order and second-order phase transitions upon heating. We perform a first-principles, statistical-
mechanical analysis of finite temperature phase stability of ZrOx using a cluster expansion Hamiltonian and Monte
Carlo calculations. This analysis predicts the existence of 0-K ground-state oxygen orderings at composition
ZrO1/6, ZrO2/9, ZrO1/3, ZrO4/9, and ZrO1/2 along with evidence of an infinite sequence of ground-state suboxide
orderings at intermediate oxygen concentrations consisting of different stackings of empty, 1

3 -filled and 2
3 -filled

two-dimensional oxygen layers. We also predict the stability of a previously uncharacterized Zr-monoxide phase,
which we label δ′-ZrO due to its crystallographic relation to δ-TiO. The δ′-ZrO structure is equivalent to the
high-pressure ω-Zr phase but has interstitial oxygen ordering. Finally, as part of the technical implementation
of our statistical mechanical study, we introduce a new algorithm to parametrize the coefficients of a cluster
expansion Hamiltonian and apply a k-space analysis to rigorously track order-disorder phenomena at finite
temperature.
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I. INTRODUCTION

Controlling the growth and properties of zirconium oxide
is important to a wide range of technologies. Zirconium alloys
are used in high-temperature applications such as nuclear fuel
rod cladding due to their excellent corrosion resistance, a
low-absorption cross-section for neutrons, high hardness, and
ductility. ZrO2, particularly when stabilized in the cubic form
by alloying with Y2O3, is used as a solid oxide fuel cell (SOFC)
electrolyte and for thermal barrier coatings. Thin films of ZrO2

show promise as a high-κ dielectric for microelectronics. Of
significant interest for any of these applications is a predictive
theory of Zr oxidation. Since oxidation involves the formation
of new phases, atomic diffusion, and electronic transport,1

any attempt to rationalize and predict this process requires a
thorough characterization of the thermodynamic, kinetic, and
electronic properties of the Zr-O system.

A remarkable property of Zr is its high oxygen solubility
limit. In contrast to most other elemental metals, Zr can
dissolve oxygen up to as much as 35 at% (for the experi-
mental phase diagram see Ref. 2). Addition of more oxygen
results in the transformation to ZrO2, which, depending on
the temperature, can exist in three polymorphs at standard
pressure. A cubic form, γ -ZrO2, is stable at high temperature
and has the fluorite structure. The Zr atoms of γ -ZrO2 form
a face-centered cubic (fcc) sublattice with oxygen occupying
the tetrahedral interstitial positions of the Zr sublattice. At
lower temperatures, tetragonal and monoclinic distortions of
the cubic phase become stable. For stoichiometric ZrO2,
the cubic phase transforms to tetragonal β-ZrO2 at 2650 K,
while the tetragonal form transforms to moniclinic α-ZrO2 at
1478 K. In contrast to β- and α-ZrO2, cubic γ -ZrO2 is able
to accommodate significant oxygen understoichiometry (0 �
x � 0.44 in γ -ZrO2−x), rendering it stable to temperatures
as low as 1798 K at understoichiometric compositions. In

addition to γ -, β-, and α-ZrO2, at least two orthorhombic
phases are stabilized at high pressure.3

Pure Zr is stable in the hcp crystal structure (α-Zr) at
low to intermediate temperature and transforms to the bcc
crystal structure (β-Zr) above 1163 K.2 Both hcp and bcc
polymorphs of Zr are able to dissolve high concentrations of
oxygen. The oxygen solubility of β-Zr reaches as high as
10.5 at% oxygen at high temperatures, while the maximum
solubility of α-Zr reaches values as high as 28.6–35 at%
oxygen. Oxygen is known to occupy octahedral interstitial
positions in α-Zr. At low temperatures and high oxygen
content, oxygen ordering over the octahedral sites of hcp
Zr has been observed experimentally with neutron and x-ray
diffraction. Similar oxygen solubility and ordering is observed
in titanium4 and hafnium.5 Phase transformations between
the various orderings have been observed by calorimetry and
electrical resistivity measurements. While boundaries between
ordered phases have been determined2,6,7 they are considered
speculative because of the difficulty of equilibrating at low
temperatures. In addition to α- and β-Zr, hexagonal ω-Zr with
an AlB2 type crystal structure is stable in the pressure range
∼2–35 GPa.8

Several ab initio studies of the various polymorphs of Zr
and ZrO2 have been performed to elucidate their electronic,
structural, and vibrational properties (see Refs. 8–10 and those
cited within), with a particular emphasis on understanding
the transformations between the various phases. Oxygen
dissolution in α-Zr was recently investigated by Ruban et al.11

who used a pair-interaction Hamiltonian, parameterized using
ab initio calculations at dilute oxygen concentrations, to
predict the stability of oxygen ordering at ZrO1/3 and ZrO1/2.
More recently, Burton et al.12 calculated a Zr-O phase diagram
from first-principles calculations for the concentration range
0 � x � 0.5 in ZrOx . They identified ZrO1/6, ZrO1/3, ZrO5/12,
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and ZrO1/2 as 0-K ground states. Their cluster expansion
did not predict long-period superstructure O orderings, in
contradiction with experiments.2

While TiO monoxides have long been reported experi-
mentally, ZrO monoxides have not been convincingly ob-
served until recent studies.13–15 Using electron energy loss
spectroscopy (EELS) and atom probe tomography (APT),
regions near the metal-oxide interface have been identified
with apparent ZrO stoichiometry [see Fig. 5(b) in Ref. 13], but
the methods do not allow for crystal structure identification.
In the titanium-oxygen system, which has many similarities
to the Zr-O system, the rock salt structure, γ -TiO, is observed
at high temperatures over a large composition range (for the
experimental phase diagram see Ref. 4). At low temperatures,
α-TiO, a monoclinic ordering of vacancies on 1/6 of the Ti
and O sites, is believed to be the ground state. The rock salt
structure in ZrO is listed in crystallographic databases16,17

and once18 in recent experimental literature but was not
clearly isolated. Additionally, there is a δ-TiOx phase, observed
experimentally19 with stoichiometry ∼Ti3O2. In δ-TiOx , the
Ti sublattice has an AlB2 type structure while oxygen atoms
sit in elongated octahedral interstitial positions. The ideal
stoichiometry of the structure is TiO, but random vacancies on
the oxygen sublattice lead to the observed ∼Ti3O2 stoichiom-
etry. This rich variety of stable and metastable Ti monoxide
structures and Ti-oxides with stoichiometries between TiO1/2

and TiO2 can serve as a guide in the search for a stable Zr
monoxide structure.

In this work, we present a systematic investigation of the
electronic and thermodynamic properties of the Zr-O system.
We performed a large search for ground-state structures
throughout the composition range 0 � x � 2 in ZrOx , with
a particular focus on potential compounds of stoichiometry
ZrO. We also performed density functional theory (DFT)
calculations and fit a cluster expansion for the energetics
of octahedral interstitial oxygen incorporation in α-Zr. We
considered the electronic structure of the suboxide phases
and how it relates to the large oxygen solubility and low
volume expansion with increasing oxygen content. Using
the cluster expansion formalism and grand canonical Monte
Carlo calculations, we constructed a temperature-composition
phase diagram at low temperature, predicted the variation
of oxygen chemical potential and oxygen partial pressure
with oxygen concentration, and analyzed the order/disorder
transitions between equilibrium phases.

II. METHODS

A. Candidate structures

Construction of a phase diagram requires a comparison
of the free energies of different phases as a function of
temperature and composition. Therefore a first step is to
identify candidate phases. Since the low-temperature α-Zr
phase has an hcp crystal structure and the ZrO2 structures
known experimentally have fcc based Zr lattices (that are
potentially distorted as in the tetragonal and monoclinic
forms), we initially limited our search for stable ZrOx phases
to crystal structures with hcp and fcc based Zr sublattices. We
generated symmetrically distinct candidate structures using the

following criteria. For the hcp Zr lattice, we generated the 329
possible ZrOx structures with oxygen occupying octahedral
interstitial positions up to x = 1 and up to ten Zr atoms
per unit cell. For the fcc Zr lattice, we generated the 2 659
possible ZrOx structures with oxygen occupying octahedral
and tetrahedral interstitial positions up to x = 2 and up to
eight Zr atoms per unit cell. We also generated the 199 possible
structures with O vacancies in the monoclinic α-ZrO2 structure
with up to eight Zr atoms per unit cell. No vacancies were
allowed on the Zr lattice in any structures.

To investigate the possibility of a ground-state Zr monoxide,
we also performed ab initio calculations of structures that
have been observed experimentally4,19 in TiO, replacing Ti
with Zr. The calculated phases were based on γ -TiO (rock
salt), α-TiO (rock salt with ordered Zr and oxygen vacancies
such that 1/6 of the sites are vacant), and hexagonal δ-TiO
without the random oxygen vacancies that usually result in the
stoichiometry ∼Ti3O2. δ-TiO consists of ω-Ti with interstitial
O. We also considered the structure based on CuTi that was
identified as a low energy ZrO structure in previous DFT
calculations.20

As discussed further in Sec. III A, the DFT calculations
with low convergence identified an energetically favorable
distortion of δ-ZrO, which we refer to as δ′-ZrO, and a structure
with composition Zr2O3 as potential ground states. Therefore
we also considered the possibility of O vacancy ordering in
these structures. For δ′-ZrO, we generated the 260 possible
structures with O vacancies not on first nearest-neighbor sites
and up to six Zr atoms per unit cell. For Zr2O3, we generated
the 118 possible structures with O vacancies and up to four Zr
atoms per unit cell.

After generating the candidate structures, we performed
DFT supercell calculations to determine the total energy of
each structure at 0 K. Given a fixed total composition, the
ground-state phases at 0 K are those which can not be separated
into other phases in a way that lowers the total energy of the
system. The set of ground-state structures corresponds to the
convex hull in energy-composition space [see Fig. 1(a)].

B. DFT calculations

Ab initio calculations were performed using density func-
tional theory21 with the Vienna Ab Initio Software Package
(VASP) code.22–26 We used projector augmented wave (PAW)
pseudopotentials, and the generalized gradient approximation
(GGA) as parameterized by Perdew, Burke, and Ernzerhof
(PBE).27,28 Initially, for computational efficiency, we calcu-
lated approximate total energies calculated using a reduced
plane-wave energy cutoff of 400 eV and reference pseudopo-
tential valence configuration 5s1, 4d3 for Zr. Once low-energy
structures were identified from the preliminary calculations,
accurate total energy calculations were performed using a
plane-wave energy cutoff of 600 eV and reference pseudopo-
tential valence configuration 4s2, 4p6, 5s1, 4d3 for Zr. In all
calculations, we used the standard oxygen pseudopotential
with reference valence configuration 2s2, 2p4, and we used a
�-point centered Monkhorst-Pack k-point mesh with density
in reciprocal space approximately equal to 9 × 9 × 9 in a two-
atom hcp primitive cell. Atomic positions, lattice parameters,
and angles were allowed to relax for each structure.
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FIG. 1. (Color online) The highly converged calculated (a)
formation energy and (b) volume of various crystal structures, using
the Zr pseudopotential with reference valence configuration 4s2, 4p6,
5s1, 4d3 and energy cutoff 600 eV. The reference structures are α-Zr
(without any oxygen) and α-ZrO2. The structures labeled α-Zr w/O
are those generated based on an hcp Zr lattice, but may not be hcp after
relaxation. Other notable structures are also indicated. The convex
hull is shown with a black line and circles indicating the ground
states.

The formation energy normalized per primitive unit cell,
ef , of a particular atomic configuration σ with oxygen
composition x in ZrOx , was calculated from DFT total energies
(normalized per primitive unit cell) e, using

ef (σ ) = e(σ ) − eref(x), (1)

eref(x) = eref(x1) + (x − x1)
eref(x2) − eref(x1)

x2 − x1
, (2)

where eref(x1) and eref(x2) are the DFT calculated total energies
(normalized per primitive unit cell) of reference states with
composition x1 and x2, respectively.

C. Depth-first search cluster expansion fitting

The cluster expansion formalism29,30 is a well established
method for constructing an effective Hamiltonian for the
configurational energy of a crystal in terms of polynomials
of occupation variables describing the atoms occupying the
crystal sites. The general form is

ef (σ ) = V0 +
∑

α

mαVαφα(σ ) (3)

in which α indicates an orbit of symmetrically equivalent
clusters, mα is the number of equivalent clusters per primitive
unit cell, φα(σ ) is the average value of the polynomial functions
for clusters in orbit α, and Vα are expansion coefficients called
effective cluster interactions (ECIs) obtained by fitting to
ab initio energy calculations. Here, we used occupation
variables, σj , that are 1 if oxygen occupies an interstitial site
j and 0 if the site is vacant.

The goal in constructing a cluster Hamiltonian is to
determine a limited set of ECIs such that the expansion can
be truncated and computational expense is minimized while
the predictive power is maximized. In a typical approach, a
set of candidate ECI are chosen in some fashion, their values
are fit in a least-squares sense to DFT energetics, and the
predictive power of the fitted ECI set is judged by calculation
of a cross-validation (CV) score. New sets of candidate ECI
are chosen, often according to a genetic algorithm,31 and the
optimal set sought by minimizing the CV score.

A genetic algorithm is often quick to find a population
of ECI sets with low CV scores, but it is not as efficient at
finding an ECI set with a local absolute minimum CV score. A
direct minimization procedure that works by testing how small
changes to an ECI set affect the CV score and chooses a new
ECI set which minimizes the CV score has the problem that it
will get trapped in local minima. We found that a simple and
effective approach that does not get trapped in local minima
is to perform a depth-first search. In this method, a starting
ECI set is chosen, fit in a least-squares sense, and the leave
one out cross-validation (LOOCV) score is calculated. Being
the first step, that LOOCV score is stored as the best-to-date
LOOCV score. Subsequently, one by one, each candidate ECI
is toggled on or off, the ECI values refit, and LOOCV score
calculated. Each of these new ECI sets will differ from the
previous ECI set by having one additional ECI either included
or excluded. Any new ECI set which lowers the LOOCV score
is added to a queue. Next, the ECI set in the queue with the
lowest LOOCV score is chosen and the process repeated.
The process continues until the chosen ECI set does not
beat the best-to-date LOOCV score for Nstop consecutive steps.
By maintaining a queue of possible results, the depth-first
search can back out of local minima and continue the search for
the global minimum. Increasing Nstop results in a longer, more
exhaustive search that can back out of deeper local minima.

We found that it is often very effective to simply perform
the depth-first search multiple times, each starting from an
initial ECI set with a small number of random interactions
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included. While that is the method used in this work, a depth-
first search can also be used to perform a final optimization
of an ECI set determined by some other method, such as a
genetic algorithm31 or compressive sensing.32 Compressive
sensing can also be an effective way to filter which ECI are
allowed candidates prior to performing a depth-first search to
find an optimal ECI set.

In order to obtain a better fit for low-energy structures,
we determined ECI using weighted least-squares fitting of
Eq. (3) by substituting ef (σ ) with w(σ )ef (σ ) and φα(σ )
with w(σ )φα(σ ). Weights, w(σ ), were determined from the
distance, d(σ ), of a structure from the DFT convex hull
according to w(σ ) = A + B exp(d(σ )/kBT ), where A is the
minimum weight given to structures far from the convex hull,
A + B is the maximum weight given to structures on the hull,
kB is the Boltzmann constant, and T is an effective temperature
in K that determines the distribution of weights with respect
to distance from the convex hull. We used the values A = 1,
A + B = 10, and kBT = 0.05 eV/Zr.

D. Phase diagram construction

Practical approaches for determining phase diagrams using
lattice Monte Carlo calculations of thermodynamic properties
are well developed.30,33,34 For each phase under consideration,
thermodynamic integration can be used to calculate the Gibbs
free energy normalized per primitive unit cell g(x,T ) and
the grand canonical free energy �(μ,T ), as a function of
temperature and composition x, or chemical potential μ,
respectively. The stable phase for any value of μ and T is that
with the lowest �, and first-order phase transition boundaries
between a pair of phases U and V are determined by the
crossing of grand canonical free energies, i.e., �U = �V .

Higher-order phase transitions may be characterized by
long-range order parameters and divergence of the suscep-
tibility χ or heat capacity Cμ. The susceptibility and heat
capacity, which, at constant T and μ, are related to fluctuations
in the number of interstitial atoms and grand canonical energy,
respectively, are proportional to the second derivative of
the grand canonical free energy. These quantities usually
diverge at second-order phase transitions as a result of large
fluctuations in extensive quantities. Due to the finite size of
Monte Carlo simulation cells, though, calculated values of the
susceptibility and heat capacity may not exhibit a pronounced
divergence, thereby leading to ambiguities in the determination
of second order phase boundaries. To this end, it is also
useful to simultaneously track long-range order parameters
that uniquely characterize ground-state ordered phases.

There are several ways of tracking long-range order
in Monte Carlo simulations. One choice is to calculate
sublattice concentrations as defined by the supercell of the
low-temperature ordered ground state. In the perfectly ordered
state, sublattice sites within the supercell characterizing the
periodicity of the ordered phase will have different concentra-
tions. This distinction in sublattice concentrations disappears
upon crossing an order-disorder phase transition boundary. An
order parameter η can therefore be defined as a particular linear
combination of sublattice concentrations such that η is 1 for
the perfectly ordered state and zero in the fully disordered
state.

The existence of several symmetrically equivalent super-
lattice orderings related to each other by translations of the
primitive unit cell can lead to ambiguities when tracking order
parameters based on sublattice concentrations. For example,
the ZrO1/6 ground-state ordering [see Fig. 2(a)], may start with
oxygen filling the A site in a given layer, but over the course
of the Monte Carlo simulation may collectively drift for many
Monte Carlo passes, filling the B site and the C site or shifting
along the c axis. Once this occurs, sublattice concentrations
are no longer accurate metrics of long-range order.

A more reliable metric of long-range order that is inde-
pendent of translational shift within Monte Carlo simulations
is one evaluated in the reciprocal space of the primitive unit
cell. In this work, we tracked simulated diffraction intensities,
Ik = S∗

kSk, where Sk is the structure factor of the occupation
variable,

Sk =
∑

j

σj exp(−ik · rj ), (4)

where rj is the Cartesian coordinate of crystal site j , k is a
reciprocal space vector, and S∗

k is the complex conjugate of
Sk. For a supercell, values of k for which Sk may be nonzero
are integer multiples of the reciprocal supercell lattice vectors.
The site coordinate rj is equal to nj + τ b(j ), where nj is the
vector to the primitive unit cell containing site j and τ b(j ) is
the associated basis vector within the primitive unit cell. This
results in a phase difference between the contributions to the
Sk arising from each basis. These phase differences determine
the periodicity of the Sk and the range of reciprocal space that
should be sampled to find all unique Ik.

For the hcp Zr crystal structure, we denote the primitive unit
cell vectors by a1, a2, c and the reciprocal primitive unit cell
vectors as a∗

1, a∗
2, c∗. For our Monte Carlo cells, the supercell

lattice vectors are L1 = N1a1, L2 = N2a2, L3 = N3c, and
the reciprocal vectors of the Monte Carlo supercell are L∗

1 =
a∗

1/N1, L∗
2 = a∗

2/N2, L∗
3 = c∗/N3. The basis vectors for the

octahedral interstitial sites are τ 0 = [0,0,0] and τ 1 = [0,0, c
2 ].

The resulting periodicity of the Sk along each reciprocal
direction is a∗

1, a∗
2, and 2c∗. Throughout this work, we will

report k in terms of fractional coordinates of the reciprocal
primitive unit cell vectors of the hcp Zr lattice (a∗

1, a∗
2, c∗). To

facilitate comparison of Ik sampled at different concentrations,
we always normalized Ik such that Ik = 1 for k = [0,0,0].

E. Grand canonical Monte Carlo calculations

For free energy integration, grand canonical Monte Carlo
calculations were run at increments of 10 K, over the
range 10 K � T � 1200 K. At each temperature, the oxygen
chemical potential μO was incremented by 0.01 eV over a
large enough range to include the phase boundaries of interest.
The calculations were performed in periodic supercells of
dimension 10 × 10 × 10 primitive unit cells or larger. For
each value of T and μO, a GCMC calculation was performed
consisting of 1000 equilibrating passes, followed by 2000
passes for calculating the thermodynamic averages. A pass
is defined as Nsites attempted flips, Nsites being the number of
sites in the Monte Carlo cell with variable occupation.

Due to numerous nearly degenerate stacking sequences of
two-dimensional oxygen ordering parallel to the basal plane
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in ZrOx , the variance in Ik was often much larger than in the
concentration or grand canonical energy. Therefore separate
GCMC calculations with more passes were necessary to
determine higher order phase boundaries. We used a slightly
modified version of the methods of Van de Walle and Asta33 to
determine the equilibration time and required averaging time
to reach a desired absolute precision of ±0.02 in 〈Ik〉, with
confidence level 0.99. In some cases, the required precision
in 〈Ik〉 was not reached in 100 000 passes, in which case the
calculation was terminated.

III. RESULTS

A. DFT results

1. Ground-state structure search summary

Our preliminary low-convergence DFT calculations (see
Supplemental Material30) identified seven ground-state struc-
tures: α-Zr, ZrO1/6, ZrO1/3, ZrO1/2, δ′-ZrO, Zr2O3, and α-
ZrO2. The ground-state structure with composition Zr2O3 was
the result of a spontaneous relaxation from a α-ZrO2 based
structure. As described further in Sec. III A6, this structure is
fcc-based with O in both tetrahedral and octahedral interstitial
positions. This finding is what led us to search a much wider
set of fcc-Zr based structures, but no other ground states were
identified. The ground-state structure we refer to as δ′-ZrO
is described further in Sec. III A5. It was identified after
perturbing perfect δ-ZrO and allowing relaxations. There is no
sign from the preliminary low-convergence DFT calculations
that δ′-ZrO and Zr2O3 exist with significant off-stoichiometry.
Therefore for high-convergence DFT calculations only the
exact structures δ′-ZrO and Zr2O3 were considered.

The formation energies and volumes calculated with fully
converged DFT calculations are shown in Fig. 1. Fully
converged DFT calculations indicate the structure δ′-ZrO is
a ground state, but the structure Zr2O3 is not a ground state.
The other Zr monoxides we calculated have significantly
higher energies than δ′-ZrO, with γ -ZrO (rock salt without
any vacancies) having a formation energy of 0.60 eV/Zr, off
the scale of Fig. 1(a). As described further in Sec. III A4,
accurate DFT calculations identified several additional α-
Zr based ground-state structures besides the major ground
states α-Zr, ZrO1/6, ZrO1/3, and ZrO1/2. These additional
ground-state structures are ordered stacking sequences that
can be enumerated with a “branching” algorithm.35 While
we have only calculated a selection of the infinite possible
stacking sequences, these results show that there are likely
many (perhaps infinitely many) minor ground-state stacking
sequences.

2. ZrOx major ground-state structures

The structures of the three major ground-state ordered
phases in α-Zr predicted by DFT calculations are shown in
Fig. 2. All three ground-state ordered phases have

√
3a × √

3a

ordering on the octahedral interstitial sublattice parallel to the
basal plane of α-Zr. The ZrO1/6 ground-state phase consists
of alternating empty and 1

3 -occupied layers of octahedral
oxygen in the basal plane. The occupied layers are staggered
so that along c there is an A B C A B C ordering of
the two-dimensional

√
3a × √

3a superlattices within the

occupied layers, where ‘_’ indicates empty layers and A, B,
C, indicate the three translational variants of a 1

3 -occupied
layer. The ZrO1/6 variant with A B A B ordering has an
energy within 1 meV/Zr atom of the first variant, which
is degenerate within the accuracy of the calculations. The
ZrO1/3 ground-state phase consists of 1

3 -occupied octahedral
oxygen layers staggered with an ABCABC ordering along c.
The ZrO1/2 ground-state phase consists of alternating 1

3 - and
2
3 -occupied octahedral oxygen layers. The occupied positions
in the 1

3 -occupied layer are aligned with the vacant positions
in the 2

3 -occupied layer. We find that there is very little volume
expansion with addition of interstitial oxygen in α-Zr, even
for quite unstable structures with oxygen concentration up to
ZrO [see Fig. 1(b)]. The lattice expansion along a, c and the
volumetric expansion is given in Table I for ZrO1/6, ZrO1/3,
ZrO1/2 relative to α-Zr.

The ZrO1/3 and ZrO1/2 predicted ground-state structures
are in agreement with the those predicted by Ruban et al.,11

but we also predict the stability of ZrO1/6. The cause of
the discrepancy can probably be attributed to differences in
method. We have calculated the energy of crystal structures
with a wide range of compositions directly, while Ruban
et al. determined the interaction coefficients from dilute
concentrations and then used Monte Carlo calculations to
predict the stable ground states. Our results for these structures
are in agreement with the results of Burton et al.12 and are
consistent with neutron diffraction results.6,36

Site and orbit-projected density of states (DOS) calculations
shown in Fig. 3, predict that the ordered phases are all metallic,
as expected. The α-Zr DOS shows a valley at the Fermi level, as
is typical for hcp structures.37 As the oxygen content increases,
the oxygen 3s states are introduced at ∼20 eV below the
Fermi level and oxygen 3p bonding states are introduced at
∼6.7 eV below the Fermi level. While the Zr DOS shows
little change below the Fermi level, above the Fermi level
increasing oxygen content leads to an increasing density of
oxygen 3p antibonding states. The high oxygen solubility is
related to the fact that the Fermi level stays in the valley typical
of hcp structures for oxygen content up to ZrO1/2. Since the
density of states at the Fermi level remains largely unchanged,
so to does the volume of the crystal structure.

3. ZrOx cluster expansion

We fit a cluster expansion for O-vacancy disorder over the
octahedral interstitial sites in α-Zr using the DFT data. We
included the 276 configurations with composition x < 0.7 and
weighted the structures based on their distance from the hull
as described in Sec. II C. During the depth-first search ECI
optimization procedure we considered clusters with maximum
site spacing of 9 Å for pair clusters, 7 Å for triplets, and 6 Å
for quadruplets. Then we used the optimized ECI to predict
energies for structures with 10 and 12 Zr atoms per unit cell
and performed DFT calculations for nine more structures that
were predicted to be on or near the convex hull. This identified
two new ground-state structures with stoichiometry ZrO1/4 and
ZrO5/12. We then reoptimized our cluster expansion including
the nine additional structures.

The final set of optimized ECI consists of a single site
term, eight pair interactions, 14 triplet interactions and four
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FIG. 2. (Color online) The structure of the major ground-state hcp ordered phases. The gray and white circles indicate Zr and O,
respectively. In the plane view, large and small gray circles represent Zr on different [0001] planes and empty squares indicate unoccupied
octahedral interstitial sites. The cluster, �, corresponding to

√
3a × √

3a triangle triplets is indicated.

quadruplet terms (see Fig. 4). That the coefficients converge
to small numerical values with increasing cluster size justified
using a truncated version of the expansion. The root-mean-
square error (RMSE) of the cluster expansion fit is 7.8 meV/Zr
when including all 285 structures. Due to the weighting,
the RMSE is 4.7 meV/Zr for the 133 structures within

TABLE I. Lattice expansion relative to α-Zr.

a c Volume

ZrO1/6 0.66% 0.65% 1.98%
ZrO1/3 1.08% 0.97% 3.17%
ZrO1/2 0.84% 1.48% 3.19%

100 meV/Zr of the convex hull and 2.7 meV/Zr for the 62
structures within 50 meV/Zr of the convex hull.

4. ZrOx stacking sequences

It is clearly preferential for O to avoid nearest-neighbor
positions, form

√
3a × √

3a superlattices within the occupied
layers, and for occupied layers on neighboring basal planes to
be staggered. There are a large number of possible stacking
sequences that follow these rules but which might have long
periods with more than 8 Zr atoms per unit cell, the maximum
supercell size considered in our original DFT calculations. A
“branching” algorithm35 can be used to enumerate possible
stacking sequences. With this approach, in the first generation
two generating patterns X and Y , are combined in a superlattice
generating a new pattern, XY . In the next generation, the three
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FIG. 3. (Color online) The DOS of the major ground-state hcp ordered phases projected onto (a) Zr and (b) O atomic orbitals, with Fermi
level set to 0.

are combined, pairwise, to form the patterns: X, XXY , XY ,
XYY , and Y . If the patterns are combined again one obtains:
X, XXXY , XXY , XXYXY , XY , XYXYY , XYY , XYYY ,
and Y . This process can be repeated ad infinitum and then
filtered for structures that fit within a given supercell size.

For α-Zr based ordered stacking sequences in the region
with composition 0 � x � 1

3 , the generating structures are an
unoccupied layer and a 1

3 -occupied layer. We enforce that
1
3 -occupied layers stack in sequence ABC. These rules result
in the following stacking sequences (a ‘_’ again denotes an
empty layer): generation 1: , ABC; generation 2: , A B C,
ABC; generation 3: , A B C, A B C, AB CA BC,
ABC; etc.

In the region with composition 1
3 � x � 1

2 , the generating
structures are a 1

3 -occupied layer and a 2
3 -occupied

layer. Using similar rules, but not allowing neighboring
2
3 -occupied layers, we obtain the following stacking
sequences: generation 1: ABC; generation 2: ABC, A(BC);
generation 3: ABC, AB(AC)BA(BC), A(BC); generation 4:

FIG. 4. (Color online) ECI for hcp Zr with octahedral O, with
“×” indicating ECI with value 0. Tabulated values of the ECI are
included in Ref. 30.

ABC, ABC(AB)CAB(CA)BCA(BC), AB(AC)BA(BC),
AB(CA)B(CA)BC(AB)C(AB)CA(BC)A(BC), A(BC);
etc. In these, the parentheses indicate a single 2

3 -occupied
layer and which two translational variants of the 1

3 -filled
layers make up that 2

3 -occupied layer.
The largest cluster included in our cluster expansion

is the pair cluster of length 3
2c which lies parallel to c.

This means that the cluster expansion predicted formation
energies are identical for stacking sequences that only differ
in the fourth-neighbor layer, such as A B C A B C and
A B A B . Additionally, it means that the cluster expansion
predicts the existence of the minor ground states ZrO2/9,
ZrO1/4, and ZrO4/9. These have the structures AB CA BC,
ABC, and AB(CA)BC(AB)CA(BC). Stacking sequences

which have a larger number of 1
3 -occupied layers between

unoccupied or 2
3 -occupied layers lie exactly on the predicted

convex hull between these structures and the major ground
states. The cluster expansion predicts that there are no minor
ground states in the range 0 � x � 1

6 , because in that region
the concentration is too low to force all O to order on the
basal plane and it is favorable to decompose into a mixture of
disordered α-Zr and ordered ZrO1/6.

We performed additional DFT calculations of the minor
ground states and several structures predicted by the cluster
expansion to lie directly on the convex hull. This resulted in
a confirmation of the following structures as DFT predicted
ground states: α-Zr, ZrO1/6, ZrO1/5, ZrO2/9, ZrO1/3, ZrO7/18,
ZrO5/12, ZrO4/9, ZrO1/2. The only cluster expansion predicted
ground state that was not a DFT predicted ground state is
ZrO1/4. However, it lies within 1 meV/Zr of the convex hull,
so it is within the expected error of the DFT results.

We expect that with enough DFT accuracy many stacking
sequences would be identified as ground states. This is
consistent with experimental observations2 of long-period
stacking sequences in the range 1

6 � x � 1
3 . We are not aware

of experimental observations confirming our prediction of
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Oxygen
Zirconium

Oxygen

Zirconium

FIG. 5. (Color online) The structure of the (a) ground-state δ′-ZrO phase and (b) mechanically unstable δ-ZrO phase, viewed along the c

axis. Gray atoms are Zr and white atoms are O.

long-period stacking sequence ground states in the range 1
3 �

x � 1
2 , but the DFT calculations of Burton et al.12 did identify

ZrO5/12 as a low-temperature ground state. The structures in
the range 1

3 � x � 1
2 are stable for a very small range of μO

and are expected to be stable only at very low temperatures
as seen in in the work of Burton et al. for ZrO5/12 and in
our own GCMC results. This explains why they may not have
been observed experimentally and makes our truncation of the
interactions at a distance beyond 3

2c a good approximation for
the temperatures T > 300 K of most interest to us. It is beyond
the focus of this work to provide a complete accounting of the
low-temperature behavior of these stacking sequences beyond
noting that it is predicted by the DFT calculations.

5. ZrO

Calculations based on the experimentally observed Ti
monoxide crystal structures identified the structure shown in
Fig. 5(a) and listed in Table II as a 0-K ground state. This
structure is significantly more stable than any of the other
ZrO structures we calculated. We refer to the ground-state
structure as δ′-ZrO since its structure is based on the δ-TiO
crystal structure, shown in Fig. 5(b) for δ-ZrO. In δ′-ZrO
Jahn-Teller oxygen distortions lower the total energy of the
structure by 446 meV/Zr. Figure 6 shows the effect of the
Jahn-Teller distortion to reduce the DOS at the Fermi level.
There are two symmetrically equivalent distortions that can
occur, so that δ-ZrO exists as a mechanically unstable saddle
point between two equivalent δ′-ZrO structures, as confirmed

TABLE II. Structure of the calculated hexagonal δ′-ZrO ground-
state phase.

Phase: δ′-ZrO
Space group: P6̄2m

Lattice parameters: a = 5.285 Å
c = 3.179 Å

Atom Wyckoff site Position

Zr 1a (0, 0, 0)
Zr 2d (1/3, 2/3, 1/2)
O 3f (0.407, 0, 0)

by nudged elastic band (NEB) calculations.30 Upon distorting,
the O become fivefold coordinated with Zr forming a polar
pyramid with square base. The four Zr comprising the square
base are located on the 2d Wyckoff sites, and the one Zr
comprising the peak of the pyramid is located on a 1a Wyckoff
site. In the δ′-ZrO structure, any three oxygen which share
a Zr neighbor all have their polar axis pointing in different
directions. This likely results in strong interactions between
the distortions of nearby oxygen, and leads to the stability
of this particular structure. Some of the energy lowering is
probably also due to the change in the density of states around

FIG. 6. The band structure and DOS of the (a) mechanically
unstable δ-ZrO phase and (b) ground-state δ′-ZrO phase, with Fermi
level set to 0.
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TABLE III. Structure of the calculated tetragonal Zr2O3

metastable phase.

Phase: Zr2O3

Space group: P4̄m2
Lattice parameters: a = 3.129 Å

c = 5.737 Å

Atom Wyckoff site Position

Zr 2g (0, 1/2, −0.249)
O 2g (0, 1/2, 0.362)
O 1a (0, 0, 0)

the Fermi level. As shown in Fig. 6, the distortion pushes
down occupied electronic states close to the Fermi level while
lifting unoccupied electronic states without any energy penalty.
We also calculated the energy of a structure in which the
oxygen distorted in opposite directions on alternating basal
plane layers. This staggered structure was 200 meV/Zr higher
energy than the ground state.

6. Zr2O3

Our preliminary low-convergence DFT calculations iden-
tified a tetragonal phase with stoichiometry Zr2O3 as being a
potential ground state, but high-convergence DFT calculations
indicate that Zr2O3 is actually a metastable phase 56 meV/Zr
above the convex hull. This phase has also been recently
investigated by Xue et al.38 in the Hf-O and Zr-O systems
using DFT calculations. The structure is tetragonal with space
group P4̄m2, as detailed in Table III. Oxygen interstitials
exist in two layers perpendicular to the tetragonal c axis.
The first layer, consisting of one third of the total oxygen
atoms, contains oxygen in half of the tetrahedral interstitial

positions. The second layer consists of the remaining two thirds
of the oxygen atoms, located in octahedral interstitial positions.
The octahedral oxygen are shifted out of the ideal octahedral
positions due to repulsion from the tetrahedral oxygen. Since
the tetrahedral oxygen atoms only occupy one half of the
possible tetrahedral interstitial sites, it is possible for them to
occupy one half in one tetrahedral layer, and the other half in
other tetrahedral layers. The structure, which has ABAB-type
stacking of the tetrahedral layers, has an energy only 8 meV/Zr
higher than the minimum energy Zr2O3 structure in which the
same half of the tetrahedral sites is occupied in every layer.

The work of Xue et al. showed that (Hf,Zr)2O3 is stable
relative to metallic (Hf,Zr) and O2 and proposed that the Hf2O3

phase might explain the existence of a low-resistance state
in hafnia-based resistive random access memory. We have
not calculated energies for the Hf-O system, but we predict
that in equilibrium Zr2O3 would decompose into δ′-ZrO and
α-ZrO2.

B. Predicted phase diagram

We constructed the phase diagram shown in Fig. 7 based on
the results of the grand canonical Monte Carlo calculations in
the concentration range 0 � x � 0.5. Note that the composi-
tion axis of the calculated phase diagram is in terms of atomic
fractions (i.e., y in Zr1−yOy) as opposed to the fraction of filled
interstitial sites (i.e., x in ZrOx). This facilitates comparison
with binary phase diagrams of this system in the literature.
As this section describes in detail, we identified two-phase
boundaries using free energy integration and we identified
higher-order transitions by following the simulated diffraction
intensities. We included δ′-ZrO in the phase diagram as a line
compound since our low-convergence DFT calculations do not
indicate a capacity for significant off-stoichiometry.

Atomic Fraction Oxygen

T 
(K

)

α-ZrO2

O2

α-ZrO2

+

α-ZrO2

+
δ'-ZrO

δ'-ZrO

ZrO1/2
+

δ'-ZrO

ZrO1/3

ZrO1/6

α-Zr

Solid Solution

ZrO2/9
ZrO1/4

ZrO4/9

ZrO1/2

1400

1200

1000

800

600

400

200

0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 7. (Color online) The calculated phase diagram of hcp ZrOx . Colored areas indicate single phase regions, and uncolored areas indicate
two-phase regions. Solid lines indicate first-order phase boundaries, and dashed lines indicate higher-order transitions. The region between
ZrO1/6 and ZrO1/3 is shaded the same color as solid solution α-Zr since it has no long-range order parallel to c.
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FIG. 8. (Color online) Oxygen chemical potential for the Zr-O
system. μO is referenced to the two-phase region with Zr2O3 and α-
ZrO2. Regions with increasing μO correspond to single phase regions,
while μO remains constant in two-phase regions.

1. Two-phase boundaries

From GCMC calculations, we obtained results for oxygen
content x as a function of μO and T . We started GCMC
calculations in each of the cluster expansion ground states
and approached each two-phase regions from the direction
of both increasing and decreasing μO. We used free energy
integration to obtain the free energy as a function of μO and T .
The equilibrium phase is the one which has the minimum free
energy at a given μO and T . Figure 8 shows μO as a function
of x for the equilibrium phase. Given a particular temperature,
regions in Fig. 8 in which μO is constant with increasing x

correspond to two-phase regions in the phase diagram. Regions
in which μO increases with increasing x correspond to single
phase regions in the phase diagram. Sharp increases in μO

correspond to line compounds or single phase regions with
limited range in composition.

2. Disordering of ZrO1/2

The simulated diffraction intensities clearly indicate two
disordering transitions occur in ZrO1/2 with either increas-
ing temperature or decreasing x. Perfectly ordered ZrO1/2,
which has alternating 1

3 -occupied and 2
3 -occupied layers, has

three diffraction spots: one with IkA
= 1

9 at kA = [0,0,1],
and two with IkB

= 4
9 at kB1 = [ 1

3 , 1
3 ,1] and kB2 = [ 2

3 , 2
3 ,1].

Figure 9 shows the value of Ik as obtained from GCMC
calculations starting at x = 1

2 and decreasing x (decreasing
μO) over the temperature range 200 K � T � 2500 K. The
low-temperature disordering transition finishes at T ≈ 1500 K
and is associated with the disappearance of IkA

. The high-
temperature disordering transition finishes at T ≈ 2150 K and
is associated with the disappearance of IkB

.
Our simulated diffraction results are in agreement with

neutron diffraction experiments,36 though the experimentally
observed transitions occur at T ≈ 770 and ≈1310 K. The
difference in transition temperature is possibly due to uncer-
tainty in the experimental concentration, which is likely less
than x = 1

2 due to oxygen loss at high T . The disappearance
of IkA

and then IkB
was attributed to “the rearrangement

FIG. 9. (Color online) The values of the simulated diffraction
intensities Ik for (a) kA = [0,0,1] and (b) kB = [ 1

3 , 1
3 ,1], obtained

from GCMC calculations with decreasing μO (decreasing x), over
the range 200 K � T � 2500 K.

of the oxygen atoms from uneven to even distribution on
the neighboring interstice planes, and then [to a] random
distribution in each plane.”36 This conflicts with the results
of Ref. 12, which identified the low-temperature transition
as first-order and the high-temperature disordering as second-
order. That work found that the average structure above the first
transition temperature maintained alternating O-rich and O-
poor layers before fully disordering after the high-temperature
transition.

We performed a detailed analysis30 of the disordering
process for a series of GCMC calculations performed with
μO corresponding to the highest concentrations in Fig. 9 and
T increasing from 200 to 2500 K. The results in Fig. 10(a)
show IkA

vanishing over the range 700 K � T � 1500 K and
IkB

vanishing at T ≈ 2150 K. In Fig. 10(b), we observe a
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FIG. 10. (Color online) Analysis of the ZrO1/2 disordering pro-
cess with increasing temperature, obtained from a series of GCMC
calculations with μO corresponding to the maximum concentration
in Fig. 9 and increasing T in 12 × 12 × 12 supercells. xl is the O
concentration in basal layer l of the simulation cell.

distinction between O-rich and O-poor supercell layers up
to T ≈ 1300 K, significant scatter over the range 1300 K �

T � 1700 K, and finally no distinction between O-rich and
O-poor supercell layers above T ≈ 1700 K. This indicates that
above T ≈ 1300 K the GCMC calculations begin sampling the
symmetrically equivalent configurations of ZrO1/2 which are
obtained by a translation of 1

2 c from the initial configuration,
and demonstrates that it is necessary to use order parameters
that are invariant with respect to translation.

By comparing Fig. 10(a) with Figs. 10(c) and 10(d), we
observe that the covariance and mean absolute difference in the
O concentration on neighboring basal layers decrease to zero
and a small number, respectively, over the same temperature
range that IkA

vanishes. This indicates that above the first
disordering temperature upon heating the correlation between
O-rich and O-poor neighboring layers vanishes and the only
differences in O concentration are the small differences due
to random fluctuations. Long-range order remains up to the
second disordering transition when IkB

vanishes. The long-
range order largely depends on the

√
3a × √

3a ordering
parallel to the basal plane. We analyzed the temperature
dependence of this short-range ordering in Fig. 10(e) using
the difference 〈φα〉 − φHT

α , where the correlations in the high
temperature limit are φHT

α = 〈x〉m, m being the number of sites
in cluster α. Comparing Figs. 10(a) and 10(e) shows a direct
correlation between long-range disordering and the reduction
in the short-range correlations of the cluster that corresponds
to

√
3a × √

3a triangle triplets in the basal plane (see Fig. 2).
Figure 10(f) shows that only the high-temperature disordering,
which results in a loss of long-range order, is associated with
a divergence in the heat capacity Cμ.

We performed a similar analysis of the disordering process
for a series of GCMC calculations performed at 1000 K and
O concentration decreasing to x = 0.2. The results, shown
in Fig. 11, demonstrate that the disordering process with
decreasing O concentration is similar to the disordering with
increasing temperature. At T = 1000 K, the correlation be-
tween O-rich and O-poor neighboring layers vanishes around
x ≈ 0.37 and long-range ordering vanishes at x ≈ 0.30, which
corresponds to a significant increase in the susceptibility, χO.

The locations of the low-temperature and high-temperature
disordering transitions shown in the phase diagram (see Fig. 7)
correspond to the values of x and T at which IkA

= 0.03
and IkB

= 0.05. Since short-range order and the finite size
of the supercells prevent simulated diffraction peaks from
being identically zero at the transition temperature, the value
IkB

= 0.05 was chosen to correspond most closely to the
observed peaks in Cμ and χO. The disordering transition
associated with IkA

shows no divergence in the heat capacity
or susceptibility, and the value IkA

= 0.03 was simply chosen
to indicate a composition-temperature line at which most
of the correlation between O-rich and O-poor layers has
vanished.

Our results, showing that the low-temperature disordering
transition is associated with the vanishing difference between
neighboring O-rich and O-poor layers, are clearly in agreement
with the analysis of the neutron diffraction experiments.36 The
identification of this loss of order along c as a gradual process
rather than as a first-order phase transition was made possible
with the use of translationally invariant simulated diffraction
intensities as a long-range order parameter.
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FIG. 11. (Color online) Analysis of the ZrO1/2 disordering
process with decreasing x at constant T = 1000 K, obtained from
a series of GCMC calculations in 12 × 12 × 12 supercells. xl is the
O concentration in basal layer l of the simulation cell.

3. Maximum O solubility in α-Zr

The experimental phase diagram,2 indicates a low-
temperature solubility of up to 28.6 at% O in α-Zr. The

DFT calculations predict ZrO1/2 as a ground-state structure,
which corresponds to 33 at%. A possible explanation for the
discrepancy that is consistent with the GCMC calculations is
that the solubility is lower at high temperatures and complete
incorporation of 33 at% O is kinetically limited so that it is
not observed in practice. In the phase diagram, we draw the
maximum O solubility using the values of x and T calculated
using μO equivalent to the 0-K equilibrium between ZrO1/2

and ZrO.

4. ZrO1/6 and ZrO1/3

Accurate GCMC calculations in the region between ZrO1/6

and ZrO1/3 are challenging due to the large number of nearly
degenerate stacking sequences and their sensitivity to supercell
size. We found that the required convergence in composition
and grand canonical energy were achieved within a few 1000
passes, but that often greater than 105 or 106 passes were
required for convergence of Ik. A careful examination (see
Supplemental Material30) of the atomic configurations in this
region shows that it is characterized by the arrangement of
O atoms into nominally vacant and 1

3 -occupied layers with
long-range

√
3a × √

3a ordering within the basal plane, but
that perpendicular to the basal plane there is only short-range
order. A convergence study beyond the scope of this work is
needed to determine whether this region would persist in the
limit of large supercells.

IV. DISCUSSION

A key result of this study is the calculated temperature-
composition phase diagram of the Zr-O system shown in
Fig. 7. The phase diagram was constructed from first principles
using DFT-PBE to calculate the energies of a large number
of candidate structures in the Zr-O system and a statistical
mechanical treatment relying on a cluster expansion and Monte
Carlo simulations to calculate finite temperature free energies.

The phase diagram shows that three classes of oxides
are stable in the Zr-O system. The first is the well-known
monoclinic ZrO2, which is predicted to be stable as a
line compound. At higher temperature, ZrO2 transforms to
tetragonal ZrO2 and then to cubic ZrO2. These oxides are all
insulators and highly ionic.

A second class of oxides in the Zr-O system comprises
the rich variety of ZrOx suboxides obtained by dissolving
oxygen into hcp Zr. The calculated phase diagram shows
that oxygen can dissolve into ZrOx up to x ≈ 1

2 . At high
temperature, oxygen dissolves as a solid solution in which
interstitial oxygen and vacancies lack any long-range order.
At low temperature, though, the oxygen and vacancies are
predicted to order, always forming a

√
3a × √

3a superlattice
periodicity perpendicular to the c-axis of the hcp Zr host
crystal. Our first-principles DFT-PBE calculations confirm that
a large number of suboxides having stoichiometries between
x = 1

6 and 1
2 are stable at zero Kelvin. Only a subset of these

ordered phases continue to be stable at elevated temperature,
though, with ordering at x = 1

6 , 1
3 , and 1

2 persisting to 600 K
and beyond.

Similar suboxides as those in Zr-O are seen in the Ti-O42

and Hf-O43 systems. The DFT calculated TiO1/6, ZrO1/6,
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and HfO1/6 ground-state structures are similar, consisting of
alternating empty and staggered 1

3 -filled octahedral oxygen
interstitial layers. The DFT calculated ground-state TiO1/3

structure differs from the ZrO1/3, and HfO1/3 structures,
consisting of alternating empty and 2

3 -filled layers while the
ZrO1/3 and HfO1/3 structures consist of staggered 1

3 -filled
layers. In ZrO1/3, the calculated ground state has ABC
stacking, while in HfO1/3 it has ABAC stacking, though the
energy differences between these variants are very small. The
DFT calculated ZrO1/2 and HfO1/2 ground-state structures are
identical, with (AB)C type stacking of alternating 2/3-filled
and 1/3-filled layers. DFT calculations42 indicate that the
TiO1/2 ground-state structure is different; it does not have√

3a × √
3a ordering in the basal plane, and instead, has 1

2 -
filled layers, with AB stacking such that first nearest-neighbors
along the c axis are not occupied. The DFT calculated TiO1/2

ground-state structure was found to be significantly more
stable than the experimentally reported structure.42 With that
exception, all of these calculated ground-state structures are in
good agreement with experimental diffraction observations of
the suboxide phases.5,6,12,42,43

The ZrO1/6 phase transforms to the solid solution α-ZrOx

upon heating or upon decreasing of the oxygen concentration
through a first-order phase transition. Ordered ZrO1/6 is
separated from the α-ZrOx solid solution by a large two-phase
region. The ordered ZrO1/2 phase, having layers with an
oxygen concentration of 1

3 alternated by layers with a 2
3

concentration, maintains its long-range order to very high
temperatures. Nevertheless, it undergoes a gradual reduction
of ordering over a wide temperature and composition range
before completely losing any semblance of long-range order.
The phase diagram shows two dashed lines separating ZrO1/2

from the solid solution. The outer dashed line denotes a true
thermodynamic transition corresponding to a second-order
phase transformation. The inner dashed line in an approximate
way demarcates a gradual transition in which the distinction in
oxygen concentration between adjacent layers perpendicular
to the c axis of hcp Zr gradually disappears. This gradual
transition is not accompanied by a divergence in either the
heat capacity or susceptibility and therefore cannot rigorously
be characterized as a thermodynamic transition. Nevertheless,
it does coincide with a pronounced change in order parameters,
albeit over an extended temperature and composition range.

The ordered ZrO1/3 phase is also stable to reasonably high
temperatures and over a wide oxygen concentration interval. A
two-phase region separates ZrO1/3 from the ZrO1/2 phase. Sev-
eral other suboxide phases are predicted to be stable between
ZrO1/6 and ZrO1/3, but are only stable at low temperature and
in narrow concentration ranges. At intermediate temperature
around 600 K, there is an intermediate phase that separates
ZrO1/6 and ZrO1/3. This phase is similar to ZrO1/6 and
ZrO1/3 with

√
3a × √

3a ordering in the basal plane. However,
instead of exhibiting long-range order along the c axis, this
intermediate phase is characterized by strong short-range
order with filled oxygen layers having a 1

3 oxygen occupancy
preferentially adjacent to empty layers. A convergence study
beyond the scope of this work is needed to determine whether
this intermediate phase would persist in the large-size limit.

Finally, we also predict the stability of a third class of
oxide in the Zr-O system, having monoxide stoichiometry,
which based on 0-K DFT calculations also exists as a line
compound. To our knowledge, this is the first prediction of a
thermodynamically stable Zr monoxide phase relative to two-
phase decomposition into ZrO2 and ZrO1/2. The monoxide,
here labeled δ′-ZrO due to its crystallographic similarity to
δ-TiO, consists of a Zr sublattice identical to the Zr ω phase
with oxygen occupying interstitial sites within that framework.
Unlike the ZrO2 phases, δ′-ZrO is predicted with DFT-PBE to
be metallic with a finite density of states at the Fermi level.
We did not analyze the stability of δ′-ZrO relative to ZrO2 and
the suboxide ZrO1/2 at finite temperature (i.e., by considering
vibrational free energies) and are therefore uncertain as to the
temperature at which δ′-ZrO may no longer be stable. We
denote this uncertainty in the phase diagram with a dashed
line for ZrO at higher temperature.

Our calculated phase diagram is consistent with the experi-
mentally observed microstructure if we include the ZrO phase
that has been observed recently.13–15 While the phase diagram
indicates wide two-phase composition regions for ZrO1/2 with
δ′-ZrO and δ′-ZrO with α-ZrO2, these correspond to very
small ranges in oxygen partial pressure (see Supplemental
Material30,39,40). This makes it unsurprising that δ′-ZrO has
not been widely observed previously, since at typical oxidation
conditions it is only predicted to be stable in a very small region
at the metal-oxide interface, and its nucleation may be limited
by interfacial energy, strain energy, and kinetics. Preliminary
DFT calculations41 have shown that this structure is also the
ground state in stoichiometric TiO, and it is deserving of
attention in HfO as well.

The high oxygen solubility in hcp Zr is quite unique among
metals (with the exception of Ti and Hf) and seems to have
an electronic origin. As the calculated electronic densities
of states for ZrO1/6, ZrO1/3 and ZrO1/2 show (see Fig. 3),
the addition of oxygen does not qualitatively modify the
electronic densities of states at the Fermi level. While new
electronic states appear at energies well below the Fermi
level, the characteristic valley at the Fermi level, responsible
for the stability of the hcp crystal structure for Ti, Zr, and
Hf,37 remains essentially unchanged with the introduction of
oxygen. The lack of any qualitative change in the electronic
structure around the Fermi level is likely also responsible for
a negligible change in the volume of hcp Zr as a function of
oxygen concentration.

Our finite temperature analysis of phase stability has
revealed a complex sequence of order-disorder phenomena of
the interstitial oxygen over the octahedral sites of hcp Zr. All
suboxide ground states within hcp based ZrOx have the same√

3a × √
3a periodicity parallel to the basal plane of the hcp

crystal structure. Differences between ground states arise from
variations in the oxygen concentration within layers parallel
to the basal plane as well as variations in stacking sequences
along the c axis of the hcp crystal. As the coefficients of
the cluster expansion clearly demonstrate, nearest neighbor
oxygen-oxygen interactions, both parallel and perpendicular
to the basal plane, are strongly repulsive. Oxygen therefore
strives to surround itself by as many vacancies as possi-
ble within its nearest neighbor shell. This results in the
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O2ZrO2
ZrOxZr

δ´-ZrO

μO

FIG. 12. Schematic of the microstructure observed experimen-
tally during Zr oxidation, along with the variation of μO with distance
from the surface.

characteristic
√

3a × √
3a super lattice periodicity common

to all the suboxide ground states. The allowed in plane con-
centrations consistent with

√
3a × √

3a periodicity are x = 1
3

and 2
3 and different stackings of empty, 1

3 -filled and 2
3 -filled

layers result in a hierarchy of ordered phases having different
concentrations and having energies that reside on the convex
hull. The finite temperature Monte Carlo simulations show
that the in-plane oxygen ordering is very stable, persisting to
high temperature, while interactions that determine relative
stacking sequences of in-plane orderings are weaker, leading
to the onset of disorder along the c axis at lower temperature.

The solubility and ordering properties of oxygen in hcp
Zr are very similar to those of intercalation compounds.44

Many Li and Na intercalation compounds, used as electrodes
in Li and Na batteries for example, also have a layered
crystal structure with two-dimensional triangular interstitial
sublattices that can accommodate guest species. In this context,
the ordered ZrO1/6 phase, where oxygen selectively fills
alternating interstitial layers of the hcp crystal structure, can
be viewed as a staged compound, as is observed in LixC6,
LixTiS2, and LixCoO2.

During oxidation of Zr, oxygen diffuses in from the surface,
and the oxygen chemical potential decreases from a high at
the surface, to a low in the interior. Across this chemical
potential gradient the stable phases vary accordingly, as
depicted schematically in Fig. 12. Experimentally,45,46 it is
found that α-ZrO2 is the dominant phase at the surface, and a
mix of mostly α-ZrO2 and β-ZrO2 forms at the metal-oxide
interface. The stability of β-ZrO2 is usually explained by

the large compressive stress at the metal-oxide interface
due to the volume expansion associated with oxidation. Just
below the metal-oxide interface oxygen-rich metal grains are
observed,46,47 which correspond to the ordered oxygen inter-
stitial phases. All suboxides, including δ′-ZrO are predicted
to be metallic with a sizable density of states at the Fermi
level. This has consequences for the oxidation kinetics, as the
ingress of oxygen is not limited by electron transport. Due to
the metallic nature of the suboxides, oxygen diffusion through
the suboxides can be described by simple Fickian diffusion
kinetics. The rate at which oxygen can be incorporated into
α-Zr is important for determining the overall rate of oxidation,
and the structure of the ordered phases are likely to play an
important role in determining the diffusion rate. The ZrO1/6

structure has open layers that may provide easy pathways
for oxygen diffusion, while the ZrO1/3 and ZrO1/2 lack any
pathways that appear to be as favorable.

V. CONCLUSIONS

In conclusion, the main results of this study are (1)
the prediction of a hexagonal 0-K ground-state structure of
stoichiometry ZrO; (2) a cluster Hamiltonian which predicts
that there exist 0-K ground-state oxygen orderings in α-Zr
at composition ZrO1/6, ZrO2/9, ZrO1/4, ZrO1/3, ZrO4/9- and
ZrO1/2, and predicts that there exist an infinite number
of possible stacking sequences which lie on the convex
hull between these ground states; (3) a description of the
order/disorder transitions in ZrO1/2 and in the composition
range between ZrO1/6 and ZrO1/3; (4) construction of a
temperature-composition phase diagram for ZrOx in the range
0 � x � 2 at low temperature.
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