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Electron interaction, charging, and screening at grain boundaries in graphene
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Electronic, transport, and spin properties of grain boundaries (GBs) are investigated in electrostatically doped
graphene at finite electron densities within the Hartree and Hubbard approximations. We demonstrate that
depending on the character of the GBs, the states residing on them can have a metallic character with a zero group
velocity or can be fully populated losing the ability to carry a current. These states show qualitatively different
features in charge accumulation and spin polarization. We also demonstrate that the semiclassical Thomas-Fermi
approach provides a satisfactory approximation to the calculated self-consistent potential. The conductance of
GBs is reduced due to enhanced backscattering from this potential.
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I. INTRODUCTION

During recent years chemical vapor deposition (CVD) on
transition metals has emerged as one of the most attractive
methods for scalable graphene production.1,2 The advantages
of this method is in its low cost, the possibility to grow large
graphene sheets (tens of inches), and the ease of its transfer
onto other substrates. Due to features of the growth process,
CVD-grown graphene is polycrystalline, consisting of grains
of various crystal orientations separated by one-dimensional
extended line defects representing grain boundaries (GBs).3–5

Significant evidence has accumulated by now that the GBs
strongly affect electrical transport6–11 and represent the limit-
ing scattering mechanism of the electronic mobility in CVD-
grown graphene.12–15 This provides a strong motivation for
investigation of morphological, electronic, and spin properties
of GBs. A number of studies have been recently reported
addressing the band structure,16–20 spin polarization,16,17,21,22

electron transport and scattering12,13,20 in GBs. However, all
these studies were limited to the case of electrically neutral
graphene, and very little is presently known on how the
electronic and transport properties of GBs are modified at
nonzero electron densities (i.e., away from the Dirac point).
At the same time, the effect of a finite electron density is of the
utmost importance for the understanding of electron scattering
by the GBs. Indeed, due to filling of quasibound states residing
on them by electrons from the bulk, the GBs transform into
charged lines which are believed to be responsible for the
impediment of electron transport in CDV-grown graphene.
Note that a local self-doping of individual GBs (i.e., transfer
of electrons from the bulk to the states at GBs in a nominally
neutral sample) has been recently observed by means of
scanning tunneling microscopy (STM) measurements;9 it has
also been argued that by doping by electrons from the bulk,
the GBs can act as quasidimensional metallic wires.13,20,23

It is noteworthy that quasi-one-dimensional localized states
of a related nature can reside on domain walls,24 graphene
nanoroads,25 and p-n junctions in bilayer graphene.26

In the present work we depart from a conventional model
of neutral graphene at the half filling and investigate how
electronic and transport properties of GBs are affected by the

presence of interacting electrons. We discuss how the charging
of GBs evolves with the electron density and compare our
findings with a semiclassical Thomas-Fermi (TF) model
of screening. We also demonstrate that charging at finite
electron densities leads to qualitatively new features in the
band structure, and transport properties of grain boundary
are strongly modified in a comparison to the noninteracting
description.

II. BASICS

In graphene, GBs represent one-dimensional dislocations
defined by interfaces between two domains of material with
different crystallographic orientations. The latter are charac-
terized by the angles θL and θR between the corresponding
crystallographic directions in two domains and normal to the
boundary line (Fig. 1). (See also an illustration in Fig. 6 in
the Appendix.) The periodicity of the dislocation is defined
by the translation vectors (n,m) of the length d belonging
to the crystalline domains and oriented along the boundary
line. In the present study we consider two representative GBs,
(2,0) and (2,1), shown, respectively, in Figs. 1(a) and 1(b).
The first one, (2,0), consists of domains with the aligned
crystallographic orientations θL = θR = θ = 0◦ (d ≈ 0.5 nm)
and separated by a zigzag-oriented interface of one octagon
and two side-sharing pentagons.16–19,23 The repeat vector
(2,1) of the second one implies θL = θR = θ = 10.9◦ (d ≈
0.65 nm) and its interface region includes pentagon-heptagon
pairs.6,17 We would like to note that while we study two
representative GBs, (2,0) and (2,1) (corresponding to aligned
and misaligned crystallographic orientations), we believe that
our findings are generic and remain valid for other GBs in
graphene.

For the case of spinless electrons we use a standard p-orbital
tight-binding Hamiltonian,27

H0 =
∑

r

V Hartree
r a+

r ar −
∑

r,r+�

tr,r+�a+
r ar+�, (1)

where V Hartree
r is the Hartree potential at the site r and tr,r+� is

the overlap integral between the neighboring sites r and r + �.
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FIG. 1. (Color online) Atomic geometries of (2,0) GB and (2,1)
GB [panels (a) and (b), respectively]; the arrows correspond to the
repeated vectors (2,0) and (2,1). Thick blue lines in panels (c) and (d)
show the total occupancies for (2,0) and (2,1) GBs as a function of
EF = eVg (divided respectively by factors of 4 and 2.5). Thin black
lines show occupancies of individual carbon atoms [enumerated in
panels (a) and (b)].

The Hartree potential results from the Coulomb interaction
between extra charges in the system,

V Hartree
r = e2

4πε0εr

∑
r′ �=r

nr′

(
1

|r − r′ | − 1√
|r − r′ |2 + 4b2

)
,

(2)
where nr′ is the local electron occupation and the second term
in the parentheses corresponds to the mirror charges.27 (In
our calculation we assume that a graphene sheet is separated
from a back gate by a dielectric of width b = 50 nm with the
relative permittivity εr = 3.9). The summation in the Hartree
potential, Eq. (2), runs over the entire ribbon. In order to
calculate tr,r+� for the GBs studied in this paper we performed
ab initio geometry relaxations based on the density functional
theory using the GAUSSIAN 09 software package.28 Away from
the GB, tr,r+� = t = 2.7 eV. Details of computations and
the calculated values of the transfer integrals are presented
in the Appendix. The number of excess electrons at site r
reads nr = ∫ ∞

−∞ ρ(r,E)fFD(E,EF )dE − nions, where ρ(r,E)
is the energy-dependent local density of states, fFD(E,EF ) is
the Fermi-Dirac distribution function, EF = eVg is the Fermi
energy the value of which is adjusted by the gate voltage Vg ,
and nions = 3.8 × 1019 m−2 is the positive charge background
of ions. The Bloch states, the electron densities, and the band
structure are calculated self-consistently using the Green’s
function technique as described in Refs. 27 and 29. The
conductance calculations with a self-consistent potential are
performed on the basis of the Landauer formalism using the
standard recursive Green’s function technique as described in
Ref. 30. The band structure calculations are performed in the
ribbon geometry with the GB residing in the middle of the

ribbon, which is infinite in the x direction and has a finite
width of 20 nm in the transverse y direction.

For the case of electrons with spin (σ = ↑,↓) we introduce
spin-dependent electron densities nσ

r and use the same formal-
ism as described above with a Hubbard Hamiltonian of the
form H = H ↑ + H ↓,29,31

Hσ = H0 + V σ
Hubb; V σ

Hubb = Unσ ′
r , (3)

where H0 is given by Eq. (1) and the Hubbard constant
U = t .32

III. RESULTS AND DISCUSSION

We start with the case of spinless electrons described by the
Hamiltonian (1). Figures 2(a)–2(c) show the band structures
of the (2,0) GB for different gate voltages Vg . For Vg = 0
[Fig. 2(a)] the system remains neutral and the results of
the Hartree approach correspond to the case of noninteracting
electrons. The flat band at E − EF = 0 is nearly degenerate
and corresponds to three states, one residing at the GB and two
at the zigzag edges of the ribbon. (Note that even though the
zigzag edge states contribute to the band diagram, we verified,
by choosing a larger computational domain, that their overall
effect on electrostatics and electronic properties of the state
at the GB is negligibly small.) An inspection of the wave
functions shows that the flat band of the GB is associated with
an exponentially localized Bloch state which originates from
the zigzag topology of the interface similar to the zigzag edges
of zigzag ribbons. As Vg increases the band structure changes
substantially [see Figs. 2(b) and 2(c)]. The most distinct feature
of the band diagram is that the state at the GB gets pinned to EF

and remains partially filled at any Vg . This is because this state
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FIG. 2. (Color online) Evolution of the band structure of the (2,0)
GB state [panels (a)–(c)] and the (2,1) GB state [panels (d)–(f)] upon
change of the gate voltage Vg calculated in the Hartree approximation
using Hamiltonian Eq. (1). States residing at GBs are drawn in red
and marked by “GB.”
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is flat and therefore has a high density of states (DOS). As a
result, electrons filling this state can easily screen the external
potential, which results in metallic behavior and pinning.

The state residing at the (2,1) GB also shows expo-
nential localization. However, features and evolution of the
corresponding band in the dispersion relation are different
from those of the (2,0) state [see the state marked “GB” in
Figs. 2(d)–2(f)]. At Vg = 0 the state residing at the GB is
practically empty as it lies above EF [Fig. 2(d)]. In contrast
to the (2,0) state, this state does not have a metallic character
with a high DOS, and therefore it cannot screen the applied
potential. Hence, with application of Vg the (2,1) GB state
gets quickly populated, and a corresponding dispersion curve
bends down and moves below EF [see Figs. 2(e) and 2(f)].
Note that a flat band at EF = 0 in Fig. 2(d) corresponds to the
edge states of the zigzag nanoribbon.

Let us now discuss charge accumulation at the GBs due to
the filling of the quasibound states residing on them. Figure 1
shows that the charge density at the (2,0) GB grows linearly
with an increase of the gate voltage Vg . In contrast, the charge
density at the (2,1) GB stays practically constant showing
only a slow increase following the increase of the overall
electron density in the ribbon as Vg grows. This difference
in the charge accumulation can be traced to different behavior
of the band dispersions of the states residing at the (2,0) and
(2,1) GBs discussed above. The linear charge accumulation
on the (2,0) GB occurs because the corresponding state has a
metallic character with a high DOS and therefore it remains
only partially filled. As a result, an increase of the gate voltage
leads to a gradual population of this state. On the contrary, with
application of the gate voltage the state residing at the (2,1) GB
becomes practically fully populated and immediately moves
below EF . Hence, a further increase of Vg has very little effect
on the charge accumulated at the (2,1) GB. It should be noted
that for both types of GBs considered here the local density of
states (LDOS) and therefore the accumulated charge strongly
depend on a site position [see Figs. 1(c) and 1(d)].

As mentioned in the Introduction, scattering at charged
line defects is regarded as the limiting factor for the mobility
in CVD graphene. An expression for the scattering potential
can be obtained within the semiclassical TF approximation
describing the screening of an extended charged line defect by
the surrounding electron gas,12,15

VTF(x) = λe

2πε0εr

{
− cos (qTFx) Ci(qTFx)

+ sin (qTFx)

[
π

2
− Si (qTFx)

]}
, (4)

where Ci and Si denote the cosine and sine integral functions,
λ is the line charge density, and qTF = e2kF /(πε0εrh̄vF ) is
the TF wave vector defined by the electron Fermi velocity
vF = 3ta/(2h̄) and the Fermi momentum kF = √

πn (a =
0.142 nm is the C-C distance). The TF potential (4) was used
for semiclassical Boltzmann and quantum-mechanical Kubo
calculations of the conductivity of CVD graphene.12,15 It is
therefore important to find whether this potential provides a
reliable approximation for the numerically exact quantum-
mechanical self-consistent potential. A comparison between
the TF potential (4) and the self-consistent potential calculated
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FIG. 3. (Color online) The charge density [panels (a) and (b)]
and the potential [panels (c) and (d)] in a cross section of the ribbon
calculated in the Hartree approximation for, respectively, (2,0) and
(2,1) GBs for different applied gate voltages eVg = 5t , 10t , and 15t .
Thin solid, dashed, and dotted lines in panels (c) and (d) illustrate the
results of the Thomas-Fermi approximation [Eq. (4)]. Extracted linear
charge densities at GBs and the bulk electron densities (i.e., away
from the GBs) are λ/a = 1.3,2.6,3.9 × 1018 m−2 and n = 3,6,9 ×
1017 m−2 for panel (c) and λ/a = 3.7,4,4.3 × 1018 m−2 and n = 2.5,
5, 7.5 × 1017 m−2 for panel (d). Energy scale for the TF potentials
(in units of t) is on the right of panels (c) and (d).

on the basis of the lattice Hamiltonian Eq. (1) is shown
in Figs. 3(c) and 3(d) for, respectively, (2,0) and (2,1)
GBs. In this comparison the electron density n and the line
charge density λ in the TF potential [entering Eq. (4) as
phenomenological parameters] have been extracted from our
numerical calculations (see the caption to Fig. 3). The overall
agreement for the potential height and width between the TF
and the numerically exact potential is satisfactory. However,
the TF approach predicts a potential that is more narrow and
decays more rapidly in comparison to the exact one, especially
for the (2,0) GB. This can be related to a finite extent of
the wave function disregarded in the TF approach where a
state residing at a GB is treated as a charged line of a zero
width. Note that because of the finite width of the ribbon the
long-distance behavior of the exact self-consistent potential is
obscured by edge effects. This makes it difficult to provide a
quantitative comparison of its long-distance asymptotic to that
of the TF potential (4) which decays as VTF(x) ∝ (qTFx)−2.

It has been speculated in the literature that GBs can be used
as a one-dimensional quantum wire or a device component
to carry the current in bulk graphene.13,20,23 Our findings
suggest that these predictions might be too optimistic. Indeed,
GB states with a flat dispersion [such as (2,0) states] remain
metallic and pinned at EF even at finite gate voltages when
graphene is electrostatically doped by electrons. However, the
group velocity of such states is practically zero, which makes
these states hardly suitable for the transport of current. On the
other hand, states such as (2,1), when populated at finite gate
voltages, move below EF , thus losing their ability to carry
current.
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FIG. 4. (Color online) (c) The conductance of a graphene
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by arrows in panel (c)]. Ribbon’s width W = 10 nm; length L =
27 nm, which corresponds to 41 carbons in the transverse direction
and 63 unit cells in the longitudinal direction.

To study the effect of the GB on electron transport we
consider the (2,0) GB embedded in an armchair ribbon (see
Fig. 4). The conductance of an ideal ribbon shows quantized
steps corresponding to the opening of new transverse subbands
[Fig. 4(c)]. The conductance of a ribbon with the GB calculated
for noninteracting electrons shows an overall drop of ∼30%
in comparison to the ideal case, and it exhibits an oscillating
behavior resulting from electron interference within the GB.
Accounting for electron interaction results in a further drop
of the conductance (∼ 2

3 in comparison to the noninteracting
case). The smaller conductance of the GB for interacting
electrons in comparison to noninteracting ones is due to
enhanced backscattering from the electrostatic potential at
the GB caused by the electrons accumulated there [see the
LDOS in Figs. 4(a) and 4(b)]. It is interesting to note that the
Hartree approaches predict a somewhat larger transport gap in
comparison to the noninteracting case.

Let us finally explore spin polarization in the GBs. It has
been shown before that the (2,0) GB in neutral graphene is
spin polarized with the ferromagnetic ground state.16,17,21,22

Our calculations based on the Hamiltonian Eq. (3) show
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FIG. 5. (Color online) (a) The band structure, (b) the charge
density, and (c) the self-consistent potential calculated in the
Hubbard-Hartree approach for the (2,0) GB at eVg = 5t .

that this state remains fully spin-polarized in electrostatically
doped graphene at a finite Vg with the electron population
being completely dominated by species of the same spin;
see Fig. 5 for the spin-resolved band structure, the electron
density, and the potential of the (2,0) GB at eVg = 5t ,
[compare with the spin-degenerate band structure of the same
structure in Fig. 2(b)]. Due to the metallic character of the
flat state (2,0) which is partially filled at EF , the electron
density in this state can be easily redistributed. Hence, the
spin-up and spin-down states can have different densities
and thus experience different interactions due to the Hubbard
term. As a result, the spin-down state is pushed up by the
Hubbard interaction above EF and gets depopulated while
the spin-up state remains populated and pinned to EF . This
is similar to the spin polarization of compressible strips in
quantum wires and graphene nanoribbons in a high magnetic
field.29,33

For the case of the (2,1) GB, the corresponding state is
fully occupied even for small applied Vg , and therefore the
spin-up and spin-down electron densities are the same. As
a result, the potential felt by different spin species is the
same and the spin polarization for the (2,1) state is completely
suppressed.

IV. CONCLUSIONS

We demonstrated that electronic, transport, and spin prop-
erties of GBs are strongly modified in electrostatically doped
graphene at finite electron densities in comparison to a
conventional noninteracting electron picture. Our calculations
of the band structure and the conductivity were based on the
self-consistent Green’s function technique where electron in-
teractions were included by the Hartree potential (for spinless
electrons) and by the Hartree and Hubbard potentials (for the
spin-resolved case). Our main findings can be summarized as
follows.

(1) We demonstrated that the character of charge accumu-
lation is different for different GBs. In particular, the charge
density at the (2,0) GB grows linearly with an increase of the
gate voltage Vg . In contrast, the charge density at the (2,1)
GB stays practically constant, showing only a slow increase
following the increase of the overall electron density in the
ribbon as Vg grows. We analyzed in detail the band structure
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and related the above difference in the charge accumulation to
the different characters of the band dispersions and the DOS
of the states residing at the (2,0) and (2,1) GBs.

(2) We calculated the numerically exact self-consistent
potential using Hamiltonian Eq. (1) and showed that this
potential can be satisfactory approximated by the analytical
expression, Eq. (4), obtained within the semiclassical TF
approximation.

(3) We studied the effect of the GB on electron transport by
considering the (2,0) GB embedded in an armchair ribbon.
We demonstrated that accounting for electron interaction
results in a drop of the conductance (∼2/3 as compared
to the noninteracting case). We relate this to the enhanced
backscattering from the electrostatic potential at the GB caused
by the electrons accumulated there.

(4) In contrast to earlier speculations in the literature that
GBs can be used as one-dimensional quantum wires to carry
the current in bulk graphene, our findings suggest that these
predictions might be overoptimistic. Even though the (2,0)
GB state retains its metallic character even at finite electron
densities, its group velocity is practically zero, which makes
this state hardly suitable for the transport of current. As far as
the (2,1) GB state is concerned, when populated at finite gate
voltages it moves below EF , thus losing its ability to carry
current.

(5) For the spin-polarized case we found that in electrostati-
cally doped graphene at a finite Vg the state residing at the (2,0)
GB gets fully spin polarized with the electron population being
completely dominated by species of the same spin. In contrast,
(2,1) GB states remain spin degenerate. This difference is
traced to different characters of the band dispersions of these
states.
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APPENDIX: GEOMETRY RELAXATION AND
CALCULATIONS OF THE HOPPING INTEGRALS

We performed ab initio geometry relaxations based on the
density functional theory for the grain boundary defects using
the GAUSSIAN 09 software package.28 The relaxed geometries
calculated in this way are expected to be accurate since the
density functional theory has been well optimized for carrying
out the accurate ground-state total energy calculations.34 The
structures studied were graphene flakes of about a hundred of
carbon atoms passivated at the edges with hydrogen with the
grain boundaries being extended across the flake. The atoms
of the grain boundary as well as the nearest carbon atoms
were allowed to relax freely, while the other carbon atoms
were allowed to move normal to the defect line; the whole
geometry was kept planar. The relaxed structures obtained in
this way are shown in the insets in Fig. 6.

The tight-binding model Hamiltonian, Eq. (1), includes
modified hopping energies between the graphene carbon
atoms calculated from the relevant matrix elements within
the extended Hückel model. The extended Hückel theory
is formulated in terms of small basis sets of Slater-type
atomic orbitals {|φi〉}, their overlaps Sij = 〈φi |φj 〉, and the
Hamiltonian matrix Hij = 〈φi |H|φj 〉. The diagonal Hamilto-
nian elements Hii = Ei are chosen to be the experimentally
determined atomic orbital ionization energies Ei . In the
present work the nondiagonal elements are approximated as
in Ref. 35 by Hij = (1.75 + �2

ij − 0.75�4
ij )Sij (Ei + Ej )/2,

where �ij = (Ei − Ej )/(Ei + Ej ), a form chosen to reproduce
experimental molecular electronic structure data.35 In the
standard tight-binding Hamiltonian of pristine graphene, the
energy scale is chosen such that the carbon 2pz orbital energy is
zero, whereas in the extended Hückel theory35 the carbon 2pz

orbital energy is the ionization energy ECpz
= −11.4 eV. Ac-

cordingly, for consistency, in the extended Hückel Hamiltonian
matrix we make the replacement Hii → Hii − ECpz

. Because
the extended Hückel basis states on different atoms are not,
in general, mutually orthogonal, the nondiagonal extended
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FIG. 6. Relaxed atomic geometries with representative hopping energies in units of t for (2,0) and (2,1) GBs [panels (a) and (b), respectively].
All geometries are in-plane. Grain boundaries separate two crystalline domains rotated by different tilt angles θ = 0 and 10.9◦, panels (a) and
(b), respectively.
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Hückel Hamiltonian matrix elements are then also adjusted
according to

Hij → Hij − SijECpz
. (A1)

Finally we extract the nearest-neighbor Hamiltonian matrix
elements tij from Hii and incorporate them into the standard

π -band Hamiltonian, Eq. (1), used for the self-consistent
calculations. For consistency with the standard tight-binding
model of pristine graphene we scale the values of tij
obtained from the extended Hückel model as described in
Ref. 36. The inserts in Fig. 6 show the extracted hopping
energies tij .
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