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Effective lattice Hamiltonian for monolayer MoS2: Tailoring electronic structure with
perpendicular electric and magnetic fields
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We propose an effective lattice Hamiltonian for monolayer MoS2 in order to describe the low-energy band
structure and investigate the effect of perpendicular electric and magnetic fields on its electronic structure. We
derive a tight-binding model based on the hybridization of the d orbitals of molybdenum and p orbitals of
sulfur atoms and then introduce a modified two-band continuum model of monolayer MoS2 by exploiting the
quasidegenerate partitioning method. Our theory proves that the low-energy excitations of the system are no
longer massive Dirac fermions. It reveals a difference between electron and hole masses and provides trigonal
warping effects. Furthermore, we predict a valley-degeneracy-breaking effect in the Landau levels. In addition,
we also show that applying a gate voltage perpendicular to the monolayer modifies the electronic structure,
including the band gap and effective masses.

DOI: 10.1103/PhysRevB.88.085440 PACS number(s): 73.22.−f, 71.18.+y, 71.70.Di, 73.63.−b

I. INTRODUCTION

Although studies of two-dimensional (2D) electronic sys-
tems go back some decades, it was only in 2004 that the
first truly 2D one-atom-thick material, graphene, was isolated
successfully.1 Since then the fundamental interest, in addition
to the promising applications in nanoelectronic devices, has
boosted the research about atomically thin 2D materials. It
has been recently demonstrated that monolayer molybdenum
disulfide (ML-MDS), MoS2, a prototypical transition-metal
dichalcogenide (TMD), shows a transition from an indirect
band gap of 1.3 eV in a bulk structure to a direct band
gap of 1.8 eV in the monolayer structure.2,3 The electronic
structure of ML-MDS exhibits a valley degree of freedom
indicating that the valence and conduction bands consist of
two degenerate valleys (K and K ′) located at the corners of
the hexagonal Brillouin zone. The lack of inversion symmetry
of ML-MDS results in a strong spin-valley coupling and
the valence and conduction bands can be described by a
minimal effective model Hamiltonian with a strong spin-orbit
interaction which splits the valence band into spin-up and spin-
down subbands.4–6 Due to the peculiar band structure, a variety
of nanoelectronic applications7 including valleytronics, spin-
tronics, optoelectronics, and room-temperature transistors3

have been suggested for ML-MDS. Induction of valley polar-
ization using optical pumping with circularly polarized light
is validated by both ab initio calculations and experimental
observations.5,6,8–10 Also a combined valley and spin Hall
physics has been predicted as a result of intimate coupling
of the spin and valley degrees of freedom.4

In this work, we propose an effective model Hamiltonian
governing the low-energy band structure of monolayer TMDs
and show that its electronic properties can be tuned by
applying a perpendicular gate voltage. Although our analysis
here is focused on ML-MDS, our approach can be easily
generalized to other TMDs . We obtain a seven-band model (for
each spin component) in which four of them are contributed
mainly from sulfur (S) p orbitals and the three remaining
mostly originate from molybdenum (Mo) d hybrids. Our
theory describes the conduction and spin-split valence bands

in accordance with early theoretical studies11,12 and recent
density functional theory calculations13–15 and shows energy
corrections to the band structure by trigonal warping. The
physics of nanoribbons, defects, impurities, and so on can be
studied by our lattice Hamiltonian. Intriguingly, our two-band
model Hamiltonian incorporates terms which invalidate the
massive Dirac fermion picture of the low-energy behavior in
ML-MDS. When the system is subjected to a perpendicular
magnetic field a Zeeman-like interaction for valleys breaks the
valley degeneracy of Landau levels, in contrast to the findings
in Ref. 16. Next, we introduce the effect of a perpendicular
gate voltage which leads to shifts in the chemical potentials
of three sublayers consisting of one Mo and two S layers. We
show that a perpendicular gate voltage leads to a splitting of
high-energy bands originating from the p orbitals of S atoms.
One of our main findings is the possibility of tailoring the
band gap, effective masses, and valley splitting of the valence
and conduction bands by varying the induced potentials in the
three sublayers.

The paper is organized as follows. In Sec. II we introduce
a lattice model Hamiltonian and its low-energy two-band
Hamiltonian that will be used in calculating the electronic
properties. In Sec. III we present our analytical and numerical
results for the dispersion relation of the ML-MDS in the
presence of a magnetic field or a perpendicular gate voltage.
Section IV contains a brief summary of our main results.

II. THEORY AND MODEL

ML-MDS consists of one layer of Mo atoms surrounded
by two layers of S atoms in such a way that each Mo
atom is coordinated by six S atoms in a trigonal prismatic
geometry and each S atom is coordinated by three Mo
atoms. The symmetry space group of ML-MDS is D1

3h which
contains the discrete symmetries C3 (trigonal rotation), σv

(reflection by the yz plane), σh (reflection by the xy plane),
and any of their products.4 In addition to the symmetry of
the lattice, it is essential to consider the local atomic orbital
symmetries. The trigonal prismatic symmetry dictates that the
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d and p orbitals split into three and two groups, respectively:
{dz2}, {dx2−y2 ,dxy}, {dxz,dyz} and {px,py}, {pz}. The reflection
symmetry along the z direction allows the coupling of Mo dxz

and dyz orbitals with only the pz orbital of the S atom, whose
contribution at the valence band maximum (VBM) and the
conduction band minimum (CBM) located at the symmetry
points is negligible according to first-principle calculations.13

Therefore the conduction band minimum is mainly formed
from Mo dz2 orbitals and the valence band maximum is
constructed from the Mo {dx2−y2 ,dxy} orbitals with mixing
from S {px,py} (Refs. 13 and 14) in both cases.

We thus can construct the tight-binding Hamiltonian for
ML-MDS by using symmetry-adapted states and assuming
nearest-neighbor hopping terms:

ĤTB =
∑
iμν

{
εa
μνa

†
iμaiν + εb

μνb
†
iμbiν + εb′

μνb
′†
iμb′

iν

}
+

∑
〈ij〉,μν

tij,μνa
†
iμ(biν + b′

iν) + H.c. (1)

Here a and b (b′) indicate the Mo and S atoms in the up
(down) layer, respectively. The indices μ and ν show the
orbital degrees of freedom labeled as {1,2,3} ≡ {dz2 ,dx2−y2 +
idxy,dx2−y2 − idxy} and {1′,2′} ≡ {px + ipy,px − ipy} for the
Mo and S atoms, subsequently. Therefore the matrices εa and
εb (εb′

), and tij,μν = 〈a,i,μ|H |b,j,ν〉 are responsible for the
on-site energies of the Mo and S atoms and hopping between
different neighboring sites in the space of different orbitals,
respectively. We do need to take into account the overlap
integrals S, defined similarly to the hopping terms of the
Hamiltonian with elements sij,μν = 〈a,i,μ|b,j,ν〉.

Due to the trigonal rotational symmetry of the Hamiltonian,
the on-site energy matrices take the diagonal form εc

μν =
εc
μ + Uc for c := {a,b,b′}, in which εc

μ shows the intrinsic
value of the on-site energies for the corresponding orbital
state and Uc indicates the potential shift induced by the
perpendicular gate voltage. Moreover, the symmetry properties
of the lattice lead to only three independent on-site energies
A1 ≡ εa

1 , A2 ≡ εa
2 = εa

3 , and B ≡ ε
b(′)
1′ = ε

b(′)
2′ . Accordingly

the symmetries imposed by σv, σh, and C3 result in constraints
on the number of hopping integrals (three parameters) and
overlap integrals (three parameters) (see Appendix A for
details). For the sake of definiteness, we choose t11, t22, and t21

as hopping integrals between the orbital pairs (1,1′), (2,2′), and
(2,1′) along the δ1± directions, respectively, and corresponding
forms for the overlap integral elements. A good approximation
is provided by the Slater-Koster method17 in which all
of the hopping and overlap integrals are written as linear
combinations of the hopping integrals Vpdσ ,Vpdπ and overlap
integrals Spdσ ,Spdπ where Vpdσ = 〈R′,p,σ |H |R,d,σ 〉 and
Spdσ = 〈R′,p,σ |R,d,σ 〉, for instance. To complete our effec-
tive Hamiltonian, we need to add spin-orbit interaction (SOI)
in the model, which causes spin-valley coupling in the valence
band. The large SOI in ML-MDS can be approximately
understood by the intra-atomic contribution HSO = ξ (r)S · L.
We consider only the most important contribution of the
Mo atoms which gives rise to the spin-orbit coupling term
H Mo

SO = λ diag{0,s, − s} in the basis of states {1,2,3} where
λ is the spin-orbit coupling and s = ±. To study the band
structure properties provided by our tight-binding model, we

find its k-space form as
∑

ks ψ
†
ks(H − ES)ψks with ψks =

(aks,1,aks,2,aks,3,bks,1′ ,bks,2′ ,b′
ks,1′ ,b

′
ks,2′ )� in which cks,μ =∑

i cisμ exp(ik · Ri) (c := {a,b,b′}) are the annihilation oper-
ators of electrons with momentum k, spin s, and orbital degree
μ. The Hamiltonian density H and overlap S are obtained as

H =

⎛⎜⎝ Ĥa Ĥt Ĥt

Ĥ
†
t Ĥb 0

Ĥ
†
t 0 Ĥb′

⎞⎟⎠, S =

⎛⎜⎝ 1 Ŝ Ŝ

Ŝ† 1 0

Ŝ† 0 1

⎞⎟⎠, (2)

with the on-site energy Hamiltonian Ĥa = Ua13 +
diag(A1,A+,A−), Ĥb = (B + Ub)12, Ĥb′ = (B + Ub′

)12, the
hopping matrix

Ĥt =
⎛⎝ t11f (k,ω) −e−iωt11f (k, − ω)

t21f (k, − ω) t22f (k,0)
−t22f (k,0) −eiωt21f (k,ω)

⎞⎠, (3)

and the overlap matrix Ŝ defined similarly to Ĥt but with the
tμν’s replaced by sμν’s. Here, A± = A2 ± λs and f (k,ω) =
eik·δ1 + ei(k·δ2+ω) + ei(k·δ3−ω) is the structure factor with ω =
2π/3, in-plane momentum k = (kx,ky), and δi (i = 1,2,3) the
in-plane components of the lattice vectors δi±.

Generally, our tight-binding model leads to seven bands for
each spin component; however, in the absence of external bias,
i.e., Uc = 0, the symmetry between top and bottom S sublayers
reduces the number of bands to five. Two of them correspond
to the conduction and valence bands, from which we calculate
the effective electron and hole masses, energy gap, and valence
band edge. Moreover, since the conduction band minimum
mostly comes from d orbitals,13 we assume 10% mixing with
p orbitals for the conduction band. This assumption is in good
agreement with the result reported in Ref. 18 (for more details
on the effect of the mixing percentage see Appendix B). This
provides us with five equations for seven unknown parameters
based on the values obtained from ab initio calculations and
experimental measurements. Furthermore, it is reasonable11

to consider sμν/tμν = 0.1 eV−1, which reduces the number of
unknown parameters to five. We consider the energy gap � =
1.9 eV, spin-orbit coupling λ = 80 meV, effective electron
and hole masses me = 0.37m0 and mh = −0.44m0 (m0 is the
free-electron mass),19 and EVBM = −5.73 eV.20 Eventually,
all parameters are known and we then obtain the on-site
energies A1 = −1.45 eV, A2 = −5.8 eV, and B = 5.53 eV and
hopping integrals eiπ/6t11 = 0.82 eV, e−iπ/6t21 = −1.0 eV, and
e−iπ/2t22 = 0.51 eV. With these parameters, our tight-binding
theory is completed.

Now we present an effective low-energy two-band con-
tinuum Hamiltonian governing the conduction and valence
bands around the K and K ′ points, by exploiting the Löwdin
partitioning method.21 We first change our nonorthogonal
basis (|ψ〉) to an orthogonal one (|ψ ′〉 = S1/2|ψ〉), leading
to a standard eigenvalue problem H̃ |ψ ′〉 = E|ψ ′〉 with H̃ =
S−1/2HS−1/2. More analytical calculations can be found
in the Appendixes. To employ the partitioning method, we
expand the Hamiltonian up to the second order in q = k − K
around the K = (4π/3

√
3a0,0) point; this can be written as

the sum of q-independent (H0) and q-dependent (H1) parts,
H = H0 + H1. Then we rotate the orbital basis to |ψ ′

0i〉
(i = 1, . . . ,5), which are the eigenstates of H̃0 corresponding
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to the eigenvalues Ei . In the new basis, the transformed
Hamiltonian is U

†
0 H̃U0 where U0 is the unitary diagonalizing

matrix. We define two subspaces {|ψ ′
01〉,|ψ ′

02〉} corresponding
to the conduction and valence bands and {|ψ ′

03〉,|ψ ′
04〉,|ψ ′

05〉}
for the three remaining bands. Then we take the block-diagonal
and off-diagonal parts of the Hamiltonian in these subspaces as
Hdiag and V , respectively, and use the unitary transformation
H ′ = e−OU

†
0 H̃U0e

O such that the lowest order in V is
eliminated. This results in an effective Hamiltonian H ′ =
Hdiag + [V,O]/2, which is block diagonal in the subspaces
up to the second order in V .

The final result for the two-band Hamiltonian describing
the conduction and valence bands reads

Hτs = �

2
σz + λτs

1 − σz

2
+ t0a0q · σ τ

+ h̄2|q|2
4m0

(α + βσz) + t1a
2
0q · σ ∗

τ σxq · σ ∗
τ (4)

for spin s = ± and valley τ = ±, with Pauli matrices σ τ =
(τσx,σy) and momentum q = (qx,qy). The numerical values
of the two-band model parameters are t0 = 1.68 eV, t1 =
0.1 eV, α = 0.43, and β = 2.21. Notice that α = m0/m+ and
β = m0/m− − 4m0v

2/(� − λ) where m± = memh/(mh ±
me) and v = t0a0/h̄. Moreover, a quadratic correction δλ ≈
(0.03 eV)(a0|q|)2 arises to the spin-orbit coupling due to
folding down of the five-band model to a two-band one. This
correction is estimated by using the effective masses of two
spin-split valence band branches as mh(↑) = −0.44m0 and
mh(↓) = −0.46m0 at the K point. Notice that the correction
term can be safely ignored in the validity range of the effective
low-energy two-band model (a0|q| � 1).

The Hamiltonian differs from that introduced by Xiao et al.4

because of the second-order terms in q. The diagonal q2

terms, which contribute to the energy in the same way as
does the first-order off-diagonal term, are responsible for the
difference between electron and hole masses recently reported
by using ab initio calculations.19 Moreover, the last term leads
to anisotropic q3 corrections to the energy, which contribute
to the trigonal warping effect. Importantly, α vanishes for
the case that me = −mh; however, β remains a constant.
Basically, there is the possibility to have a cubic off-diagonal
term in the low-energy Hamiltonian which in the calculation
of the eigenvalues of the Hamiltonian is multiplied by the
off-diagonal q terms and eventually contributes at the same
order as the diagonal q2 terms. Since that term is very small,
we thus ignore the q3 off-diagonal term.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present our main calculations for
the electronic properties of MoS2 by evaluating Eqs. (2),
(3), and (4). We propose first the lattice Hamiltonian by
considering numerical values of the hopping integrals and
show the band structure of ML-MDS. Second, we present
our numerical results for the electronic structure in two
different models by exploring the Landau levels (LLs) and
investigating the tunability of the electronic structure via an
external perpendicular gate voltage.
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FIG. 1. (Color online) (a) Band structure of ML-MDS consisting
of five bands in which two are spin split in the valence band. The dot-
dashed line refers to one spin and the dashed line denotes another spin
component. Solid lines refer to the spin-degenerate band. (b) A com-
parison between the band structure calculated by the present theory
(solid lines) and the results calculated in Ref. 19 (dashed lines) based
on density functional theory. Notice that our theory works quite well
around the K point for the particle (hole or electron) density less than
1014 cm−2 (for instance, EF − ECBM  0.2 eV). Here, a0 = a cos θ

where a is the length of the Mo-S bond and θ is the angle between the
bond and the xy plane. (c) Side and top views of the lattice structure
where the Mo atom (larger green sphere) is surrounded by six
S atoms.

Figure 1 shows the band structure of ML-MDS consisting of
five bands for each spin in the absence of an external field. Two
of them are spin polarized (dot-dashed and dashed lines) and
the others are spin degenerate (solid lines). We note that due
to the limitations of our model, the high-energy bands may
not be comparable with those of first-principle calculations
in a quantitative manner. Figure 1(b) shows a comparison
between our results and those calculated by density functional
theory,19 indicating that our theory is in good agreement
with density functional theory results close to the K point
up to a high particle (hole or electron) density 1014 cm−2

(in the case of the electron doped system, the Fermi energy
is EF − ECBM  0.2 eV). Nevertheless our effective model
Hamiltonian does not provide a good description of the physics
around the � point, where other orbitals like pz must be
considered in order to describe the electronic dispersion.18
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FIG. 2. (Color online) Contour plots of the conduction (top panel)
and valence (bottom panel) bands in momentum space for spin-up
components together with isoenergy lines to guide the eye. While the
conduction band shows almost isotropic dispersion, trigonal warping
occurs in the valence band around the K points, due to the difference
of the orbital structures of the conduction and valance bands.

We further investigate the band structure close to the
valence and conduction bands and our numerical results are
shown, via contour plots which show the isoenergy lines, in
Fig. 2. A strong anisotropy of the constant-energy lines can
be seen around the K points in the valence band, due to the
trigonal warping, while in the conduction band all lines are
almost isotropic; the warping is due to the difference of the
orbital structures of the conduction and valence bands.

To study the interplay of spin and valley physics, we
introduce, by ignoring trigonal warping, the effect of a time-
reversal symmetry-breaking term by applying a perpendicular

magnetic field, leading to the appearance of LLs as follows:

E±
n,τs = ±

√[
� − λτs

2
+ h̄ωc

(
βn − ατ

2

)]2

+ 2

(
t0a0

lB

)2

n

+ λτs

2
+ h̄ωc

(
αn − βτ

2

)
, n = 0,1, . . . , (5)

where ωc = eB/2m0 and lB = √
h̄/(eB) are the cyclotron

frequency and magnetic length, respectively. It should be
noticed that the trigonal warping term t1 leads to a second-order
perturbation correction in the Landau level energy, and accord-
ingly its effect on the Landau levels is very weak. In contrast
to Ref. 16, we see an additional valley-degeneracy-breaking
term which is reminiscent of the Zeeman-like coupling for
valleys. As a result, the conduction band LLs are valley
polarized and the valence band LLs are both valley and
spin polarized, although we have not yet considered the
usual Zeeman interaction for spins. In particular, the n = 0
LLs, E+

0,τ s = [� − h̄ωcτ (β + α)]/2 and E−
0,τ s = λτs − [� +

h̄ωcτ (β − α)]/2, depend on the magnetic field strength in
opposite ways for the two valleys. More intriguingly, the
splittings of the LLs in the conduction and valence bands,
δE+ ≈ 5.4h̄ωc and δE− ≈ 4.6h̄ωc, differ from each other
due to the difference of me and −mh. Furthermore, we
can define extra splitting terms for LLs in the conduction
and valence bands: valley splitting δE+

v = E+
−,s − E+

+,s =
g+

v h̄ωc and spin splitting δE+
s = E+

τ,− − E+
τ,+ = gsh̄ωc in the

conduction band, and spin-valley splitting δE−
s−v = E−

−,s̄ −
E−

+,s = (sgs + g−
v )h̄ωc in the valence band, with gs = 2 and

g+
v ≈ β + α (g−

v ≈ β − α) indicating the spin and valley g

factors for the conduction and valence bands. The splittings
present in the conduction band originate from the valley and
spin contributions, separately, but the splitting in the valence
band comes from both spin and valley terms. Notice that the
valley splitting depends slightly on the amount of mixing with
p orbitals for the conduction band through the parameter β and
the influence of the mixing value is very weak (see Appendix B
for more details).

It is also important to investigate the tunability of the
electronic structure via a perpendicular external electric field.
The vertical bias breaks the mirror symmetry σh and modifies
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FIG. 3. (Color online) Spin-up conduction and valence energy
bands, referred to the energy Ev = EVBM + U/2, for different values
of the vertical bias.
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FIG. 4. (Color online) Variation of the gap versus induced
potential which is almost linear in the chosen range of U . Insets
show the changes in the effective hopping integral and the effective
masses with U . Using the form of U dependence of the parameters,
we can also estimate the linear change of δα ≈ −0.15U/eV and
δβ ≈ −1.95U/eV.

the on-site energies of atoms in three sublayers of ML-
MDS. Accordingly, these changes affect the whole electronic
structure, especially the low-energy characteristics such as �,
me, mh, and the effective hopping t0. Interestingly enough,
the valley degeneracy breaking can be controlled by tuning α

and β due to the perpendicular gate voltage when the system
is subjected to a perpendicular magnetic field. We assume a
single-gated device in which the induced potentials take the
values Ub = 0 and Ub′ = 2Ua . The variation of the mentioned
parameters with the induced potential Ub′

are shown in Figs. 3
and 4, where we illustrate only the low-energy band structure
for different Ub′

values. Using simple electrostatic arguments,
the induced potentials for an applied vertical bias Vg can
be estimated as Ub′ = γ eVg with γ ≈ (d/L)ε′/ε where ε,d
and ε′,L indicate the dielectric constants and thicknesses of
ML-MDS and the substrate, respectively. For typical values
ε ≈ 6,22 ε′ ≈ 3.9, d ≈ 0.3 nm, and L ≈ 300 nm with SiO2 as
the dielectric substrate, we obtain γ ≈ 0.0007. By replacing
the substrate with high-ε gate dielectrics like HfO2 with
ε′ ≈ 25,23 the coefficient γ ≈ 0.004 increases and leads to
Ub′ ≈ 0.4 eV for Vg = 100 V, which is already used in the
ongoing experiments. Consequently, the perpendicular gate
voltage effects are enhanced by using a proper substrate with
large dielectric constant.

IV. CONCLUSION

In summary, we have formulated a tight-binding Hamil-
tonian in order to describe the low-energy band structure of
monolayer MoS2 which can be useful to study energy disper-
sion and transport phenomena in nanostructured MoS2. We
have obtained a seven-band model (for each spin component)
in which four are contributed mainly from sulfur p orbitals
and the three remaining mostly originate from molybdenum d

hybrids. Our model not only describes the low-energy behavior
of monolayer MoS2 which differs from the massive Dirac
fermion picture, but also predicts the difference between the
effective hole and electron masses and the trigonal warping
effect. In addition, the two-band model leads to a valley-

degeneracy-breaking effect in the Landau levels, and we have
shown that the conduction band Landau levels are valley
polarized and the valence band Landau levels are both valley
and spin polarized. Finally, we have shown that by applying
a perpendicular electric field to the monolayer the electronic
structure, especially the band gap and effective electron and
hole masses, can be finely tuned. It should be noted that our
model is appropriate mostly for low-energy calculations in the
vicinity of the conduction and valence bands.

Finally, we would like to emphasize that the diagonal
quadratic terms in the low-energy Hamiltonian play an
essential role in the transport and optical properties of the
system.24 It is worth noting that the sign of the β term
can influence topological features of the system such as the
Berry curvature, the valley Chern number which is defined as
Cv ∝ sgn(�) − sgn(β), and the Z2 invariant which vanishes
for β� > 0.

Note added. Recently, a paper25 which covers closely
related material has been published.

APPENDIX A: SEVEN-BAND HAMILTONIAN

We start constructing an effective tight-binding model for
the monolayer MoS2 system, assuming the following basis
orbitals:

|1〉 = dz2 ,

|2〉 = 1√
2

(|dx2−y2〉 + i|dxy〉), |1′〉 = 1√
2

(|px〉 + i|py〉),

|3〉 = 1√
2

(|dx2−y2〉 − i|dxy〉), |2′〉 = 1√
2

(|px〉 − i|py〉).

The Wannier functions for different lattice sites in a crystal are
localized and they can be written as |c,i,μ〉 = c

†
iμ|0〉, where

i denotes the site and μ indicates the atomic orbital. c = a

or b (b′) indicates the annihilation operators of three different
sublattices of monolayer MoS2, consisting of one Mo and
two S atoms. Up to the nearest-neighbor hopping integral, the
tight-binding Hamiltonian can be written as Eq. (1) in the main
text,

εc
μν = 〈c,i,μ|H |c,i,ν〉,

tij,μν = 〈a,i,μ|H |b (b′),j,ν〉, (A1)

sij,μν = 〈a,i,μ|b (b′),j,ν〉.
The lattice has two important symmetries C3 = e−iωLz/h̄

and σv : {(x,y,z) → (−x,y,z)} where the first is the trigonal
rotational symmetry where ω = 2π/3 and Lz is the z compo-
nent of the orbital angular momentum, and the second indicates
the reflection symmetry with respect to the y-z plane. The
action of these symmetry operators on the basis functions can
be summarized in the following equations:

C3|1〉 = |1〉, C3{|2〉,|2′〉} = eiω{|2〉,|2′〉},
C3{|3〉,|1′〉} = e−iω{|3〉,|1′〉},

(A2)
σv{|1〉,|2〉,|3〉} = {|1〉,|3〉,|2〉},
σv{|1′〉,|2′〉} = −{|2′〉,|1′〉}.

It should be noticed that, here, we have dropped the spin
indices. The symmetry relations in Eq. (A2) impose some
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constraints on the on-site energies and hopping integrals, and
thus we have

εa =
⎛⎝A1 0 0

0 A2 0
0 0 A2

⎞⎠, εb = εb′ =
(

B 0
0 B

)
,

tδ1± =
⎛⎝ t11 −e−iωt11

t21 t22

−t22 −eiωt21

⎞⎠, tδ2± =
⎛⎝ eiωt11 −eiωt11

e−iωt21 t22

−t22 −e−iωt21

⎞⎠,

tδ3± =
⎛⎝ e−iωt11 −t11

eiωt21 t22

−t22 −t21

⎞⎠. (A3)

Note that the same relations can be found for sδi± by substitut-
ing the tμν’s with sμν’s. In the presence of spin-orbit interaction
of the Mo atoms, it is easy to generalize εa by replacing
(εa)22 → A2 + λs and (εa)33 → A2 − λs. The subindices of
the hopping matrices indicate the nearest-neighbor vectors,

δ1± = a

(√
3

2
cos θ, − 1

2
cos θ, ± sin θ

)
,

δ2± = a(0, cos θ, ± sin θ ), (A4)

δ3± = a

(−√
3

2
cos θ, − 1

2
cos θ, ± sin θ

)
,

where a = 2.43 Å and θ = 40.7◦ (Ref. 26) are the Mo-S bond
length and the angle between the bond and the Mo plane,
respectively. To find the above equations, we also used the
operation of C3 and σv on δi± as C3δ1± = δ2±, C3δ2± = δ3±,
σvδ1± = δ3±, and σvδ2± = δ2±.

Following a method proposed by Slater and Koster17 (SK),
all hopping and overlap integrals can be written as linear com-
binations of Vpdσ and Vpdπ and Spdσ and Spdπ . In this method,
we define some standard hopping and overlap parameters
as Vll′|m| = 〈 �R′,l′,m|H | �R,l,m〉 and Sll′ |m| = 〈 �R′,l′,m| �R,l,m〉,
where m = 0,1 stands for σ,π bonds and the other hopping
and overlap integrals can be found from the SK table.17 In this
way we find

t11 = − 1√
2

(nx + iny)

[√
3n2

zVpdπ + 1

2

(
1 − 3n2

z

)
Vpdσ

]
,

t21 = 1

2
(nx − iny)

[√
3

2
Vpdσ

(
1 − n2

z

) + Vpdπ

(
1 + n2

z

)]
,

t22 = 1

2
(nx − iny)3

(√
3

2
Vpdσ − Vpdπ

)
, (A5)

where n = (nx,ny,nz) is a unit vector pointing between the
nearest-neighbor lattice points. Once again, we can obtain
similar relations for the overlaps by substituting the hopping
matrix elements with those of the overlap matrix. These
relations help us to reduce the number of independent hopping
parameters from 3 to 2. In the absence of external bias, due
to the symmetry between the two sulfur sublattices, we can
simply reduce the 7 × 7 Hamiltonian to 5 × 5 as below:

H =
(

Ĥa 2Ĥt

2Ĥ
†
t 2Ĥb

)
, S =

(
1 2Ŝ

2Ŝ
†

2

)
. (A6)

To find the unknown parameters, we should first obtain the
energy bands around the K point. After solving the generalized
eigenvalue problem as H|ψ〉 = ES|ψ〉 at the K point, we can
find the energies as

E1 = A+,

E2 = (A1 + B)/2 − 18Ree(t11s
∗
11) − √

[(A1 + B)/2 − 18Ree(t11s
∗
11)]2 + (1 − 18|s11|2)(18|t11|2 − A1B)

1 − 18|s11|2 ,

E3 = (A− + B)/2 − 18Ree(t21s
∗
21) − √

[(A− + B)/2 − 18Ree(t21s
∗
21)]2 + (1 − 18|s21|2)(18|t21|2 − A−B)

1 − 18|s21|2 , (A7)

E4 = (A1 + B)/2 − 18Ree(t11s
∗
11) + √

[(A1 + B)/2 − 18Ree(t11s
∗
11)]2 + (1 − 18|s11|2)(18|t11|2 − A1B)

1 − 18|s11|2 ,

E5 = (A− + B)/2 − 18Ree(t21s
∗
21) + √

[(A− + B)/2 − 18Ree(t21s
∗
21)]2 + (1 − 18|s21|2)(18|t21|2 − A−B)

1 − 18|s21|2 .

These eigenvalues include bonding (with lower energy) and antibonding (with higher energy) of p-d bands. Since the conduction
and valence bands are mostly formed from dz2 and dx2−y2 + idxy orbitals of Mo, E1 and E2 are the valence band maximum and
the conduction band minimum located at the K point, respectively.

APPENDIX B: TWO-BAND HAMILTONIAN

Here, we find the low-energy two-band effective Hamiltonian with the Löwdin partitioning method.21 As described in the
text, we change the nonorthogonal basis to an orthogonal one and then rotate it by using a unitary transformation U0, which
diagonalizes H̃0 so that we arrive at a new Hamiltonian,

H = U
†
0S−1/2HS−1/2U0, (B1)
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where H = H0 + H1 and up to the second order in q = qx + iqy , H1 is given by

H1 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 − 3

2eiωt11|q|2a2
0 −3eiωt11qa0

0 0 0 3eiωt21qa0 −3t22q
∗a0

0 0 0 3t22q
∗a0 − 3

2e−iωt21|q|2a2
0

− 3
2e−iωt∗11|q|2a2

0 3e−iωt∗21q
∗a0 3t22

∗qa0 0 0

−3e−iωt11
∗q∗a0 −3t22

∗qa0 − 3
2eiωt21

∗|q|2a2
0 0 0

⎞⎟⎟⎟⎟⎟⎠, (B2)

where a0 = a cos θ . In order to find the unitary transformation
matrix, the eigenvectors of H̃0 = S0

−1/2H0S0
−1/2 are obtained

first. Fortunately, S−1/2
0 can be analytically calculated at the K

point; however, for nonzero values of q, an iterative method27

should be used. Therefore, in the vicinity of the K point, we
can treat H1 as a perturbation by assuming small enough q

values and the transformed Hamiltonian H can be expressed
as the sum of two parts where V is a perturbation term,

Hdiag =
(

h11[2 × 2] 0
0 h22[3 × 3]

)
,

(B3)

V =
(

0 h12[2 × 3]

h12
†[3 × 2] 0

)
.

Now, we can employ the quasidegenerate perturbation
theory that is based on the idea of constructing a unitary
operator e−O in such a way as to drop the first-order V in
the transformed Hamiltonian, H ′ = e−OHeO = Hdiag + V +
[Hdiag,O] + [V,O] + 1

2 [[Hdiag,O],O] + · · ·. This imposes the
constraint V + [Hdiag,O] = 0 which leads to the following
form for the generator of the transformation:

O =
(

0 η[2 × 3]
−η†[3 × 2] 0

)
, (B4)

with the property that ηh22 − h11η = h12. Then H ′ = Hdiag +
1
2 [V,O] + · · · is an effective Hamiltonian with two decoupled

subspaces. Following straightforward calculations, the effec-
tive Hamiltonian of the low-energy bands can be obtained as
follows:

h11 − 1
2 {ηh12

† + h12η
†}. (B5)

Insertion of the matrix form of the operators h11, h12, and η

results in the two-band form proposed in Eq. (4) in the text as

Hτs = �

2
σz + λτs

1 − σz

2
+ t0a0q · σ τ

+ h̄2|q|2
4m0

(α + βσz) + t1a
2
0q · σ ∗

τ σxq · σ ∗
τ (B6)

for spin s = ± and valley τ = ±.
It should be noticed that the parameters of the tight-binding

model dependence on the p-orbital mixing do not have a
simple form, which prevents us from introducing an analytical
relation between the parameters of the two-band model
Hamiltonian and the p-orbital percentage. The parameter
α depends only on the effective mass difference between
the conduction and valence bands. The energy gap and the
spin-orbit splitting do not depend on the mixing. Therefore, the
influence of the mixing parameter has been checked for 5% and
15% mixing and they lead to the following values: β = 2.30
and 2.15, t0 = 1.65 and 1.70, respectively. In addition, the
values of the effective hopping trigonal wrapping t1 in the
low-energy Hamiltonian change slightly with variation in the
mixing value,by about 1%, which can be neglected.
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