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Magneto-optical conductivity of silicene and other buckled honeycomb lattices
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The magneto-optical longitudinal, transverse Hall, and circularly polarized responses of silicene and other
materials described by a Kane-Mele Hamiltonian are calculated. Particular attention is paid to the effects of an
external electric field and finite charge doping. The energy of interband transitions can be tuned by varying the
electric field. The onset frequency of the absorptive peaks moves differently between the topological insulator and
band insulator regimes. This may be used to verify experimentally the existence of the two insulating phases as
well as provide a measure of the spin-orbit band gap. The zeroth Landau level splits between four spin and valley
distinct energies resulting in valley-spin-polarized levels in the density of states. With charge doping, transitions
between these levels allow for a spin- and valley-polarized response in the conductivity whereby charge carriers
of specific spin and valley index can be isolated by tuning the incident photon frequency. Increasing the chemical
potential is shown to redistribute spectral weight from interband transitions to a strong low-energy intraband
response. For large chemical potential, this intraband feature is associated with the semiclassical cyclotron
resonance frequency which is shown to linearly increase with magnetic field.
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I. INTRODUCTION

Two-dimensional (2D) crystals continue to attract exper-
imental and theoretical attention as they remain a platform
for investigating novel physics in addition to showing great
promise for technological applications. While graphene, car-
bon atoms bonded together on a honeycomb lattice, was the
first experimentally available 2D crystal, recent experiments1–6

have been successful in synthesizing a monolayer of silicon
atoms, known as silicene, which bond on a similar lattice. This
similarity results from carbon and silicon residing in the same
column on the chemical periodic table. The larger ionic size of
silicon atoms, however, causes an sp3 hybridization in addition
to the sp2 hybridization found in carbon.7 This mixture of
hybridizations causes the 2D lattice of silicene to be buckled7–9

such that sites on the A and B sublattices sit in different vertical
planes with a separation of d ≈ 0.46 Å7,10 as illustrated in
Fig. 1. While, like graphene, the low-energy dynamics near
the two valleys K and K ′ of the hexagonal Brillouin zone are
well described by Dirac theory, the electrons are massive due
to a larger spin-orbit interaction.11 This results in an energy
gap in the band structure which is quoted as �so ≈ 1.55−
7.9 meV from density functional theory7–9 and tight-binding
calculations.9 As a result, it is argued that the Dirac nature of
the fermions makes a topological insulator (TI). It has been
predicted that the application of an external electric field Ez

will create an on-site potential difference (�z = Ezd) between
sublattices yielding a tunable band gap.7,10,12 The electric field
is also predicted to break the spin degeneracy at a given valley.
By varying the electric field such that �z becomes greater than
�so, silicene is predicted to transition between a TI and a band
insulator (BI).7,12 At the critical value �z = �so, the lowest
band gap at each valley closes forming a Dirac point. This is
referred to as a valley-spin-polarized metal (VSPM).13 These
exciting properties along with silicene’s compatibility with the
silicon-dominated electronic industry make silicene a promis-
ing candidate for technological purposes. Similar physics is
predicted for germanene, the monolayer of germanium.

An external magnetic field causes Landau levels to
form in the electronic density of states. Transitions be-
tween these discrete levels generate absorption lines in the
magneto-optical conductivity. For graphene, this has been
predicted theoretically14–16 and confirmed experimentally.17–24

Recently, this has also been explored in other Dirac-like
systems.25–28 Unlike graphene, where the n = 0 Landau level
is pinned at ε = 0,14–16,29–32 the stronger spin-orbit coupling
(SOC) in silicene causes the n = 0 level to split between
±�so/2 much like the case of gapped graphene14,15 which
exists in the BI regime. In the presence of an electric field, the
single-valley Landau levels are no longer spin degenerate and
the onset of interband transitions can be controlled by tuning
the electric field.

As there exist calculations on the zero magnetic field optical
conductivity of silicene33–35 and only preliminary work on
silicene in the presence of a magnetic field,26,36,37 we examine
the magneto-optical conductivity of silicene paying particular
attention to the effects of the insulating phase (TI or BI) on both
the real part of the longitudinal conductivity, the absorptive part
of the transverse Hall conductivity, and the response to circu-
larly polarized light. This work builds on the results presented
in Ref. 26 where a special case of valley-spin polarization
is explored. As Ref. 26 is specific to a particular regime of
charge doping and electric field, in this work, we examine the
effect of varying the chemical potential μ and on-site potential
difference. We consider both charge neutrality and the system
in the presence of a finite chemical potential; additionally,
particular attention is given to the case of �z = 0 which
represents the results of a 2D Kane-Mele topological insulator.
A variety of electric field strengths are considered to elucidate
signatures of the TI, BI, and VSPM phases. The semiclassical
cyclotron resonance frequency is also investigated. We also
rehearse the results for the valley-spin-polarized DOS and
circularly polarized light. These results can be generalized to
similar 2D crystals with sizable spin-orbit interactions such as
germanene (�so ≈ 24−93 meV).8,9
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FIG. 1. (Color online) Upper: The crystal structure of silicene is
based on the 2D honeycomb lattice. Due to the larger ionic size of
silicon atoms, the silicene lattice is buckled with A and B sublattices
sitting in vertically separated parallel planes. Lower: Side view of the
vertical buckling.

Our paper is organized as follows: In Sec. II we give a
theoretical background for silicene in a magnetic field. In
Sec. III we examine the electronic density of states. Section IV
contains results for the longitudinal magneto-optical conduc-
tivity. The circularly polarized response is presented in Sec. V.
Section VI features a discussion on the semiclassical cy-
clotron resonance frequency. Our conclusions can be found in
Sec. VII.

II. THEORY FOR SILICENE IN AN EXTERNAL
MAGNETIC FIELD

It has recently been shown that the low-energy physics of
silicene is well approximated by a simple nearest-neighbor
tight-binding Hamiltonian.9,12,13,38 Written about a single K

point, the effective low-energy Hamiltonian is7

Ĥ = v(ξpxτ̂x + pyτ̂y) − ξ 1
2�soσzτz + 1

2�zτz, (1)

where τi and σi are the Pauli matrices associated with the pseu-
dospin and real spin of the system, respectively. ξ is the valley
index for the two inequivalent K points and can take the
values of ±1 for the K and K ′ points, respectively. v ≈ 5 ×
105 m/s is the Fermi velocity and px and py are components
of the momentum measured relative to the K points. The first
term is the usual low-energy graphene-like Hamiltonian39,40

for describing massless Dirac fermions. The second term is
of the Kane-Mele type41 for intrinsic spin-orbit coupling with
a spin-orbit band gap of �so. The final term is associated
with the aforementioned sublattice potential difference due
to the application of an external electric field.7,12,13,38 In
Ref. 13, a Rashba SOC is also included; however, it is typically
neglected13 as it is an order of 10 smaller in magnitude than
�so. Ignoring the Rashba term, the full 8 × 8 matrix spanning
the two K points is block diagonal in 2 × 2 matrices labeled
by valley (ξ = ±1) and spin (σ = ±1 for up and down spin,
respectively). These 2 × 2 matrices are

Ĥξσ =
(− 1

2σξ�so + 1
2�z v(ξpx − ipy)

v(ξpx + ipy) 1
2σξ�so − 1

2�z

)
. (2)

FIG. 2. (Color online) Schematic representation of the band
structure evolution at the K point as the perpendicular electric field
strength is increased. The dashed blue curves represent spin-up bands
and the solid red curves represent spin-down bands. A finite electric
field spin splits the bands and the system transitions from a TI to a BI
as �z becomes greater than �so. When �z = �so, the lowest band
gap closes and the system is referred to as a VSPM.

Solving Eq. (2) gives the low-energy eigenvalues

εξσ = ±
√

h̄2v2k2 + �2
ξσ , (3)

where �ξσ = − 1
2σξ�so + 1

2�z. A schematic plot of the band
structure evolution about the K point for increased �z is shown
in Fig. 2. At the K ′ point, the spin labels switch. When �z =
0, all energy bands are spin degenerate and separated by an
insulating gap of �so. As the electric field is increased such that
�z < �so, the system remains a TI but the bands are spin split.
The system is now characterized by two energy gaps (|�K↑|
and |�K↓|). In the TI regime, the lowest gap decreases with
increased �z while the second gap increases. When �z = �so,
the lowest band gap closes. As �z is increased further, the
system transitions into the BI regime and the lowest energy gap
reopens, although a band inversion has occurred12 associated
with a change in pseudospin label of the two lowest gapped
bands. In this regime, both gaps increase with increased �z.
The evolution of the band structure plays an important role in
the magneto-optics of silicene.

Now, consider the effect of an external magnetic field of
strength B which, by choice, is oriented in the z direction.
Working in the Landau gauge, the vector potential A = ∇ × B
is written as A = (−By,0,0). The magnetic field changes the
momentum operators by the usual Peierls substitution

p̂i → p̂i + q

c
Âi, (4)

where q = e is the elementary charge and c is the speed of
light. Therefore, the low-energy Hamiltonian becomes

Ĥσξ=
( − 1

2σξ�so + 1
2�z v

[
ξ
(
px − e

c
By

) − ipy

]
v
[
ξ
(
px − e

c
By

) + ipy

]
1
2σξ�so − 1

2�z

)
.

(5)

Solving the simple eigenvalue equation Ĥψ = εψ , where
ψT = (φA,φB) is the wave function with components asso-
ciated with the A and B sublattices, gives the Landau level
spectrum

εn = sgn(n)

√
�2

ξσ + 2|n|v2
h̄eB

c
, (6)
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FIG. 3. (Color online) Schematic representation of the Landau
level formation in the TI regime about the K and K ′ points (upper
and lower panels, respectively). The blue bands shown to the left
are spin up while the red bands seen in the middle are spin down.
These bands are associated with no magnetic field and are separated
for clarity. The Landau levels are shown to the right and are not
spin degenerate at a given valley. All but the n = 0 levels have an
equal-energy counterpart of opposite spin label at the other valley. The
Fermi energy at charge neutrality (i.e., chemical potential μ = 0) is
given by the dashed green line. The two lowest energy interband
transitions are given by the black arrows.

where n = 0,±1,±2, . . . is the Landau level index. A
schematic representation of the Landau level formation for
finite �z < �so at the K and K ′ points is shown in the
upper and lower panels of Fig. 3, respectively. The blue bands
represent spin up while the red bands are spin down. The same
color scheme applies for the Landau levels shown to the right.
The spin bands shown on the left and middle for B = 0 are
separated for clarity. For finite �z, the Landau levels at a given
valley are spin split; however, in the total system, all but the
n = 0 levels are spin-degenerate.

In principle, there is also a Zeeman interaction which shifts
the Landau levels by energy εz ≈ 2μBB with μB ≈ 5.78 ×
10−2 meV/T the Bohr magneton. For a magnetic field of
1 T, this effect shifts the spin levels by εz ≈ 0.1 meV and
it is therefore ignored12,13,26,38,42 as it will have a negligible
effect on the conductivity.

The n = 0 Landau level must be treated carefully and is
given by ε0 = −ξ�ξσ . The zeroth Landau level undergoes

FIG. 4. (Color online) Schematic representation of the Landau
levels in the TI (upper panel) and BI (lower panel) regimes about
the K and K ′ points. Again, blue and red signify spin up and down,
respectively. While the relative position of the n �= 0 levels remain
the same, the n = 0 level undergoes an important transition due to the
band inversion. That is, the n = 0 spin-up level at the K point switches
between positive and negative energy while the n = 0 spin-down level
switches between negative and positive energy at the K ′ point.

an important transition between the TI (�z < �so) and BI
(�z > �so) regimes which are shown in the upper and lower
panels of Fig. 4, respectively. Given the expressions for �ξσ

and ε0, it is evident that in the TI regime, the n = 0 spin-up
Landau levels are at positive energy while the n = 0 spin-down
levels are at negative energy; refer to the upper panel of Fig. 4.
μ = 0 represents the location of zero energy. In the BI regime,
�z is greater than �so resulting in a change in sign of �K↑ and
�K ′↓ [and, therefore, ε0(�K↑) and ε0(�K ′↓)]. Thus, the n = 0
spin-up level at the K point and the n = 0 spin-down level
at K ′ switch sign. This is a signature of the aforementioned
band inversion associated with the transition between the TI
and BI regimes. In the VSPM state (not shown) the n = 0
spin-up (spin-down) level at the K (K ′) point sits at zero
energy.

A plot of the Landau level evolution with varying magnetic
field for �z = 0.5�so is shown in Fig. 5. Similar to graphene,
the n �= 0 levels scale as

√
B. Unlike graphene, the n = 0 level

is not pinned at zero energy. The four spin- and valley-split
n = 0 levels do not scale with the magnetic field but are only
controlled through the spin-orbit interaction and perpendicular
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FIG. 5. (Color online) Landau level energies as a function of
magnetic field for �z = 0.5�so. All n �= 0 levels scale as

√
B while

the location of the n = 0 levels are fixed by the strength of �so and
�z. The left panel shows low magnetic field results while the right
panel illustrates the evolution over a large magnetic field range (note
the factor of 103).

electric field. The separation between n = 0 levels at different
valleys is adjusted by tuning the electric field; however,
the separation between n = 0 levels at the same valley is
fixed at �so. For low magnetic field (left panel), two of
the n = 0 levels are higher in energy than several higher
numbered levels. This behavior becomes important in the
magneto-optical conductivity when trying to tune the onset
of interband transitions.

The wave function solutions to the eigenvalue equation are
required when calculating the magneto-optical conductivity
tensor. Using Eq. (5), the eigenvectors are found to be

|n̄〉K =
(−iAn||n| − 1〉

Bn||n|〉
)

(7)

and

|n̄〉K ′ =
( −iAn||n|〉

Bn||n| − 1〉
)

, (8)

where ||n|〉 is an orthonormal Fock state of the harmonic
oscillator and

An =

⎧⎪⎪⎨
⎪⎪⎩

sgn(n)
√|εn| + sgn(n)�ξσ√

2|εn|
, n �= 0,

1 − ξ

2
, n = 0,

(9)

and

Bn =

⎧⎪⎪⎨
⎪⎪⎩

√|εn| − sgn(n)�ξσ√
2|εn|

, n �= 0,

1 + ξ

2
, n = 0.

(10)

These wave functions and corresponding eigenenergies reduce
to those of gapped graphene14,15,43 with the substitution
�ξσ → �, placing the system in the BI regime.

With the wave functions and energy dispersion, the
magneto-optical conductivity is found through the Kubo
formula44 in the usual way,25,26

σαβ(�) = ieB

2πc

∑
σ=±1

∑
ξ=±1

∑
nm

fm − fn

εn − εm

〈m̄|ĵα|n̄〉〈n̄|ĵβ |m̄〉
h̄� + εm − εn + iη

,

(11)

where fm = 1/{1 + exp[β(εm − μ)]} is the Fermi distribution
function with β = 1/(kBT ), εm is the energy of the mth Landau
level, ĵα = evτ̂α is the current operator with τα (α = x,y) the
usual Pauli matrices, and n,m index over all Landau level sites.
Here, η will represent a phenomenological transport scattering
rate taken to be constant. The familiar selection rules14,15,25

|n| = |m| ± 1 for Landau level transitions are found through
an evaluation of the matrix elements. In the zero-temperature
limit, the Fermi functions can be replaced by step functions.
In what follows, we assume a positive value of μ and drop
the absolute value signs on n as we assume all transitions to
negative Landau levels are Pauli blocked. This can easily be
adjusted by including |n| in the Kronecker δ functions of the
conductivity formulas. Therefore, the real and imaginary parts
of the zero-temperature longitudinal (xx) magneto-optical
conductivity are26

Reσxx(�)

σ0
= 2v2h̄eB

πc

∑
σ=±1

∑
ξ=±1

∑
n,m

�(μ − εm) − �(μ − εn)

εn − εm

[(AmBn)2δn,|m|−ξ + (BmAn)2δn,|m|+ξ ]
η

η2 + (h̄� + εm − εn)2

(12)

and

Imσxx(�)

σ0
= 2v2h̄eB

πc

∑
σ=±1

∑
ξ=±1

∑
n,m

�(μ − εm) − �(μ − εn)

εn − εm

[(AmBn)2δn,|m|−ξ + (BmAn)2δn,|m|+ξ ]
h̄� + εm − εn

η2 + (h̄� + εm − εn)2
,

(13)

respectively, where σ0 = e2/(4h̄) and �(x) is the Heaviside step function which enforces the Pauli exclusion principle for optical
transitions; i.e., transitions can only occur between an occupied (m) and an unoccupied (n) state. The corresponding equations
for the real and imaginary parts of the transverse Hall conductivity are26

Reσxy(�)

σ0
= −2v2h̄eB

πc

∑
σ=±1

∑
ξ=±1

∑
n,m

ξ
�(μ − εm) − �(μ − εn)

εn − εm

[(AmBn)2δn,|m|−ξ − (BmAn)2δn,|m|+ξ ]
h̄� + εm − εn

η2 + (h̄� + εm − εn)2

(14)
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and

Imσxy(�)

σ0
= 2v2h̄eB

πc

∑
σ=±1

∑
ξ=±1

∑
n,m

ξ
�(μ − εm) − �(μ − εn)

εn − εm

[(AmBn)2δn,|m|−ξ − (BmAn)2δn,|m|+ξ ]
η

η2 + (h̄� + εm − εn)2
,

(15)

respectively. Note that Reσxx(�) and Imσxy(�) correspond to
the absorptive parts of the longitudinal and transverse Hall
conductivities, respectively, which means that the absorption
peaks shown here will appear as dips in the experimentally
measured transmission.22

III. DENSITY OF STATES

The low-energy density of states for silicene in a magnetic
field is calculated by the relation

N (ω) = eB

2πh̄c

∑
σ=±1

∑
ξ=±1

∞∑
n=−∞

δ(ω − εn). (16)

Using the Lorentzian representation of the δ function, δ(x) →
(η/π )/(η2 + x2), the density of states can be evaluated.26 A

FIG. 6. (Color online) Upper: Total electronic density of states
for silicene in a magnetic field in units of45 eB/(2πh̄c�so). Lower:
Spin-dependent density of states in the TI (left) and BI (right) regimes
for �z = 0.75�so and 1.25�so, respectively. Dashed blue curves
correspond to spin up and the solid red curves correspond to spin
down. The levels associated with n = 0 are spin- and valley-polarized
while all higher features are spin-valley degenerate and of double
intensity.

plot of the total electronic density of states is shown in the
upper panel of Fig. 6. The spin-dependent density of states
is shown in the lower two panels for the TI (left) and BI
(right) regimes for �z = 0.75�so and 1.25�so, respectively.
In all cases, B/�2

so = 65.7 G/meV2 and a scattering rate of
η = 0.05�so has been used. Four spin- and valley-polarized
levels are located at ω = −�K↓, �K ′↓, −�K↑, and �K ′↑
corresponding to the four n = 0 Landau levels. The two
lower panels illustrate the shift in two of the n = 0 Landau
levels that results from the band inversion associated with
the transition from the TI to BI regime. While the n = 0
levels are spin- and valley-polarized, all higher features are
spin- and valley-degenerate. Thus, all n �= 0 levels are of
double weight. As Landau levels in graphene have been
detected experimentally,46–48 the four low-energy spin- and
valley-polarized levels in silicene should be observed by
scanning tunneling spectroscopy.

IV. RESULTS FOR THE MAGNETO-OPTICAL
CONDUCTIVITY

An evaluation of Eq. (12) for the absorptive part of the
longitudinal magneto-optical conductivity is shown in Fig. 7
for varying �z at charge neutrality (μ = 0). In reference to
the forthcoming discussion, an interband transition refers to
a transition between Landau levels which arise from different
B = 0 bands. Likewise, an intraband transition is one between
levels from the same B = 0 band. For �z = 0 (lowest purple
curve) there are strong absorptive responses associated with
interband transitions subject to the selection rules. The energy
of the first feature is set by the difference in energy of the
n = 0 and 1 Landau levels; that is, � = �so + ε1(�z = 0).
As �z is increased, each interband feature splits in two as a
result of all Landau levels becoming spin split. The intensity of
the peaks is reduced due to a redistribution of spectral weight
between the features. The lowest of the split peaks, moves
to lower energy as �z is increased which is a signature of
the closing of the lowest band gap of the B = 0 bands. The
second split peak moves higher in energy due to the second
band gap increasing. When �z = �so, the first feature is set by
� = ε1(�K↑), or equivalently, � = ε1(�K ′↓). As the system
transitions through the VSPM state into the BI regime, all
interband features move to higher energy due to the lowest gap
reopening. The variation in interband onset is a signature of the
two insulating regimes and should allow for an experimental
verification of their existence.

The effect of varying the chemical potential when �z = 0
is shown in Fig. 8. This case represents the results of the Kane-
Mele Hamiltonian for a quantum spin Hall insulator and 2D
topological insulator. As �z = 0 corresponds to a topological
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FIG. 7. (Color online) Real part of the zero-temperature longi-
tudinal magneto-optical conductivity of silicene for varying electric
field strength in a magnetic field of strength B/�2

so = 65.7 G/meV2

with a scattering rate of η = 0.05�so and μ = 0. The behavior of the
interband responses is a signature of the two insulating regimes. The
results are vertically offset by 15 units.

FIG. 8. (Color online) Real part of the zero-temperature lon-
gitudinal conductivity of silicene (�z = 0) for varying chemical
potential in a magnetic field of strength B/�2

so = 65.7 G/meV2 with
a scattering rate of η = 0.05�so. With increased μ, the spectral weight
of interband transitions is redistributed to a single intraband feature.
The two red arrows mark the spin polarization of the two lowest
features of the dashed red curve. These results correspond to the
Kane-Mele model for a 2D quantum spin Hall insulator.

insulator (two spin-split n = 0 Landau levels at each valley),
these results differ from those shown in Refs. 14 and 15 for
graphene with an asymmetry gap as that system is a band
insulator (one spin-degenerate n = 0 Landau level per valley).
This difference affects the spin and valley contributions to
the low-energy features; however, the qualitative results of
Refs. 14 and 15 are retained. Including a finite chemical po-
tential such that the Fermi energy lies between all the n = 0 and
1 Landau levels (dashed red curve) causes the lowest interband
feature of the μ = 0 system (solid black curve) to decrease in
intensity by a factor of two as half the spectral weight is shifted
to a low-energy intraband peak.14,15 However, as opposed to
Ref. 15, where the two lowest peaks are valley polarized, here
the two lowest (red) features are spin polarized as marked by
the red arrows. When μ is situated between the n = 1 and
2 levels (dash-dotted blue curve), the interband absorption
peak associated with transitions to and from the n = 0 levels
disappears due to Pauli blocking. The spectral weight of the
next highest response is diminished as interband transitions to
the n = 1 level are Pauli blocked. With higher μ, a similar
redistribution of interband to intraband spectral weight is
observed. The low-energy intraband signature moves to lower
energy as a result of the

√
n spacing between Landau levels

which causes adjacent levels to be closer together at higher
energy.

The effect of varying the chemical potential for finite �z is
shown in Figs. 9(a)–9(c) for the TI (�z/�so = 0.75), VSPM
(�z/�so = 1), and BI (�z/�so = 1.25) regimes, respectively.
A finite �z spin splits the Landau levels which allows for
a much richer structure in the magneto-optical conductivity.
Similar to the case of �z = 0, moving the Fermi energy causes
a redistribution of spectral weight from interband to intraband
responses. The low-energy transitions which yield the results
of Fig. 9(a) are marked by arrows in Fig. 10. The Landau
levels at each valley are represented by circles colored blue
and red for spin up and down, respectively. Horizontal lines are
drawn between the two valleys to signify the total Landau level
contribution in the system. These lines are dashed blue, solid
red, and dashed-dotted purple lines for spin-up, spin-down,
and spin-degenerate levels, respectively. The Landau level
index is marked on the far right and the various values of
chemical potential are given by the solid cyan line. The
lowest energy transitions for each value of chemical potential
are represented by colored arrows where transitions are only
permitted between like spin states. The arrows are ordered by
increasing length such that a change in length corresponds to a
new absorption feature in the conductivity. Thus, in reference
to Fig. 9(a), the first peak of the solid black curve is associated
with the first two black arrows in Fig. 10, and the second,
third, and fourth features are likewise represented by the
second, third, and fourth pairs of black arrows, respectively.
For the dashed red curve, the first red arrow yields the first
feature while the second arrow gives rise to the second peak.
The next absorption line results from the next two arrows
while the remaining pairs of arrows yield the final two features,
respectively. With respect to the dash-dotted blue curve, the
first four blue arrows result in the first four peaks, respectively,
while the next two features come from the reaming two pairs
of arrows. The strong low-energy signature of the solid green
curve comes from the first two arrows with the two higher
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FIG. 9. (Color online) Real part of the zero-temperature longi-
tudinal conductivity of silicene for varying chemical potential for
B/�2

so = 65.7 G/meV2 and η = 0.05�so in the (a) TI, (b) VSPM,
and (c) BI regimes. Four spin- and valley-polarized responses can
be generated. The results are vertically offset by (a) 10 units, (b) 16
units, and (c) 9 units.

energy peaks being represented by the remaining pairs of
arrows, respectively.

FIG. 10. (Color online) Schematic of the allowed transitions
between Landau levels at both valleys in the TI regime for various
values of chemical potential. Dashed blue lines and circles represent
spin-up levels, solid red lines and circles represent spin-down levels,
and dash-dotted purple lines represent spin-degenerate levels. The
various chemical potential values used in Fig. 9(a) are marked by the
solid cyan line.

Returning to Fig. 9(a), when μ is placed between the n = 0
spin-up levels at the K and K ′ points (dashed red curve)
such that it is above three n = 0 levels, i.e., |�K↑| < μ <

|�K ′↑|, the lowest interband feature redistributes its spectral
weight between itself and a low-energy intraband peak. These
intraband transitions result entirely from spin-up electrons
at the K point while the remaining interband response is
associated entirely with spin-down electrons at K ′. If μ is
now situated between all the n = 0 and 1 Landau levels,
i.e., |�K ′↑| < μ < ε1(�K↑), the second interband feature
redistributes its spectral weight into a lower energy intraband
signature. These intraband transitions result entirely from
spin-up electrons at K ′ and the remaining interband transitions
are associated with spin down at K . The other two spin-
and valley-polarized responses remain and, for this doping,
there are four robust spin- and valley-polarized peaks making
it possible to generate charge carriers of definite spin and
valley label.26 The two lowest features are associated with
intraband transitions while the upper two result from interband
transitions. The spin- and valley-polarized responses onset
at � = ε1(�K ′↑) − �K ′↑, ε1(�K ′↓) − �K ′↓, ε1(�K↑) − �K↑,
and ε1(�K↓) − �K↓ for spin up and down at K ′ and spin up
and down at K , respectively. While valley-spin polarization
is predicted in the response to circularly polarized light,33,38

it is limited to only two pure spin-valley-polarized species
which can only be selected by changing the insulating
regime or handedness of the polarized light.33,49 Here, robust
valley-spin polarization is present in both insulating regimes
even in the longitudinal response26 allowing any spin-valley-
polarized response to be isolated by tuning the incident photon
frequency. A more detailed discussion is found in Ref. 26. As
μ is increased further, only one intraband signature remains
which is associated with the semiclassical cyclotron resonance
frequency (see Sec. VI). The spectral weight of this feature
increases with increasing μ.

In the VSPM phase [Fig. 9(b)] the potential for four spin-
and valley-polarized responses is no longer present as two
of the n = 0 Landau levels are now at zero energy due to the
closing of the lowest gap of the B = 0 bands. The conductivity
curves look similar to the results for the TI regime; however,
when the chemical potential is placed between all the n = 0
and 1 Landau levels (dash-dotted blue curve), there are only
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two valley-spin-polarized responses. For this value of chemical
potential, the lowest feature of the μ = 0 system remains
and is made of an equal mixture of spin and valley species.
This absorption signature is associated equally with interband
and intraband transitions. By examining the Landau levels
which contribute to the degenerate n = 0 level (see the upper
panel of Fig. 4) it is apparent that the spin-up contribution is
associated with an intraband transition while the spin down
piece results from an interband transition. This is similar to
the behavior of the n = 0 Landau level in graphene.14 Again,
there is a spectral weight redistribution to a strong intraband
response for increased μ. A double-peak feature is present in
the strong intraband response as seen by the lowest feature
in the solid green curves of Fig. 9. This results from the
Landau levels being spin split and thus intraband transitions
between different spin levels at a given valley are not of equal
energy. The separation between the double peaks decreases as
μ increases.

The conductivity in the BI regime [see Fig. 9(c)] is
analogous to that of the TI regime; however, in this case,
the spin and valley labels of the two middle spin- and
valley-polarized responses switch due to the band inversion.
While the relative onset inverts, the separation between the
two middle peaks always remains at 2|�K↑| for �z �= 0 and,
thus, decreases with increasing Ez in the TI regime until the
polarization is lost in the VSPM state. The separation then
increases with increasing Ez in the BI regime; however, the
spin and valley labels switch. Aside from the four spin- and
valley-polarized peaks, all other transitions are made of an
equal spin and valley mixture.

The onset frequency of transitions is determined by the
energy difference between Landau levels and is therefore
controlled by the magnetic and electric fields. The other
determining factor is the strength of the spin-orbit gap. Thus,
a careful tuning of B and Ez should allow for a determination
of �so.

The absorptive part of the transverse Hall conductivity
is found by an evaluation of Eq. (15). The results of �z =
0.75�so for varying chemical potential are shown in Fig. 11.
The values shown here correspond to those in Fig. 9(a)
for Reσxx(�). Imσxy(�) is related to the negative of the
longitudinal response. However, not all the features in the
longitudinal conductivity have counterparts in the transverse
Hall conductivity; indeed, the only features that are present in
Imσxy(�) result from transitions between n and |n| ± 1 when
the transition from n ± 1 to |n| is Pauli blocked. Thus, the
absorptive part of the transverse Hall conductivity contains
a maximum of four features. For example, when μ = 0,
Imσxy(�) is zero for all � as no transitions meet the criteria
for a finite Hall response. When μ = 0.4�so, the only finite
Hall response is due to transitions between the spin-up n = 0
and 1 Landau levels at the K point and n = 0 and 1 spin-down
levels at K ′ as the equal energy transitions from n = −1 to
0 spin-down levels at K ′ and n = −1 to 0 spin-up levels
at K are Pauli blocked (refer to Fig. 10). For μ = 1.1�so,
four transitions meet the criteria for a finite response and,
hence, four features are present in the conductivity. Identically
to Reσxx(�), four valley-spin-polarized absorption lines can
be observed. This can be understood by examining Eq. (15)
with particular attention to the minus sign between the two

FIG. 11. (Color online) Imaginary part of the zero-temperature
transverse Hall conductivity of silicene for varying chemical potential
for B/�2

so = 65.7 G/meV2, η = 0.05�so, and �z = 0.75�so. These
results correspond to those in Fig. 9(a) and are vertically offset by
10 units.

Kronecker δ-function terms. The negative sign results in a
zero contribution when the two prefactors are the same. The
transverse Hall results become important when considering
circularly polarized light.

FIG. 12. (Color online) The absorptive part of the conductivity
response to (a) right-handed and (b) left-handed circularly polarized
light. In the response to right-handed polarization, the quartet of peaks
that meet the criteria for a finite transverse Hall response are of double
weight; they are absent in the response to left-handed polarization.
All higher features look identical to the longitudinal response.
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V. RESULTS FOR CIRCULARLY POLARIZED LIGHT

In the circularly polarization basis, the conductivity is given
by σxx(�) ± iσxy(�) for right-handed (+) and left-handed
(−) polarization.16 The absorptive part of the conductivity is
therefore

Reσ±(�) = Reσxx(�) ∓ Imσxy(�). (17)

This is easily evaluated with Eqs. (12) and (15). The con-
ductivities for right- and left-handed polarization are shown
in Figs. 12(a) and 12(b), respectively. Here, �z/�so = 0.5,
B/�2

so = 657 G/meV2, and μ/�so = 3.0 such that the Fermi
energy lies between the n = 0 and 1 Landau levels. These val-
ues yield the four aforementioned spin- and valley-polarized
responses. A larger magnetic field has been used for a clearer
separation of features. As it is only the quartet of polarized
peaks that meets the criteria for a nonzero transverse Hall
response, they double in spectral weight for the right-handed
response and are not present for left-handed polarization. In

FIG. 13. (Color online) (a) The onset of the strong intraband
absorption peak for various magnetic fields. (b) A comparison of the
actual cyclotron resonance frequency (red circles) found by the onset
frequencies in (a) with Eq. (19) (solid black line). The parameters
used are μ/�so = 100, �z = 0, and η/�so = 0.05.

all cases, the higher energy features look identical to those of
the longitudinal response.26

VI. SEMICLASSICAL CYCLOTRON RESONANCE

The semiclassical limit occurs when the Landau level
spacing becomes inconsequential.16,50 This occurs for a large
chemical potential, μ  ε1. Consider μ between the N th and
(N + 1)th Landau levels for N  1. Due to the

√
n spacing

of levels, the frequency of the intraband transition, given by
δε ≡ εN+1 − εN , can be approximated as

δε ≈ v2h̄eB/c√
�2

ξσ + 2Nv2h̄eB/c
. (18)

Noting that μ ≈ εN , we obtain

δε ≈ v2h̄eB

μc
≡ ωcr, (19)

which is the semiclassical cyclotron resonance
frequency.16,50–52

The cyclotron resonance frequency is also found by exam-
ining the onset frequency of the strong intraband absorption
peak for large chemical potential. Several representative
examples are shown in Fig. 13(a). In Fig. 13(b), the location
of these peaks is compared to the linear formula given by
Eq. (19); excellent agreement is found. The parameters used
are μ/�so = 100 and �z = 0. While the results are general
for all �so, a value of 3.9 meV was used so that the magnetic
fields in Fig. 13(a) can be quoted in teslas. As this is only valid
in the high-μ regime, the value of �z becomes inconsequential
and the graphene results of Refs. 16, 51, and 52 are obtained.

VII. CONCLUSIONS

Using an effective low-energy Hamiltonian, the magneto-
optical conductivity of silicene is computed. The effects of
varying the chemical potential and perpendicular electric field
are examined. Particular attention is given to the different
insulating phases of the system (topological or band insulator).
Indeed, it is found that the band gap behavior of the B = 0
system is a determining factor in the onset and behavior of
transitions in the magneto-optics. That is, in the topological
insulator regime, the strong interband signatures of the �z = 0
case split into two with both moving in opposite directions
for increased electric field. As the system transitions into
the BI regime, all features move higher in energy. These
signatures should allow for a confirmation and identification
of the two insulating regimes as well as provide a measure for
�so. With varying chemical potential, a strong spectral weight
redistribution is observed with the onset of strong intraband
transitions. By tuning the chemical potential for finite �z, four
spin- and valley-polarized responses can be obtained.26 Similar
results are found in the response to circularly polarized light;
however, the polarized quartet of absorption peaks is only
present in the response to one type of circular polarization.
The onset energies of all features can be tuned by both the
magnetic and electric fields. The ability to produce spin- and
valley-polarized charge carriers is of potential interest to spin-
and valleytronic technologies. The semiclassical cyclotron
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resonance frequency is also obtained and is shown to be well
approximated by a linear dependence on magnetic field. As
silicene samples become more available, we believe this work
will help guide the development of experimental literature on
2D crystals with sizable spin-orbit interactions.
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