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We calculate the single-particle spectral function for doped bilayer graphene in the low energy limit, described
by two parabolic bands with zero band gap and long range Coulomb interaction. Calculations are done using
thermal Green’s functions in both the random phase approximation (RPA) and the fully self-consistent GW
approximation. Consistent with previous studies RPA yields a spectral function which, apart from the Landau
quasiparticle peaks, shows additional coherent features interpreted as plasmarons, i.e., composite electron-
plasmon excitations. In the GW approximation the plasmaron becomes incoherent and peaks are replaced by much
broader features. The deviation of the quasiparticle weight and mass renormalization from their noninteracting
values is small which indicates that bilayer graphene is a weakly interacting system. The electron energy loss
function, Im[−ε−1

q (ω)] shows a sharp plasmon mode in RPA which in the GW approximation becomes less
coherent and thus consistent with the weaker plasmaron features in the corresponding single-particle spectral
function.
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I. INTRODUCTION

Since its fabrication, graphene1–5 has been of interest
for both theoreticians and experimentalists. It is a two-
dimensional (2D) crystal with carbon atoms arranged on a
honeycomb lattice with two sublattices. Due to its unique
properties (e.g., high mobility even in highly doped cases)
it opens new perspectives for engineering and is a candidate
material for future nanoelectronic and spintronic devices.6

The subject of this paper is the closely related bilayer
graphene, formed by stacking two graphene layers in Bernal
“AB” stacking sequence in which the two layers are rotated
by 60 degrees. These are coupled by interlayer tunneling with
the hopping parameter t⊥ ≈ 0.39 eV.7

Bilayer graphene shares some features with both graphene
and the ordinary two-dimensional electronic gas (2DEG). Its
dispersion is quadratic, similar to a 2DEG but the effective
Hamiltonian is chiral with zero band gap as in the case of
graphene.7,8 In both single layer and bilayer graphene the
charge carrier density can be controlled by application of a
gate voltage, a fundamental effect for potential technological
applications.1,9 In addition, for bilayer graphene even the band
gap is tunable with great potential for device applications.9,10

In contrast to single layer graphene the coupling parameter
of bilayer graphene is a function of carrier density, rs ∼ n−1/2.2

Thus the strength of Coulomb interaction is tunable, while the
coupling parameter for the single layer graphene is a constant
and lies in the interval 0 � rs � 2.2. By comparing the values
of rs for single and bilayer graphene (rs ≈ 68.5 × 105/

√
n,

where n is the number of carriers per cm−2 with n ≈ 109 −
5 × 1012) in vacuum it is clear that the strength of the Coulomb
interaction can be much larger in bilayer graphene.2

The electronic structure of bilayer graphene7,11 is char-
acterized by the single particle spectral function A(�k,ω),
which can be measured experimentally by angle resolved
photoemission spectroscopy (ARPES).12,13 It obeys the sum
rule

∫
dω
2π

A(�k,ω) = 1 and can be interpreted as the probability

distribution of an electron having momentum �k and energy ω.

Sensarma et al.14 studied how Coulomb interaction affects the
single particle spectral function of bilayer graphene away from
half filling. These authors used the RPA to show that doped
bilayer graphene is a Fermi liquid in the low energy limit,
with a sharp quasiparticle peak. They also found additional
weaker peak structures that they interpreted as plasmarons;
a quasiparticle formed by the coupling between electron and
plasmon, as originally predicted by B. I. Lundqvist.15 Earlier
RPA studies of undoped bilayer graphene found a marginal
Fermi liquid with linear in ω decay rate related to the finite
density of interband excitations down to low energies.16,17 In
addition, it has been shown that at charge neutrality bilayer
graphene reveals instabilities to various broken-symmetry
phases.18–23 Studying the physics of interaction between
electrons and plasmons in graphene is particularly interesting
because of recently proposed “plasmonic” devices that could
merge photonics and electronics.13

Experimentally, plasmarons in the single layer graphene
were observed by A. Bostwick et al.13 using angle-resolved
photoemission spectroscopy. Apart from the two single parti-
cle crossing bands, two additional bands were observed and
interpreted as a spectrum of plasmarons. The experimentally
measured spectral function is similar to that obtained within
RPA.24,25

In this paper we compute numerically the single-particle
spectral function A(�k,ω) for doped bilayer graphene in the
low energy two-band approximation in both RPA and the fully
self-consistent GW approximation.26–28 We use a recently
developed thermal Green’s function formalism, based on a
finite set of imaginary frequencies and analytic continuation
to real frequencies for the single-particle Green’s functions.29

The results, presented in Fig. 1, show the spectral function
with long lived Landau quasiparticles and satellite plasmaron
peaks in RPA [Fig. 1(a)] and confirm the results of analytic
calculations,7,14,30 whereas in the GW approximation the
plasmaron peaks are replaced by broad shoulders [Fig. 1(b)].
It has been emphatically argued that self-consistent GW
underestimates the coherence of collective excitations28,31–33
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FIG. 1. (Color online) Single particle spectral function for bilayer
graphene in the low energy limit at rs = 3. (a) RPA, (b) GW. The bare
bands ε�k = ±k2 (in units kF = 1, εF = 1) are rotationally symmetric
(the patchy appearance is due to the finite k-space resolution). (c) and
(d) are the cuts (dash-dotted lines) in (a) and (b), respectively. Dashed
lines are guides to the eye for plasmaron dispersions.

and our results showing a marked difference between the
satellite peaks in RPA and GW most likely agree with this.
Nevertheless we argue that the GW results are valuable as a
benchmark for more sophisticated self-consistent approaches
including vertex corrections to the polarization. Below we
describe our calculations in more detail.

II. GW APPROXIMATION

The GW approximation is derived perturbatively from the
Hedin’s equations,26,27 giving the self-energy

�GW
�k (iωn) = 1

β

∫
d2q

(2π )2

∞∑
m=−∞

W�q(iωm)G�k−�q(iωn − iωm),

(1)

where W�q(iωn) and G�k(iωn) are the dressed interaction and
Green’s function, respectively (all quantum numbers, such
as momentum, spin, etc., are incorporated in �k and �q). The
argument of the Green’s function is the fermionic Matsubara
frequency ωn = (2n + 1)π/β, and the dressed interaction is a
function of the bosonic Matsubara frequency ωm = 2πm/β

with m integer. After computing �GW
�k (iωn) (first diagram

in Fig. 2) one should, in general, add the Hartree diagram
(second diagram in Fig. 2) to it which in the case of long-

+Σ =
FIG. 2. Contribution to the self-energy from the GW approxima-

tion and Hartree diagram. Double wiggly line, single wiggly line, and
double line correspond to dressed interaction, bare interaction, and
dressed Green’s function, respectively.

FIG. 3. Screened interaction in the GW approximation is given
by geometric series. Bubble diagram represents polarization ��q (iωn).

range Coulomb interaction gives zero contribution because
it is canceled by the positive background charge.34 The
approximation has the same form as the standard Hartree-Fock
(HF) approximation but the latter uses the bare Green’s
function and interaction, while the former is based on the
dressed Green’s function G�k(ω) and dynamically screened
(dressed) interaction.

The screened interaction W�q(iωn) is an infinite geometric
series of diagrams (Fig. 3) consisting of the bare interaction
Vq and the irreducible polarization diagram ��q(iωn) which in
GW is given by

��q(iωn) = −g

∫
d2k

(2π )2

1

β

∞∑
m=−∞

G�k(iωm)G�k+�q(iωn + iωm),

(2)

where g is the degeneracy factor. In RPA it is computed
using the same relation but with the full Green’s functions
replaced by the bare ones. So, the RPA polarization is just
the zeroth order term in the expansion of ��q(ωn) in the bare
interaction. After summing up the geometric series one obtains
the following expression for the screened interaction

W�q(iωn) = Vq

1 + Vq��q(iωn)
. (3)

The effective bare Coulomb interaction for bilayer graphene
is given by Vq = 2πe2

κq
where κ represents the background

dielectric constant.11 Using EF and kF as units of energy and
momentum, respectively, enables us to write Vq in terms of the
dimensionless coupling parameter rs = e2gm/(kF κ):

Vq = πrs

q
. (4)

III. BILAYER GRAPHENE

A. Effective model

The low energy two-band approximation in bilayer
graphene7,35 is valid if the scale of all relevant energies
is smaller than the interlayer hopping parameter t⊥ and
the doping is sufficiently small.2,36 It has been shown that
in order to explain the characteristics of some quantities
(e.g., compressibility) taking into account all four bands is
necessary.36–39 Since we are studying the low energy properties
we focus on the two-band approximation where the two outer
bands can be ignored and thus the four-band model is reduced
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to the effective two-band model with the total degeneracy of
g = 4 (due to the spin and valley index) given by

H0 = − 1

2m

(
0 (kx + iky)2

(kx − iky)2 0

)
. (5)

It is clear that the corresponding energy spectrum is parabolic,

εk = ± k2

2m
, (6)

where m = t⊥/(2v2
F ) ≈ 0.054me is the effective mass of the

electron in the low energy limit with me being the free electron
mass. The corresponding free fermionic Matsubara Green’s
function is

Ĝ0
�k(iωn) = (iωn − H0 + μ)−1 = 1

2

∑
s=±

1 + sσ̂�k
iωn − s|εk| + μ

,

(7)

s indexes the conduction and valence bands, μ is the chemical
potential, and σ�k is given by

σ̂�k =
∑
j=±

k2
j

k2
σ̂j =

∑
j=±

ej2θ�k σ̂j . (8)

Here we have defined k± = kx ± iky , σ̂± = (σ̂1 ± iσ̂2)/2, σ̂1

and σ̂2 are Pauli matrices, and θ�k is the angle of the vector �k
with respect to the x axis.

Let us rewrite Eq. (2) for the two-band model. After
summing over all internal indices we obtain the following
expression for ��q(iωn),

��q(iωn) = − g

β

∫
d2k

(2π )2

∞∑
m=−∞

Tr(Ĝ�k(iωm)

× Ĝ�k+�q(iωn + iωm)). (9)

In the noninteracting limit ��q(iωn) can be written in the
following simple form:

�0
�q(iωn) = −g

∑
s,s ′

∫
d2k

(2π )2

(
f s

k − f s ′
k+q

)
Fs,s ′ (�k,�k + �q)

iωn + s|εk| − s ′|εk+q | + μ
,

(10)

where f s
k = 1/(1 + eβ(s|εk |−μ)) is the Fermi distribution func-

tion and

Fs,s ′ (�k,�k + �q) = 1
4 Tr(1 + sσ̂�k)(1 + s ′σ̂�k+�q)

= 1
2 (1 + ss ′ cos(2θ�k,�k+�q)),

with θ�k,�k+�q being the angle between the vectors �k and �k + �q.
��q(iωn) is an angle-independent function which can be seen
by extracting the angle θ�q using the rotation of the integration
variable in Eq. (9) with θ�q . Consequently, the screened
interaction is angle independent as well. Note that since the
polarization is a scalar due to the trace in Eq. (9) the screened
interaction remains to be a scalar quantity as well.

The GW self-energy is generalized to

�̂GW
�k (iωn) = 1

β

∫
d2q

(2π )2

∞∑
m=−∞

Wq(iωm)Ĝ�k−�q(iωn − iωm).

(11)

After performing the following integration variable transfor-
mations in Eq. (11) with Ĝ�k−�q replaced by Ĝ0

�k−�q ,

�q1 = �k − �q (12)

and

�q2 = R(π + θ�k)�q1, (13)

where R(π + θ�k) denotes the rotation matrix with the angle
π + θ�k one can see that �̂GW

�k (iωn) and consequently the

fully interacting Green’s function Ĝ�k(iωn) have and retain
the same structure as that of the free Green’s function
[Eqs. (14) and (15)] throughout the whole self-consistent
calculation.40

Ĝ0
�k(iωn) = 1

2

(
a+

k a−
k ei2θ�k

a−
k e−i2θ�k a+

k

)
(14)

a±
k ≡ (iωn − |εk| + μ)−1 ± (iωn + |εk| + μ)−1. (15)

So, it is sufficient to set up calculations for �̂GW
�k (iωn) and

Ĝ�k(iωn) only at θ�k = 0.

B. Periodized Green’s functions

The GW approximation implies a self-consistent numerical
calculation, which may be solved iteratively.41 Obviously these
calculations include very demanding operations including
infinite sums over Matsubara frequencies. In order to cope
in numerical calculations with these kinds of problems we use
a formalism for finite temperature fermionic thermal Green’s
functions in the single band case described in Ref. 29 and
summarized below.

Performing numerical calculations using thermal Green’s
functions42,43 may be done by the discretization of imag-
inary time. Since the fermionic thermal Green’s function
is antiperiodic over τ ∈ [−β,β] domain with the period β

we discretize the interval τ ∈ [0,β] into N evenly spaced
points, τ = (β/N )j,j = 1,...,N − 1. Due to the disconti-
nuity of the fermionic Green’s function at τ = 0 (limits
τ → 0− and τ → 0+ differ from each other) some specific
value must be assigned to Gk(τj = 0) when doing numer-
ical computations. We define Gk(τj = 0) by the average
of Gk(τ = 0−) and Gk(τ = 0+). After applying discrete
Fourier transformation to the noninteracting thermal Green’s
function

G0
k(τ ) = e−εkτ [(nk − 1)θ (τ ) + nkθ (−τ )], (16)

where nk = 〈c†k ck〉 is the occupation number we obtain
periodic set of the Green’s function values in the Matsubara
frequency space

G0
k(iωn) = η coth η(iωn − εk). (17)

Here η ≡ β

2N
and εk is a single-particle excitation spectrum

for a given model. It is obvious that Eq. (17) is periodic un-
der iωn → iωn + iN,N ≡ π

η
. The periodized full Green’s

function is given by

Gk(iωn) = η coth η(iωn − εk − �k(iωn)), (18)
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which has the correct noninteracting limit and together with
G0

k(iωn) yields standard continuum expression for the Greens
function as N tends to ∞(η → 0). Due to the nontrivial
hyperbolic function in Eq. (18) one can not define the self-
energy using simply G−1

0 and G−1 as is done in the standard
theory. In this case the self-energy is defined by the amputated
skeleton diagrams (Ref. 42, see Sec. 5.1) and through Eq. (18).

In the case of the two band model Gk(iωn) is generalized
to

Ĝ�k(iωn) = η coth η
((

Ĝ0
�k(iωn)

)−1 − �̂�k(iωn)
)
, (19)

where

(
Ĝ0

�k(iωn)
)−1 =

(
iωn + μ −|εk| ei2θ�k

−|εk| e−i2θ�k iωn + μ

)

= (iωn + μ) − |εk|σ̂�k.

The periodized Green’s function for both single and two-band
cases is consistent with the corresponding Luttinger-Ward �-
functional44,45 [the former is consistent with the �-functional
as presented in Eq. (4) in Ref. 29 while the latter with the same
equation where Gk(iωn) is replaced by Ĝ�k(iωn)].

To perform analytic continuation for Gk(iωn) we first
rewrite it by means of a conformal transformation in a new
basis where it can be represented as a sum of simple poles.
Then the Padé method46 of fitting to a rational function is used
which enables us to evaluate the Green’s function on the real
frequency axis. In the case of a two-band model the trace of
Ĝ�k(iωn) is used as an input to the same procedure of analytic
continuation as the one carried out for Gk(iωn).

We start the self-consistent calculation by discretizing
momenta and angles. Since our interest is focused on the
low energy properties the finite range of |�k|(|�k| ∈ [0,4]) is
discretized into 40 points logarithmically giving a denser
number of points around kF . The rest of the integration
variables (|�q|, θ�k , and θ�q) are discretized linearly. |�q| is
discretized into 80 points and lies in the interval [1/80, 4]
while the number of discretization points for θ�k and θ�q is 10.
First, the free Greens’s function is evaluated at θ�k = 0 and then
it is rotated by an angle θ�k in order to obtain the polarization
[Eq. (9)]. Then the screened interaction is computed using
Eq. (3) which enables us to evaluate the GW self-energy
[Eq. (11)]. After calculating �̂GW

�k (iωn) at θ�k = 0 we update
the Green’s function through Eq. (19). This is done repeatedly:
If the procedure converges to a fixed point, a solution has
been found. The calculations are done at T/εF = 1/10 with
N = 121 number of Matsubara frequencies.

C. Spectral function

The spectral function is given by

A(�k,ω) = − 1
π

Im[TrĜ�k(ω + i0+)], (20)

where we perform analytic continuation after applying trace to
Ĝ�k(iωn). In order to study the low energy properties we also
compute the spectral function projected on the conduction
band

A+(�k,ω) = − 1

π
Im[G�k(s = +,ω + i0+)], (21)
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FIG. 4. (Color online) rs = 3. Left column: spectral weight in
RPA (dashed line) and GW approximation (solid line) at k ≈ 0.76kF

(a), k = k∗
F (b), k ≈ 1.20kF (c). Right column: the real (blue solid

line) and imaginary (red dashed line) part of the self-energy at k ≈
0.76kF (d), k = k∗

F (e), k ≈ 1.20kF (f) in RPA (thin line) and GW
approximation (thick line).

where G�k(s = +,ω) represents the eigenvalue of Ĝ�k(iωn)
corresponding to the upper band after analytic continuation
to the real axis. Spectral weight conservation is equivalent to∫

dωA(�k,ω) = 2 and
∫

dωA+(�k,ω) = 1, respectively.
In Figs. 4 and 5 we present the spectral functions (left

column) for different values of k together with the correspond-
ing self-energies (right column) in the GW approximation
and RPA at rs = 3 and rs = 7 corresponding to the carrier
densities n = 3 × 1012cm−2 and n = 6 × 1011cm−2 for SiO2

substrate, respectively. Due to the interaction kF is slightly
shifted because of the finite value of Re�kF

(ω = 0) (see blue
solid curves in the right panels of Figs. 4 and 5). The spectral
functions in Figs. 4(b) and 5(b) are computed at k∗

F which is
different from the noninteracting Fermi momentum, kF = 1.

As the plots show the spectral weight in the RPA away from
kF has two peaks: the main Landau quasiparticle peak and
plasmaron peaks. The presence of the plasmaron excitation
also give jumps in the real and imaginary parts of the
corresponding self-energies. The RPA plasmaron excitation
has lower weight at rs = 7 than the one at rs = 3, although the
spectral functions have qualitatively the same behavior which
is also noticeable in the case of the GW approximation. Most
of the structure obtained in the RPA is not presented in the
GW approximation. We interpret this as being due to stronger
screening in GW.

We also compute the electron energy loss spectrum
Im[−ε−1

q (ω)], where εq(ω) is the dielectric function and is
given by

εq(ω) = 1 + Vq��q(ω). (22)
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FIG. 5. (Color online) rs = 7. Left column: spectral weight in
RPA (dashed line) and GW approximation (solid line) at k ≈ 0.76kF

(a), k = k∗
F (b), k ≈ 1.20kF (c). Right column: the real (blue solid

line) and imaginary (red dashed line) part of the self-energy at k ≈
0.76kF (d), k = k∗

F (e), k ≈ 1.20kF (f) in RPA (thin line) and GW
approximation (thick line).

In Fig. 6(a) Im[−ε−1
q (ω)] in RPA is plotted showing the

plasmaron dispersion relation (black color) which is in quite
good agreement for small q values with its analytic form (solid
line) expanded up to second order in q,2,30

ωq � e

√
gεF q

κ

(
1 − rsq

8kF

)
.

Im[−ε−1
q (ω)] was also calculated in the GW approximation

[Fig. 6(b)] where the plasmon mode is less coherent than that
in RPA which is in agreement with the fact that the plasmaron
features in the GW spectral function are weaker than in RPA.

FIG. 6. (Color online) Im[−ε−1
q (ω)] in RPA (a) and GW approxi-

mation (b) at rs = 7 (same color intensity scale on both plots). Green
solid line in (a) represents the plasmon dispersion expanded up to
the second order in q. The unexpected discontinuities are artificial
and due to difficulties with the analytic continuation of a two-particle
function.

TABLE I. Quasiparticle weight Z and effective mass relative to
the one of the free electron m∗/m.

rs = 3 rs = 7

Z m∗
m

Z m∗
m

RPA 0.798 0.978 0.685 0.986
GW 0.851 0.946 0.806 0.929

D. Quasiparticle weight and effective mass

The quasiparticle weight Z for conduction band and
renormalized mass m∗, given in Table I, are computed for
both the GW and RPA approximations using the formulas:

Z = 1

1 − ∂Re�kF
(ω)

∂ω

∣∣
εF

, (23)

m∗

m
= Z−1

1 + m
kF

∂Re�k (ω=εF )
∂k

∣∣
kF

. (24)

As expected, the quasiparticle weight decreases with in-
creasing interaction strength because the interaction shifts
the weight from the coherent quasiparticle peak through
incoherent scattering. Since the GW approximation does not
yield the plasmaron peaks and the interaction gets more
screened, most of the weight is concentrated in the Landau
quasiparticle which results in a bigger quasiparticle weight
than that in the case of RPA. The mass renormalization is less
than 7% in both approximations meaning that we are dealing
with a weakly interacting system.

By comparing our results with the ones presented in
Refs. 14 and 47 one can see that the agreement is quite
good. In Ref. 47 the screening is taken into account through
the Thomas-Fermi approximation and mass renormalization
is computed for different magnitudes of the screening. The
agreement between our results and those presented in Ref. 47
is very good when the Thomas-Fermi screening is not
reduced.

IV. CONCLUSION

We present the single particle spectral function and self-
energy for bilayer graphene in the low energy limit as
described with a two band model. Calculations are done in
both RPA and self-consistent GW using a discretized thermal
Green’s function formalism. In RPA, the spectral function
and energy loss spectrum show prominent plasmaron peaks
and a sharp plasmon mode, respectively, which together with
quasiparticle weight and effective mass are in good agree-
ment with those computed using a conventional Matsubara
Green’s function method.14 In GW the plasmaron peaks
are replaced by broad shoulders which is consistent with
the observation of a less coherent plasmon mode. Further
studies, including experiments, should elucidate to what extent
GW underestimates (or RPA overestimates) the coherent
nature of the excitations. Independently of the graphene
physics the calculations show that the periodized Green’s
function formalism29 is an efficient method for self-consistent
calculations.
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