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We introduce an atomistic approach to the dissipative quantum dynamics of charged or neutral excitations

propagating through macromolecular systems. Using the Feynman-Vernon path integral formalism, we
analytically trace out from the density matrix the atomic coordinates and the heat bath degrees of freedom.
This way we obtain an effective field theory which describes the real-time evolution of the quantum excitation
and is fully consistent with the fluctuation-dissipation relation. The main advantage of the field-theoretic approach
is that it allows us to avoid using the Keldysh contour formulation. This simplification makes it straightforward
to derive Feynman diagrams to analytically compute the effects of the interaction of the propagating quantum
excitation with the heat bath and with the molecular atomic vibrations. For illustration purposes, we apply this
formalism to investigate the loss of quantum coherence of holes propagating through a poly(3-alkylthiophene)

polymer.
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I. INTRODUCTION

The investigation of the real-time dynamics of charged and
neutral quantum excitations propagating through macromolec-
ular systems is receiving growing attention due to its poten-
tially countless implications in nanoscale (opto)electronics and
in biophysics. For example, the study of electric conduction
through inorganic,' organic,% and biological '>~'? polymeric
systems and aggregates is motivated by the perspective of
realizing nanoscale or even single-molecule'? transistors. In
addition, the recent experimental observation of coherent ex-
citon transport in photosynthetic protein-pigment complexes'?
has triggered a huge amount of activity aimed at clarifying the
interplay between quantum coherence, transfer efficiency, and
environment-driven noise.'*!”

Quantum transport processes in biomolecules and organic
materials have been extensively discussed in the framework of
phenomenological models in which the dynamics of the quan-
tum excitation is described at the level of a one-body Hamilto-
nian, while the fluctuation-dissipation generated by the molec-
ular vibrations and by the heat bath are collectively represented
by some effective bosonic fields (see, e.g., Refs. 11,14,17 and
references therein). The frequency spectrum of these bosons
is modeled phenomenologically, encoding information gained
from MD simulations and experiment. These effective models
provide computationally efficient tools to study the global
and general mechanisms which underlie the long-range charge
transport in macromolecules and investigate decoherence and
recoherence phenomena.

In order to establish a more direct connection between
the quantum transport dynamics and the specific physico-
chemical properties of the molecule under consideration, an
alternative approach”!"'® has been developed in which the
atomic coordinates are treated explicitly and are evolved
in time using a classical MD algorithm. The parameters
of the effective tight-binding Hamiltonian are derived from
the electronic structure, hence depend on the instantaneous
molecular configuration. They are evaluated at periodic time
intervals, within the Born-Oppenheimer approximation, e.g.,
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in the DFT-TB scheme, while the current flowing through the
system is estimated in Landauer theory. This method neglects
the effect of the coupling between the quantum excitation
and the atomic nuclei on the molecular dynamics. In addition,
the charge is assumed to propagate instantaneously across the
system. In general, the validity of these assumptions may be
questionable whenever the quantum transfer dynamics and the
molecular dynamics occur at comparable time scales.

A theoretical framework which takes into account of all the
correlations between the quantum excitation dynamics and the
molecular dynamics is the so-called nonequilibrium Green’s
function (NEGF) method (see, e.g., Ref. 19 and references
therein). This formalism was introduced to describe electric
conduction across molecular wires and has been extensively
applied to systems consisting of a few hundreds of atoms.
In the NEGF approach, the interaction with the metallic
leads and with phonons is treated at the quantum level, since
the method is often used to investigate conduction at very
low temperatures. The real-time dynamics of the system is
described in the Keldysh formalism by a Dyson equation
containing different types of Green’s functions, correspond-
ing to different segments of the Keldysh contour. Unfortu-
nately, this feature makes the approach quite cumbersome
and computationally demanding, hence hardly applicable
to large molecular systems, such as DNA or of conjugate
polymers.

Fortunately, when investigating the transport of electric
charge or neutral quantum excitations across macromolecules
at room temperature, a quantum description of the molecular
vibrations is not really mandatory, as it is demonstrated by the
success of classical molecular dynamics (MD) simulations.
On the other hand, in these studies it is important to take
into account the fluctuation and dissipation generated by the
solvent (in biomolecules) or by neighboring molecules (in
organic frameworks). The NEGF approach does not exploit
the possibility of taking the classical limit for the molecular
vibrations and does not explicitly account for the fluctuation-
dissipation effects induced by the heat bath.
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In the present paper, we develop a formalism to describe
quantum transport in macromolecular systems at room tem-
perature, in which we exploit the possibility of treating the
molecular vibrations at the classical level. In analogy with the
NEGF method, the equations of motions for the entire system
are not postulated phenomenologically, but rather rigorously
derived from the reduced density matrix of the system. This
way, one retains in a consistent way the relevant couplings
between the molecular, heat bath, and quantum charge degrees
of freedom.

The computational efficiency of our approach is enhanced
by the fact that we are able to analytically integrate out the
vibronic and heat bath dynamics and obtain a simpler (but
rigorous) effective theory, which is formulated solely in terms
of the quantum excitation degrees of freedom. In this theory,
fluctuation-dissipation effects and thermal oscillations of the
molecule are taken into account through effective interaction
terms, which are derived from first principles. The information
about the configuration-dependent electronic structure of the
molecule is implicitly encoded in the parameters which appear
in the effective theory. These are determined once and for all
by means of quantum-chemistry calculations.

A second important feature of our theory is that it
allows us to strongly simplify the formalism to describe
the nonequilibrium dissipative dynamics. Indeed, our final
path integral representation of the density matrix is formally
equivalent to that of a vacuum-to-vacuum Green’s function
in a zero-temperature quantum field theory. In particular, the
time variable in the action functionals is integrated along
the real axis, and not along the Keldysh contour, like in
the NEGF approach. The formal connection with quantum
field theory in vacuum makes it straightforward to derive
Feynman diagrams to perturbatively compute the effects of
the dissipative coupling between the propagating quantum
excitation, the heat bath, and atomic degrees of freedom. These
corrections are obtained analytically, i.e., without any need to
average over many independent MD trajectories.

As a first illustrative application of this formalism, we de-
velop a simple model to describe intrachain charge propagation
in a poly(3-alkyothiophene) (P3HT). First, all the couplings
in the effective theory are derived from quantum-chemistry
calculations, at the DFT-TB level. Next, the leading-order
perturbative corrections to the evolution of the charge density
distribution are obtained by computing a few Feynman dia-
grams. The results are then compared with those obtained by
solving numerically the coupled quantum/stochastic equations
of motion for the polymer configurations and the charge-
reduced density matrix. From this comparison, we are able
to assess the range of parameters and time intervals over
which we expect the perturbative approach to be reliable. We
also monitor the progressive loss of quantum coherence and
identify the effective interactions which are responsible for
decoherence and recoherence phenomena.

The paper is organized as follows: The formalism and path
integral representation of the density matrix are developed in
Secs. I and III. In Sec. IV we derive the perturbation theory
and compute the relevant leading-order Feynman diagrams.
In Sec. V we present our illustrative application to the
P3HT system. Conclusions and perspective developments are
summarized in Sec. VI.
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II. MODELING THE DYNAMICS OF QUANTUM
EXCITATIONS IN MACROMOLECULES

An entirely ab initio approach to quantum transport pro-
cesses in macromolecules would involve solving the complete
time-dependent Schrodinger equation which couples all the
nuclear and electronic degrees of freedom, both in the molecule
and in its surrounding environment. Clearly, such an approach
is beyond the reach of any present or foreseen computational
scheme.

A commonly adopted framework to reduce the compu-
tational complexity of this problem consists in relying on
the Born-Oppenheimer approximation and in coarse-graining
of the electronic problem into an effective configuration-
dependent one-body tight-binding Hamiltonian. In such an
approach, the molecule is first partitioned into several frag-
ments, hereby labeled by an index m, each of which is assigned
a frontier orbital |¢p, ). Such a partition of the molecule must be
defined in such a way that the electron density is significantly
more delocalized within each molecular fragment than over
different fragments.® The frontier orbitals |¢y,) are calculated
by solving the Schrodinger equation for a reduced portion of
the molecule, centered at the fragment m. The system’s wave
function is then obtained by diagonalizing the Hamiltonian
projected onto the space of the frontier orbitals |¢n).

For example, in studying electronic hole transport in DNA,
the molecular fragments can be chosen to coincide with
the base pairs and their highest occupied molecular orbitals
(HOMOs) can be obtained by solving the Schrodinger equation
for an isolated pair.>! The propagation of the charge carriers
through the molecule is then modeled as the hopping of holes
between neighboring base pairs.

In general, it is convenient to choose the dimensionality
of the molecular fragment index m according to the topology
of the system under consideration. For example, in molecular
wires it is natural to adopt a one-dimensional index (see left
panel in Fig. 1). On the other hand, if the electron can also
propagate along the side chains of branched polymers, a two-
dimensional index is most appropriate (see center panel in
Fig. 1). In assemblies of branched polymers, a third component
of the index m may be introduced to distinguish between the
different monomeric units.

In the following, we shall denote with r’ = (r)"c,r;',,ré)
the Cartesian coordinates of the ith atom. The set of all
atomic nuclear coordinates is collectively represented by the
configuration space vector Q,

o) =(q1,....q3n8)
= (i@ @@ Y @Y N ®). (1)

The dynamics of the entire system is modeled by the
following quantum Hamiltonian:

H = Hyc + Hy + Hg + Hys. ()

In this equation, Hyc is the tight-binding Hamiltonian for the
quantum excitation,

Auc= )Y funlQlat) ns. 3)
s=1,2m,n=1

We stress that the transfer matrix elements depend on the
molecular configuration Q. The Ez,T,,,.Y (Gm,s) operators create
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FIG. 1. (Color online) Labeling of molecular fragments in molecules with different topology. In linear polymers, the fragments among
which the charge hops form an effective one-dimensional system (left panel). In branched polymers, a two-dimensional representation may be
introduced in order to account for propagation along the side chains (center panel). In polymer assemblies a third index may be used to label

the different molecules (right panel).

(annihilate) a quantum excitation at the molecular fragment
m and s denotes the third component of the spin. For sake of
definiteness, in this work we shall focus on the propagation
of electron holes in HOMOs, which is relevant for many
molecular charge transfer phenomena. Correspondingly, the
creation and annihilation operators are assumed to obey the
anticommutation relations

“

The generalization of the present formalism to the case
in which the propagating excitation is bosonic (e.g., an
exciton) is straightforward and will not be discussed explicitly.
Depending on the specific molecular system, it may be
necessary to include also the coupling between different
molecular orbitals. This can be done by introducing additional
creation-annihilation operators.

Sometimes it is convenient to split the fi,n[Q] matrix
elements into the hopping matrix elements T,y [ Q] and on-site
energies em[ Q16mn:

Jion(Q) = Tran(Q)(1 — Smn) + €n(Q)Smn- &)

The parameters Ty, and e, are obtained from the fragment
orbitals |¢m) and |¢,) and depend parametrically on the
configuration vector Q:

Tun(Q) = (| Her |fn), (©6)
em(Q) = (Pm|Hor |m), (7

where 'Fle, is the electronic Hamiltonian (for example, the
Kohn-Sham Hamiltonian of density functional theory). In a
molecular wire, the Hamiltonian H uc must include also the
coupling with the leads which play the role of electron source
and sink.

The Hamiltonian A in Eq. (2) governs the conformational
dynamics of the atomic nuclei, in the absence of electronic
holes, and reads

{Omsany) = (@], .00 ) =0, {amy.a) )} = Simdsy-

p2

P
Ay = YT V(Q), ®)

where the P is the momentum canonically conjugated to
the configuration vector Q. V(Q) is the molecular potential
energy, evaluated in the Born-Oppenheimer approximation.
This includes the interaction between the different atoms

within the molecule and possibly with the external fields. We
stress that the potential energy V(Q) in Eq. (8) depends only
on the molecular configuration. This is equivalent to taking
the adiabatic limit for the dynamics, and to assuming that
the location of the quantum excitation does not alter in a
significant way the interaction between the atomic nuclei. In
many cases of interest, the validity of this approximation has
been questioned and corrections to the adiabatic regime have
been proposed. However, in this first paper we shall not deal
with these complications. Notice that, for sake of notational
simplicity, in the definition (8) we are assuming that all atoms
have the same mass M. The generalization to different atomic
masses is straightforward and will not be discussed here.

The part of the Hamiltonian Hg + Hyp describes the
coupling of the molecule with a thermal heat bath in the
Leggett-Caldeira model,?? i.e., through an infinite set of
harmonic-oscillators coupled to each atomic coordinate:

) 3N oo ﬁZ 1 2.
HB:ZZ(2MJ+2M] )

C))

2
~ C*
Aun= Y3 (ot i) a0
a1 j=1 Hj@;
X = (x1,x2,...)and IT = (mry,m>, .. .) are the harmonic oscil-

lator coordinates and momenta, (1t ; and w; denote their masses
and frequencies, and c; are the couplings between atomic and
heat bath variables. The last term in Eq. (10) is a standard
counterterm introduced to compensate the renormalization
of the molecular potential energy which occurs when the
heat bath variables are traced out (see, e.g., the discussion
in Ref. 23).

The model introduced so far represents the starting point
of many approaches which have been proposed to describe
quantum transport in molecular systems. For example, in the
method used in Ref. 9 and Ref. 21, the evolution of the
molecular degrees of freedom Q is described at the classical
level by means of a MD algorithm based on the force fields
obtained by parametrizing the molecular potential energy
V(Q). Then, the current flowing through the molecule is
evaluated at regular time intervals, in the Landauer formalism,
using the instantaneous values of the fi,[Q(#)] tight-binding
coefficients. Such an approach retains the effects of the
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molecular thermal oscillations on the charge dynamics. Indeed,
fluctuations on Q generate dynamical disorder in the tight-
binding matrix elements fin(Q). On the other hand, this
approach neglects the back-reaction of the charge dynamics
on the molecular dynamics. For example, it does not account
for the fact that the system’s total energy may be decreased
by visiting some specific atomic configurations in which some
on-site energies of the quantum excitation are lower.

In a recent paper,?* the path integral formalism was used
to explicitly eliminate the dynamics of the heat bath variables,
and take the classical limit for the atomic degrees of freedom.
As aresult, an algorithm was derived to describe in a dynamical
way the coupled evolution of the molecule and the charge in the
heat bath. In particular, in the high-friction limit, the quantum
and stochastic evolution of the charge wave function |W) and
the molecular configuration Q in an infinitesimal time interval
At is determined by the following equations:

a
qu M aq
x {V[Q(t)] + Z[pm,.a)fnm(Q)]}
mn (11)
kBTA[
+./2 Ea(1),
[W(t + At)) = e*"A’”W[QO”I\I’(t)),

where o (1) = (P (#)|1)(m|W(z)) is the time-dependent (re-
duced) density matrix of the hole, y is the heat bath friction
coefficient, and &,(¢) is a stochastic variable sampled from a
Gaussian distribution with zero average and unitary variance.
Since the motion of the molecular degrees of freedom is
stochastic, the charge probability density at different times is
obtained from the average over many independent trajectories,
which may turn out to be a computationally challenging
procedure.

In the next section, we review and further develop the
path integral approach to hole-transport in macromolecules
and obtain a scheme which does not require to perform any
MD or Langevin simulation.

III. EFFECTIVE FIELD THEORY FOR THE REDUCED
DENSITY MATRIX

Let us assume that a hole is initially created at the HOMO of
some molecular fragment k;. We are interested in computing
the conditional probability P;(k r,|k;) for the hole to be found
at the HOMO of the molecular fragment k, after a time
interval ¢. Such a probability is described by the following
time-dependent reduced density matrix element:

Tr(|k ) (k¢|p(1)]

Trp(1)
 Tel[ky) (K le ™ p0)e! 1]
a Trp(0)

Pi(kylki) =

, 12)
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where §(0) is the initial density matrix, which is taken to be in
the factorized form

$(0) = [k} (ki| x exp ( - #HM) X exp ( -

BN
Hg ).
KpT KT

13)

Equation (13) corresponds to assuming that, at the initial
time, the molecular degrees of freedom and the heat bath
degrees of freedom can be considered separately equilibrated
at the same temperature. Hence, the normalization factor at the
denominator reads

Trp(0) =2 - Zy(B) x Zp(B), (14)

where Z), and Z g are the quantum partition functions for the
molecule and heat bath degrees of freedom and the degeneracy
factor 2 follows from enumerating the initial spin states. We
emphasize that the ratio in Eq. (12) expresses dynamics of all
the degrees of freedom at the fully quantum level.

Let us now derive a path integral expression for its
numerator. To this end, we choose to adopt a second-
quantized representation of the quantum charge dynamics,
while retaining the standard first-quantized representation for
the dynamics of the atomic coordinates and for the harmonic
oscillators in the heat bath. As we shall see below, the
field-theoretic description for the quantum charge is adopted
in order to obtain a simpler final representation of the density
matrix. Indeed, it allows us to replace the time integration
along the Keldysh contour (shown in Fig. 2) with a standard
time integral along the real axis.

The path integral representation of the reduced density
matrix (12) is obtained by performing the Trotter decompo-
sition of the forward and backward time evolution operators
e HH1 and e'f" and of the imaginary -time evolution operators
exp(— KT HM) and exp(— HB) which appear in Egs. (12)
and (13). In practice, our ch01ce of the representation of the
charge, the heat bath, and the molecule dynamics corresponds
to introducing the following resolution of the identity:

1—/dQ/dX/ dd’“dd"”
i
s= 1

2

x e~ 2= 9l |0 X D) (0, X, D], (15)
Smt
4
Q’(O) = Q? ) ; Re t
! >
Q) =Q"(0)=Q Q'(t) =Q"(t) = Qg

—ipfr Q(—iB) = Q

FIG. 2. (Color online) Boundary conditions of the molecular
configuration paths defined on the Keldysh contour appearing in the
path integral (16).
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where the states |Q,X,®) collect the set of all holes’
coherent states (constructed from the annihilation operators
associated to each molecular fragment, dy ), the set of the
eigenstates of the molecular coordinate operator ), and
the set of eigenstates of the heat bath generalized coor-
dinate operator X. Throughout this paper we shall adopt
Einstein’s notation and implicitly assume the summation

PHYSICAL REVIEW B 88, 085428 (2013)

over all repeated indexes, except for the initial and fi-
nal position of the molecule, k; and kj, which are held
fixed.

Once the conditional probability (12) is written in the path
integral form and the Gaussian functional integral over the
harmonic oscillator variables is carried out analytically, one
reaches the expression

Qi . Oy 0
- [ag, [aoi [ a0 [ Dot [ oo [ "o [Dye* [Dos”
27 P) 0 e,

x e7¢':(0)¢,m(0)€7¢m*(t)¢'“(t)[¢|/(f(f)¢|§(0)¢|:j(f)¢|:i(0)]€7¢[Q/’QU]E[SMC[Q,’(#,’(# “1=iSuclQ ¢ ¢ *]’ (16)

Pi(kylki) =

wher_e f dQy, f d Q; denote the standard (i.e., Riemann) integral over the final and initial molecular configurations, respectively,
J dQ is an integral over some intermediate configuration, and DQ denotes the functional integral measure (see Fig. 2). The
functionals which appear at the exponent are defined as

~ B M .2 B ~
SE[Q]=/0 av (r>+/0 deVIO@)l, (17)
* ! /M N2/, ! / ’ * o,/ . 8 / ’
SMC[Q,¢>,¢>]=/O a0 (r)—/o dt{V[Q(t >]+¢m(t>(l@5mn—fmn[g<r )])¢>n<z>}, (18)

01001 = [ ar [ dr11Q6) = QW 1BE ~ Q) = B ~ 110" ¢
af 2 2 c;
+if [anerwr-oon. (n=-%5), (19)
0 mja)j

B(t) is a Green’s function which encodes the fluctuation-dissipation induced by the heat bath and reads

B(t) G [com( =2 (;1) — isin(w;1) (20)
= co cos(w;t) — isin(w;t) |.

Mjw; 2k B T / /

The time scales at which thermal oscillations are damped and memory effects in the heat bath are relevant can be tuned by
varying the frequencies of the virtual harmonic oscillators in Eq. (10). In particular, here we consider the so-called ohmic bath
limit, in which the B(¢) reduces to

B(t) = B"™(t) = 2kpTMys(t) + ’MT”%M). (1)
It is well known that, in the classical limit for the molecular motion, this choice for 5(¢) leads to a Langevin dynamics with
friction coefficient y (see, e.g., Ref. 23). Hence, Eq. (16) represents a quantum generalization of the stochastic dynamics of the
molecule, which includes also the time evolution of the hole. As usual, the path integral (16) is defined over Grassmann fields or
complex fields, depending on whether the propagating excitation is a fermion or a boson.

It is important to note that the Q’(¢) and Q' (¢) variables which appear in the path integral (16) represent the configuration of
the molecule propagating forward and backwards in time, respectively, while the Q(t) variables are associated with the evolution
of the same molecule along the imaginary-time direction. All these paths can be collectively represented by a path variable
integrated along the so-called Keldysh contour (see Fig. 2).

Equivalently, the path integral (16) can be expressed in a form in which forward and backward molecular paths Q’(¢) and
Q' (¢) are replaced by their average and difference, respectively:

R=3Q'+0Q), y=0-0. 22)

The result is

1 , ' LN o P " (N A
Pikslk;) = / D' Do * ¢y (1) (0)e™Pm om0 S0l ¢ 7] / D' Dby (1), (0)e~Pm OIu(Dg=iSil8".4")
2Zu(B) ! ‘ ! '
_ o . 19 0 ) e e
x /de/dQ/in/: DQe_SE[Q]/ ) DR/ 7Dyel(W[R’y’¢ NN ]+ld>[R,y])’ (23)
0 1(0i+0) 0i—0

085428-5



E. SCHNEIDER, S. A BECCARA, AND P. FACCIOLI

where the functionals at the exponent are defined as

WIR,y,¢*.¢'.¢ " ¢'1

~ [ arlmr. 5 y _Y
_/Odt{MR 5 V[R+2]+V[R 2}
|:fnm|:R + i| - fnm|: - %i|¢;*¢;1i”v (24)

Solgd*] = / dzqs(t)[ nm]¢m<r> 25)

In the path integral representation (16), the time evolution of
the charge-molecule system in contact with a dissipative heat
bath follows directly from the quantum Hamiltonian defined
in Eq. (2), without any further approximation. In particular,
the molecule’s configurational dynamics and the charge’s
quantum propagation are described at the fully quantum level.
In addition, there is no restriction either on the strength of the
coupling between the molecular vibrations and the charge,
or on the amplitude of the conformational changes which
the molecule can undergo within the time interval . Clearly,
computing such a path integral is a formidable task and further
approximations are needed.

Our first approximation consists in taking the classical limit
for the dynamics of the molecular atomic coordinates. To
this end, we begin by noting that the saddle-point equations
which are derived by functionally differentiating the exponent
in Eq. (16) with respect to R,y,¢’,¢” lead to the condition
y(t) = 0 for all 7 (see derivation in Ref. 24). Following the
discussion in Ref. 23, we impose the classical limit on the
molecular motion by assuming that the path y(¢) remains
close to its saddle-point configuration (hence represents a small
fluctuation) and by imposing the boundary condition y(0) = 0.

We can verify that the correspondence principle is fulfilled
by such an approximation. Indeed, in the absence of the
quantum charge, the resulting expression for the conditional
probability coincides with the Onsager-Machlup path integral
representation of the Langevin dynamics of the molecule in its
heat bath. To prove this, let us provisorily drop all the coherent
fields, expand the functionals in the exponents to quadratic
order in y, and perform the resulting Gaussian integration.
This way, the path integral reduces to

1 / Qi . Oy
do /in DQe*SE[Q] DReﬁSaM[R]
Zu) ) 7 o o
=1, (26)

where Sopu[R] is the well-known Onsager-Machlup func-
tional, which assigns a statistical weight to the stochastic
trajectories in the Langevin dynamics:

B /’ ) .9 7?
Som[Rl=—— [ dt'|MSR+ —V(R)+ MyéR| .
om[R] iy ), 3R (R)+ My

27)
Finally, we take the saddle-point approximation for the

path integral DQ, which corresponds to taking the classical
limit also for the partition function of the initial molecular
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configuration. The result is

—ﬁV[Q] Oy SR
/de/dQ’ Zuipt J, PR

Z/de/inPt(Qf7Qi)p0(O)= L (28

where po(Q;) = % is the initial distribution of molecular

configurations. We recognize that this is the normalization
condition on the solution of the Fokker-Planck equation,
expressed in path integral form,?% and is the starting
point of the so-called dominant-reaction pathway approach
to investigate the long-time dynamics of macromolecules.?’?®

Let us now return to the path integral expression in Eq. (23),
in which a quantum charge is allowed to propagate across
the molecule and discuss our second approximation. We note
that the quantum transport dynamics is in general much faster
than the characteristic time scales for major conformational
transitions of macromolecular systems (typically ranging from
few nanoseconds to many seconds or even larger). Hence,
during the time intervals which are relevant for quantum
propagation phenomena, the molecule can be assumed to
follow at most only small oscillations around the mechanical
equilibrium configuration Qg, which is defined as the global
minimum of the molecular potential energy V(Q). In this
small-oscillation limit, it is convenient to introduce the atomic
displacement variables

8r(t) = R(t) — Qo, (29)

and regard both the 6r(¢) and y(¢) as small quantities of the
same order.

In the expansion of the W functional up to quadratic order
in §r and y we obtain a term

o(r-2)-v(es)
=3l (or-3),r3) - re3) ()

=8rl~yjH,~j ‘|‘"’7 (30)

where H;; = 30,30, aQ V(Q)lg=0, is the Hessian matrix of the
potential energy at the point of mechanical equilibrium.

A small deviation from the equilibrium configuration Qg
generates a small change in the hopping matrix elements
and in the on-site energies which define the tight-binding
Hamiltonian (3). To the leading-order in the Taylor expansion
in powers of §r and y we have

fnm(r_ > f +f1im(8rz_%>+, (31)
Y\ — 0 i R B
fnm(r+§>_fnm+fnm(5rl+ 2)+ ’ (32)

Where nm - fnm(QO) and f[;m = BQ’ fnm(Q)|Q Qo In the
small oscillation regime, the path integral over y is of Gaussian
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type and can be performed analytically, yielding

PHYSICAL REVIEW B 88, 085428 (2013)

Pkyt1k) = s [ DODY g 0 SOOI [ DDy (g RO
y / Dy eS8 6”1 =B/ 255 O M 31,00 33)
where the functional integral over ér(¢) is unrestricted also at time O and time ¢ and the S functional reads
ﬂ ' 1. o TP
S[or.p*.¢'.¢ 9’1 = dt,|:M8fi + Hijérj + Mydr; + Ef,:m(¢n*¢,/n + ¢n*¢m):|
- / At (fam + Famd7:) Ba' bt — b0" bm). (34)
0
It is convenient to introduce a differential operator L, which depends on molecular coordinate indexes i, j:
(L1 =M (3,2 +yor)8i; + Mij: (35)
its Hermitian conjugate reads
[I:T],-j =M (312, — ya,r) 8,’1' + H,'j. (36)

Note that in L and LT the time derivatives are defined to act on the right. Using such operators, the functional in Eq. (34) can be

rewritten as

S[rd' ¢ 9.6 ] = ﬁy
i
+16 M

dr'sri(t)[LT - L],,8r,(r>+— / dt’ fLald () Pn(t) + ¢ ()P (LY 87 ()

dt’f.;'m[¢;,*(r’)¢;,,(r’> + X (1P END* ()1 (1) + b, * () ()] fr

—/0 dt’f,?m[¢;,*(t')¢,'n(l/)—¢;*(t/)¢:n(t’)]—/0 A1’ fimla (D) = $o* ()N (). (37)

The path integral (33) describes the coupled dynamics of the nuclear coordinates and of the electronic hole in the molecule. It
is instructive to first consider this conditional probability in the limit in which the couplings between the charge and the molecular
degrees of freedom are completely neglected. In this case, the path integral factorizes as

Pikylk) =[G (kyp.r]ki)|” x {Z B

= |Gg kst

In this equation,

Gy (kp 1) = (kele ™ |k;),  with  Hy = fim(Q0)a) am,

(40)

is the hole’s Green’s function defined by the tight-binding
Hamiltonian Hy, which is evaluated keeping the molecule
“frozen” in its minimum-energy configuration Q.

A. Dirac-like notation

Let us now return to the most general case, in which the
interactions between the hole, the molecule, and the heat
bath are fully taken into account. The symmetric structure
of the exponent in the path integral representation of the

/DSV@ Frim fo dt(MSr y6r+H,,8rj) ﬁar,(O)H,jér (0)} (38)

(39)

conditional probability P(ky,z]k;) suggests collecting all
coherent field degrees of freedom qﬁ%n,(ﬁln,gb;n,qﬁln into a
single 4-component Grassmann field ¢ defined as

Pnr

Pn..
Un=| (41)

by

P
Slmllarly, we collect all conjugate fields into 1/rn =
(¢n . ¢ N ¢* L) In view of the formal analogy with Dirac

theory it is convenlent to introduce also the following 4 x 4
matrices, which define the projection onto the upper and lower
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spinor components and the interchange between them:

1 0 0 0 1000
01 0 o0 0100
yonO—lO’y+ 000 ol
o0 0 -1 00 0 0

(42)
0000 0010
00 00 00 0 1
“Tloo 1o "T[1 000
00 0 1 01 00

In addition, we change variables in the integration over the v/
field by means of the substitution

ROER A (43)

Clearly, in the case in which the propagating particle is a
scalar boson, the ¥ field has only scalar field two-components,
Y = (¢',¢"), and the gamma matrices are replaced by Pauli
matrices yy — T3, 5 — TJ.

Using the notation defined in Eqgs. (41), (42), and (43), the
conditional probability is written as

(=D

2Zu(B)
X [Yk, @)y-ys ¥k, (O, (0)y+ 5 ¥, (0)]
x exp(i So[¥,¥]) exp(—Sest[87])
x exp(i{11[8r,. ¥, Y] + L[sr. . ¥]
+ LIy, ¥, (44)

Pikylk;) =

/ Darplppwe—ﬁl(f,())—ﬁz(t,())

where the terms

Sol ¥ = /O At Tm(idy — fO0)0m, (45

B

Sef[07r] = ——
ett[67] 4My

t
dt'sri[LT - L];;ér (46)
0
|
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describe the quantum propagation of the charge and the
Langevin dynamics the molecular coordinates, in the absence
of any coupling between them. The functionals I, I, and I3
are the interaction terms and are defined as

Lsr, 0, W] = —/ dr' Jisr, 47)

0
L[sr W,y = I 15 dt' J[L1;;877, (48)
Ly, ¢l = W/o di'JJg, (49)

with J' = Y fia¥n and J§ = Ym0 fia¥n. We note that the
couplings /; and I, vanish in the classical limit Miy — 0. The
surface terms £(z,0) and £,(z,0) follow from the overcom-
pleteness of the coherent-field basis and from the Boltzmann
distribution of the initial configuration, respectively, and read

L1(2,0) = [Ym(0)y07+ ¥m(0) + ¥m()yoy-¥m(®)], (50)
Lo(1,0) = gar,»(O)Hijsrj(O)+---. (51)

Some comments on Eq. (44) are in order. First, we note
that the overall minus sign appearing in front the integral is
a consequence of the Fermi statistics and ensures the overall
positivity of the probability density. Second, we observe that,
while the path integral (33) is defined over forward- and
backward-propagating fields (i.e., along the Keldysh contour),
the path integral Eq. (44) contains only the integration in
the forward time direction. Indeed, the backward-propagating
fields have been replaced by lower components of the “spinor”
field, hence can be formally interpreted as antimatter degrees
of freedom propagating forward in time.

A major simplification which follows from our approxima-
tions is that the integral over the small displacement of the
molecular coordinates from their equilibrium position §r can
be performed analytically. The result is an effective theory
with noninstantaneous interactions between the holes:

1 - - - .
Pi(kslki) = —> / DY Dy O [, (- ys i, (0P, Oy ys i (0)] €1V

el

In this equation, A;;(#' —t"), V;;(t — t') are respectively the
Green’s functions of the [I:TI:] operator and the sum of the
Green’s functions of the L and L' operators.

In order to explicitly compute them, it is convenient to
transform to the normal mode basis, in which the Hessian of
the potential energy at the minimum energy configuration Qy
is diagonal:

Ul MU = 8uMQ2. (53)

In this equation, €2; denotes the frequency of the kth normal
mode.

In this basis, the expressions of the vibron propagators
Ajj(t" —1t") and V;;(t —t') read (see the derivation in the
Appendix A)

Lydrdt” Ji Wit —1")J (t”%% Jo dt'dt" T Ay (¢ —t") T (") (52)

yIrI
2M2s22
De-

Ajj(t) = U Uan(®), (54)

Vij(0) = U,kUk,bk<t) (55)

0

where of = ,/|4Q% — y2| and

sin(§of 1)) cos(2wflt])
7 + ”

@y

if 20 > vy,
a(t) =

sinh( 4 wf |1 cosh( Lokt .
Gebn) |, sonlieb) ¢ g, -,
0

(56)
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sin (3oglt])  if 2% >y,
b(t) = T ) (57)
sinh (§w0|t|) if  2Q, < y.

It is useful to consider the asymptotic expressions for the
Green’s functions in the limit y >> 2€2;, which corresponds to
the overdamping regime:

e~ (/i
M2y}
Vii(t) = L (1 + 29—’%>

My Y

x (¢GRI _ g=rlil QCRIIiyl U (59)
l

Aij(t) = Ul Uy, (58)

In the opposite underdamped regime (y < €2) the asymptotic
expression for the propagators is

=5l
. - - T )
A1) = My cos (2 |t]) Uy Uy, (60)
Pl . ;
Vl‘j(t) = M sin (2 |t]) UikUkj' (61)

Equation (52) is one of the central results of this work.
It shows that the conditional probability P(ks,t|k;) for the
dissipative dynamics of the quantum charge can be written
in a form which is formally an analog to that of a vacuum-to-
vacuum amplitude, in an effective zero-temperature Dirac-like
quantum field theory. This analogy is quite remarkable, since
our theory describes an open system and is fully consistent with
the fluctuation-dissipation relation. We also emphasize that the
path integral expression (44) is real and positive definitive as
it yields directly the conditional probability, even though it is
formally equivalent to probability amplitude (namely a two-
point Green’s function) in the effective quantum field theory.

We remark again that a particularly attractive feature of this
formulation is that it does not involve the Keldysh contour.
This strongly simplifies the formalism, since one does not
need to introduce different types of Green’s functions to
distinguish between different sectors of the Keldysh contour.
Instead, one can adopt time-ordered Feynman propagators
and apply textbook perturbative and nonperturbative quantum
field theory techniques to evaluate directly the conditional
probability and the expectation values of operators.

IV. PERTURBATION THEORY AND
FEYNMAN DIAGRAMS

In the short-time and weak-coupling regimes, the condi-
tional probability P, (K |k;) can be computed analytically in a

t/ o t// t/_ _
J g i )
n
Gyt =) ~ it fan Dii(t' =)

PHYSICAL REVIEW B 88, 085428 (2013)

perturbation theory derived by performing a Taylor expansion
of the exponents in Eq. (52) in powers of the interaction terms

MV ! / ! " N ri /
B Jo 0
X Ajj(t" = ") (t") frpy Y (1), (62)
Vo= %/ dt,/ dt" Ym0 Fan¥a(t)
0 0
% Vij(t/ _ lﬂ)&m’(t//)f,f,/n/wn’(t//)- (63)

The conditional probability is then written as

o0

Py (kelki) = Y P (kelks) , (64)
where Pt(o) (k¢ k) corresponds to the unperturbed conditional

probability, which neglects all the couplings between the hole,
the heat bath, and the vibronic modes,

—1 - -
P (kilk) = — f Dy Dye O ()y-ysi, (1)

X Y, (0)y4 s Y, (0)]e 5010V, (65)

Its normalization factor Z©) can be written in path integral
form as

70 — /DI/_/DI//e_ﬁl(l’O)
X Z[I/_fkf(t)yfyﬂ/fkf(l)}/_/k’(O)erysl//ki(O)]e_iso[‘l;»‘/f].

ks
(66)
The leading-order perturbative correction in the series (64)
reads
—_1 7 —Ly(t,0)f.T
70 1 zM / Dy Dyre™ ="k, ()y-ys
X Yk, (P 0)y4 Y5 ¥ 01V + Va)e SV,
(67)

PO (ke |k;) =

where the corresponding leading-order correction to the
normalization factor is

z" = f DYDye 0 ) T (y-yse, ()

ks
X P (0) 4 Vs Vi, (O1(Vy + Va)e ™SPV1 - (68)

Equations (65), (66), (67), and (68) correspond to corre-
lation functions in the free limit for the effective Dirac-like
quantum field theory. According to Wick’s theorem, these
Green’s functions can be evaluated by considering the sum

J i
m’n’ 2h

rj;l’n’ 7o Vﬂ(t// - f/) ;nn

FIG. 3. Feynman rules for the effective field theory for charge propagation in the macromolecule. On the left panel, we show the hole’s
Feynman propagator, on the center panel the effective interaction Vi, and on the right panel the effective interaction V5.
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k¢

k.

1

FIG. 4. Diagram corresponding to the unperturbed contribution
to the conditional probability.

of all possible contractions between the v and v fields
and replacing each contraction with time-ordered Feynman
propagator:

1

G 03 E) ) 50 > G 1)
= Ve B OVly 06" — 1) — y_6G" — 1)), (69)

where the matrix elements Vj; define the unitary transforma-
tion which diagonalizes the hopping matrix i?’ while f0 are
the corresponding eigenvalues.

AM ¢
P (kelk;) = ﬂT;/ReI: / dvdt' Gy (—1)G
0

2 t
+F—lIm|: /0 dtdt' Gy, (—1Gy

2 t
+r—lIm|: / dtdt' Gy, (—1)Gy 4

0
oM
T

B

The first two lines are the contributions due to the “self-
energy”’-type diagrams, the third is derived from the “tadpole”
diagram, and the last line is derived from the “crossing”-type
diagram. Further details of this calculation are provided in
Appendix A.

We conclude this section by discussing the regimes in which
we expect the perturbative expansion to be applicable. To
this end, we introduce the explicit expressions for G%, Ajj,
and V;; into Eq. (71), take the short-time limit ¢ < 1/€2,
t < 1/y, and consider for simplicity only the overdamped
and underdamped asymptotic expressions for the Green’s
functions.

In the in the overdamped regime, we find the conditions of
validity

2 i2l2
W &« 1 (fromthe Vi-type interaction), (72)
k
i2,2
quh « 1 (fromthe V,-type interaction). (73)
14

t .
/O dtdt' Gyt — 1) fiq G (T)Aji (T — TGt —

PHYSICAL REVIEW B 88, 085428 (2013)

The Wick contractions are most conveniently defined and
computed using a diagrammatic technique, i.e. by applying
the Feynman rules shown in Fig. 3. Just like in the standard
quantum field theory, one can prove that the corrections
to the normalization factor Z exactly cancel out with
the contribution of disconnected diagrams, order-by-order in
perturbation theory.

From the zeroth-order diagram shown in Fig. 4 we readily
reobtain the unperturbed conditional probability P’(k rlki):

1
POk Ik;) = _EGgik.-(_t)Ggfki(t)

= Vi Vi Vil eV,
S 2
= |GG (ks 1k (70)

The different types of diagrams which contribute to P, (k 7 |K;)
are shown in Fig. 5. We note that the first two of such
diagrams contain a “self-energy”-type correction to one of
the propagators. The third diagram contains the interaction of
forward- and backward-propagating holes and will be called
the “crossing”-type diagram. Finally, the last diagram is a
“tadpole.” After collecting all terms, we obtain the following
expression for the first-order correction to the conditional
probability:

(t =T [l At — DG — r)f;chki(r)}
(t =) [l Vit — DG — r)f;chki(ﬂ}

- r)f({ngki(t)V,-j(r/ — t)f;s,]

) faq G o (0)- (71)

In the underdamped regime, the conditions of validity of the
perturbative expansion are

2 i2t2
ﬁMq—;%zgz « 1 (fromthe V,-type interaction), (74)
Yk
2fgst . .
YT <« 1 (fromthe V,-type interaction). (75)
k

We note that in both the underdamped and overdamped
regimes the perturbative approach is only valid at short times.
This is completely expected, because the long-time and long-
distance propagation necessarily involves multiple scattering
of the hole with the heat bath and molecular vibrations, hence
require a nonperturbative treatment. By plugging in order of
magnitude estimates of the normal-mode frequencies (£2; ~
1073 fs!), the gradient of the hopping matrix elements (f; ~
1072 eV A1), and the viscosity (y = 0.1 fs~!) we find that,
at room-temperature and in the overdamped limit, the V;-type
interaction is several orders of magnitude larger than the V,
type, hence determines the range of validity of the perturbative

085428-10
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k; k;

FIG. 5. The diagrams involved in the leading-order correction to the conditional probability. The first two diagrams from the left-hand
side are called “self-energy” type. The third diagram is called “crossing” type, and the last is a “tadpole” diagram. Analog diagrams exist for
“self-energy” and “tadpole” diagrams, in which the vibron propagators are coupled to the hole propagator on the left. Clearly, in addition to
these diagrams, there are also equivalent ones in which the vibronic propagators are emitted and absorbed by the backward-propagating fields.

expansion. On the other hand, in the opposite underdamped
limit, the driving interaction is V; type.

V. CHARGE PROPAGATION THROUGH A
POLY(3-ALKYLTHIOPHENE) MOLECULE

Let us now illustrate the formalism developed in the
previous sections by investigating the intrachain prop-
agation of electron holes through the backbone of a
poly(3-alkylthiophene) (P3HT) polymer. Quasicrystalline ma-
terials made of interdigited PH3T polymers have received
much attention, in connection with the possibility of realiz-
ing nanoscale organic transistors.>?*% The atomistic three-
dimensional structure of a PH3T molecule is shown in the
upper panel of Fig. 6.

Here, we are only interested in providing a qualitative
description of the charge propagation in such systems, leaving
a more sophisticated quantitative description to our future
work. Our main goal is to estimate the order of magnitude
of the range of times and distances over which the perturbative
approach is applicable. Second, we are interested in comparing
the probability densities obtained by means of the perturbative
calculation and by brute-force integration of the equation of

FIG. 6. (Color online) Upper panel: Three-dimensional structure
of a P3HT polymer. Lower panel: The coarse-grained representation
corresponding to our effective model.

motion (11). Finally, we investigate how the different charge-
charge effective interactions which appear in Eq. (44) affect
the charge dynamics and in particular quantum decoherence
and recoherence phenomena.

A. Coarse-grained model

In order to address these points it is sufficient to adopt
a simple coarse-grained representation of the molecule, in
which side-chain degrees of freedom are not taken explicitly
into account. Furthermore, the molecular potential energy
function is assumed to effectively depend only on the dihedral
angles formed by neighboring aromatic rings. Hence, the
molecular configuration is specified by the set of dihedral
angles ® = (6y,...,0y) and the chain is mapped into an
effective one-dimensional system consisting of N plaquettes
which can rotate around their symmetry axis, as sketched in
the lower-right panel of Fig. 6.

The potential energy of a molecular configuration is
approximated with sum of pairwise terms, each of which
depends on the relative dihedral angle of two consecutive
monomers,

U®©) =) u® — b;11). (76)
We have obtained the pairwise interaction energy u(6; —
6;+1) as a function of the relative angle 6§ = 6; — 6; from
DFT-TB electronic structure calculations, using the DFTB+
package.®! The results are shown in the left panel of Fig. 7.
In the lowest-energy configuration, the aromatic rings in the
different residues form a relative dihedral angle of (—1)'6,
(where 6y = 20° and i is the monomer index).
The conformational dynamics is therefore described by the
Hamiltonian

N
1
H:-E:? U(®), 77
M 2Il‘=1p,+() 7

where [ is the momentum of inertia of the monomers
(including the contribution from the atoms in the side chain)
and p; = 16; is the canonical momentum conjugated to the 6;
generalized coordinate.

At room temperature, this system performs only small ther-
mal oscillations around the minimum-energy configuration.
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0.402 : : : : : : :
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(6- 0. ,) [degrees]

FIG. 7. Left panel: DTP-B calculation of the molecular potential energy of two consecutive monomers as a function of the difference of
dihedral angles. The mechanical equilibrium is retained at an angle s' which in this case is ~20°. In general s' = -+(—)6, for i odd (even), with
6y = 20°. Right panel: DFT-TB calculation of the transfer integrals 7;,,; as a function of the difference in the dihedral angles (6, — 6;), in

the proximity of the mechanical equilibrium configuration 6.

Hence, we can perform a small-angle expansion, leading to
the simple harmonic form

| N
HM:ﬁZpiz

i=1
N—1

. K K
+ (641 — 6 + (=1)'60)> + 593 + =0y. (78)

2

M|

i=1
The last two terms follow from assuming that the first and last
monomers in the chain are bond to external nonconducting
leads which tend to align them horizontally.

The momentum of inertia I can be calculated directly from
the three-dimensional structure of the chain and affects the
frequencies of the chain’s normal modes of oscillations,

0~
1
In the systems which are of technological and experimental
interest, P3HT polymers are embedded in organic frameworks.
In such a configuration, the chain exchanges energy with
neighboring molecules, which play the role of a heat bath.
In addition, the steric interaction with neighbors generates
strong constraints on the chain dynamics and in particular
affects the amplitude and frequencies of thermal oscillations.
In order to account for this effect, we consider an effective
model in which the spring constant ¥ which appears in
the molecular potential energy function U(®) is artificially
rescaled in such a way that the typical square fluctuations of the
dihedral angles around their equilibrium values, (A#?)yp =
% Zi [6;ir1 —6; + (—1)i90]%4D, match the value obtained from
classical molecular dynamics simulations for a system of
interdigited PH3T polymers:*

(79)

kT
(A0 yp ~ 2.
Keff

and

K —> Keff (80)

Also the hopping matrix elements T;;,; between neigh-
boring monomers and the on-site energies e; as a function
of the chain’s configurations have been obtained by DFT-TB
calculations. In analogy with molecular energy calculations,
the transition matrix elements 7;;,; have been computed

assuming that they effectively depend only on the relative
angles, |0;+1 — 0;|. For sake of simplicity, we have taken the
on-site energies ¢; to be constant and equal to the value at the
mechanical equilibrium configuration. This choice can be mo-
tivated by the observation made by different groups (see, e.g.,
Ref. 21) that fluctuations of the on-site energies have a much
smaller effect on the electric conduction than fluctuations of
the transfer matrix elements. The results for 7;; 1 (6;+1 — 6;),in
the vicinity of the equilibrium configuration 6y, are reported in
the right panel of Fig. 7. By assuming a linear approximation,
Eq. (5) takes the form

Fon @) = fy + fon (6 — 04| — 60) , (81)

where
fign = To (1 = 3umn) — €00mn, (82)
fhe =TI (1= 8u). (83)

Finally, the viscosity parameter y may be determined from
MD simulations by computing the velocity autocorrelation
function. On the other hand, we have observed that the results
of the perturbative calculation depend very weakly on the this
parameter. Hence, for sake of simplicity, here we assume a
reasonable value y = 0.1 fs~!.

The numerical values of the parameters of this coarse-
grained model are summarized in Table I.

The equilibrium configuration can be chosen to be

0 if
0; = .

9() if

The hole propagator G (t) is constructed by diagonalizing
the f° matrix, defined in Eq. (82). Its nth eigenvector reads

i odd,

I even.

(84)

bu() = || ——sin| 2T (85)
EY N ve !
The corresponding eigenvalue is

E, = —ey — 2Ty cos(ky,), (86)
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TABLE 1. Parameters of the coarse-grained model which describes intrachain hole propagation in P3HT polymers. The PH3T chain

investigated in the simulations consists of 9 monomers.

ey (eV) Ty (eV) T, (eV) 0 (deg) y (fs7h) Kk (eV) Ketr (€V) T (K) I (amu A?)

54 0.4 0.06 20 0.1 0.13 0.20 300 3400
where k,, is the wave vector times at which the hole rebounds to the right end point of the
N chain are delayed by the interactions. We recall that the norm
n = (NTI)’ n=12...N. @87) of the conditional probability is conserved up to corrections
L which are of higher order in the perturbative expansion. Hence,
Hence, the hole Feynman propagator is given by the reduction of the charge density at the end point of the chain
2AN+1) implies that the scattering distributes the charge density in the

GY =Y drlipealide " [y 0(t) — y_6(=1)]. central region of the chain.

=1 We observe that the correction to the conditional probability

(88)

With the present set of model parameters, we find that the
friction coefficient y is significantly larger than the typical
frequencies of normal models; i.e., y > Q. Hence, we can
use the overdamped limit for the vibronic propagators.

B. Time evolution of the conditional probability

We assume that the hole is initially created at the left end
of the chain and evolves in time at a temperature of 300 K. In
Fig. 8 we show the results of our leading-order perturbative
calculation of the hole density at the opposite end of the chain
as a function of the time interval ¢, i.e., P,(ky|k;), where
N =09.

Some comment on these results are in order. First of all,
we notice the existence of three peaks in the charge density, at
times ¢ ~ 10,20,40 ps. These correspond to integer multiples
of the time interval it takes the hole to run along the entire
chain. Next, we note that the scattering of the holes with the
molecular normal modes and with the heat bath slows down
the charge propagation, as expected. This is evident from the
fact that the probability of observing the hole at the right
end point of the chain as a function of time is reduced once
the perturbative corrections are included. Correspondingly, the

0.9 T T T T T T T T T
0.8
0.7
0.6
0.5 || 1
0.4
0.3

0.2 “

0'2, - VX\A// VM/ i

-0.1 - -
0 5 10 15 20 25 30 35 40 45 50

Time [fs]

Probability density

N

FIG. 8. (Color online) Time evolution of the charge density at the
right end point of the chain, assuming that a hole is initially created
at the left end of the chain. The solid line represents the unperturbed
prediction; the dashed line includes the effects of the coupling with the
molecular vibration and the heat bath to leading order in perturbation
theory.

starts to be of the same order of the unperturbed prediction
starting from time intervals of the order of ~40 fs. Beyond
this time scale, the perturbative approach breaks down and
one has to resort to nonperturbative approaches in which many
Feynman diagrams are resummed.

C. Quantifying the loss of quantum coherence

We have seen that analytic perturbative calculations break
down beyond a few tens of fs, hence do not represent a useful
tool to investigate the long-time long-distance dynamics of
hole propagation. On the other hand, they provide a valuable
tool to gain analytic insight into the physical mechanisms
which drive decoherence and recoherence during hole propa-
gation across the chain.

As measure of the degree of quantum coherence in the

dynamics of an open system, we consider the ratio®***
Trp?(t
Rty = o7 (89)
Trp(2)

In Appendix B we show that this ratio is identically equal to 1
for pure states (corresponding to fully coherent propagation),
and that it is smaller than 1 for mixed states.

In Fig. 9 we compare this ratio for the model under
consideration in the limit of unperturbed propagation and
including the leading-order scattering with the molecular
vibrations and with the heat bath. We see that the interaction
with the environment suppresses the quantum coherence on
time scales which are of the order of 10 fs.

It is interesting to compare the contribution to R(¢) coming
from the different Feynman diagrams shown in Fig. 5. We find
that the quantum decoherence is driven by the “cross”-type
diagram shown in Fig. 5, which tends to correlate the field
components associated to propagation forward and backwards
in time. In the equivalent zero-temperature quantum field
theory effective picture, the quantum decoherence emerges
as a result of the formation of a particle-antiparticle “bound
state.” On the other hand, the so-called “self”-type diagrams
act in the opposite direction, slowing down the overall rate of
quantum decoherence.

The identification on the diagram which drives the quench-
ing of R(¢) with time offers a scheme to study how the chemical
and mechanical properties of the macromolecule affect the
quantum decoherence of the propagating excitation. Indeed,
by varying the parameters of the effective theory (namely
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FIG. 9. (Color online) Perturbative calculation of the different
contribution to the ratio R(¢#) which quantifies the decoherence
effects in hole propagation. The dot-dashed line is the unperturbed
result, which remains coherent at all times. The solid line is the
result including the leading-order correction. Dotted and dashed lines
correspond to the contribution of “self-energy” type and “crossing”
type, respectively. For this model, the “tadpole” type contribution is
identically zero.

the spectrum of normal modes wy; entering in the vibron
propagators, and unperturbed tight-binding matrix elements
£ and their gradient £,/ , which enter the effective interaction
vertexes) and computing the corresponding relative weight of
the “cross”-type diagram, one may in principle identify what
properties of the macromolecular system are most effective
in suppressing (or enhancing) the quantum coherent transport.
This information may be useful, e.g., in the context of the study
of exciton propagation in photosynthetic complexes, which
have been found to display quantum coherent dynamics over
surprisingly long time intervals.

D. Comparison between the perturbative estimate and the
result of integrating the quantum/stochastic
equations of motion

The perturbative approach developed in the previous sec-
tions allows to analytically compute the charge density, in
the range of time intervals 0 < ¢ < 50 fs. It is interesting to
compare the perturbative calculation with the results of nonper-
turbative numerical simulations, obtained by averaging over
many independent solutions of the set of quantum/stochastic
equations of motion defined in Eq. (11) and derived in Ref. 24.
On the one hand, this provides a nontrivial test for the
perturbative scheme developed in this work. On the other
hand, it offers an estimate of the statistical accuracy which is
needed in order to resolve the effects of the interactions on the
charge propagation dynamics in non-perturbative numerical
simulations.

In Fig. 10 we present the difference between the interacting
and the free conditional probabilities P,(N,1) — PO(N, 1),
evaluated in the perturbative and nonperturbative methods (we
recall that N = 9). The shaded area represents the statistical
error in numerical simulations, which is estimated from the
variance calculated from 10 000 independent trajectories.
Accumulating this statistics required about 6 central processor
unit (CPU) hours of simulation on a regular desktop. By
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FIG. 10. (Color online) Time evolution of the charge probability
density at the right end point of the chain assuming that the hole is
initially created at left end of the chain. We compare nonperturbative
numerical calculation obtained by integrating Egs. (11) (solid line)
and the analytic perturbative calculations (dotted line). The shaded
area represents the statistical uncertainty on the nonperturbative
calculation.

contrast, the perturbative estimates took about a minute on
the same machine.

We find that the two approaches are quantitatively consis-
tent with one another, even at time scales of the order of 50 fs.
Beyond such a time scale the perturbative approach becomes
unreliable and the comparison is meaningless.

It is important to emphasize that these two methods
are based on different approximations. In particular, the
algorithm defined by Egs. (11) was obtained by neglecting the
fluctuations of the coherent fields around their functional
saddle-point solution. At such a saddle point, the forward-
and backward-propagating fields are identical, ¢'(¢) = ¢”(¢).
The leading-order perturbative estimate goes beyond such a
saddle-point condition and accounts for independent quadratic
fluctuations on ¢’(¢) and on ¢”(¢). The relatively good agree-
ment between the two calculation schemes at short times can be
used as an argument in favor of the accuracy of the saddle-point
approximation used in the nonperturbative approach.

VI. CONCLUSION AND OUTLOOK

In this work we have introduced a path integral approach
to investigate the real-time dynamics of a quantum excitation
propagating through a macromolecular system. In our starting
model, all the atomic coordinates are explicitly taken into
account, the dynamics of the quantum excitation propagat-
ing throughout the molecule is described by an effective
configuration-dependent tight-binding Hamiltonian, and the
heat bath is represented by the Caldeira-Leggett model.

By adopting the first quantization for the molecular and
the heat bath variables, and the second-quantization for the
quantum excitation variables, we have been able to analytically
trace out from the density matrix both the heat bath and
the atomic nuclear dynamics. The result is a path integral
formulated solely in terms of the quantum excitation’s degrees
of freedom. In contrast to other field-theoretic approaches
to charge transport in macromolecules,®>3® in the present
effective theory approach fluctuation-dissipation effects are
fully taken into account. In addition, the free parameters can
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be obtained directly from microscopic quantum-chemistry
calculations.

A first important advantage of our effective field theory for-
malism is that it makes it possible to describe real-time dynam-
ics in an open quantum system without employing the Keldysh
contour: Indeed, the degrees of freedom associated with the
backwards time propagation in the Keldysh formalism can be
effectively reinterpreted as antimatter components of forward-
propagating quantum fields. In this way, the path integral which
yields the reduced density matrix for the quantum excitation
becomes formally equivalent to one associated to a standard
vacuum-to-vacuum two-point correlation function, in a closed
system at zero-temperature. This formal analogy is quite
useful, as it immediately yields the Feynman rules to compute
by perturbation theory the corrections to the density matrix
due to the interaction between the propagating excitation, the
atomic coordinates, and the heat bath degrees of freedom.

The possibility of performing analytic calculations in the
weak-coupling and short-time regime opens the door to a
detailed investigation of the effects which generate quantum
decoherence in molecular systems coupled to a heat bath. We
have identified a specific Feynman diagram which dominates
the dissipation of the quantum coherence, and correlates
forward- and backward-propagating fields. In the future, it
would be interesting to perform the same calculation for a class
of simple models, in order to clarify whether the dominance
of this diagram is a universal property of all open quantum
systems, and if so unveil its physical interpretation.

For illustration purposes, we developed a coarse-grained
model and applied this formalism to investigating the intra-
chain propagation of holes in a P3HT polymer. We found that
the propagation can be described in perturbation theory up to
about 40-50 fs.

Beyond that time scale, nonperturbative approaches are
required. Since the coherent-state path integral is affected by
a dynamical sign problem, Monte Carlo approaches would be
challenging. An alternative nonperturbative approach consists
in directly integrating the quantum and stochastic equation
of motions (11) which follow from a functional saddle-point
approximation. The comparison with the analytic perturbative
calculations has shown that the underlying saddle-point ap-
proximation is quite robust. However, a large statistics seems
to be necessary in order to resolve the tiny effects of the
interaction with the heat bath and with the vibronic modes. An
alternative nonperturbative approach which would not involve
stochastic averages and MD simulations could be provided by
the self-consistent saddle-point approximation of Eq. (44). We
plan to develop and test such an approach in our future work.
Finally, an obvious direction for our future research consists
in developing the formalism to compute the electric current
induced by an external electric field.
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APPENDIX A: DETAILS ON THE VIBRONIC GREEN’S
FUNCTIONS STRUCTURE AND THE PERTURBATIVE
CALCULATIONS

In performing the path integral over the §r and y vari-
ables, we exploit the standard result for Gaussian functional
integrals:

/D¢> exp [—/ dr'dt"¢;(tA;;(t' — ") (")
0
+ / dr’ B,-(t/)¢,~(t’)+c]
0

1 t
= il exp | — / dt'dt”
detAi.,« 4 Jo

X Bi(t’)Al.;l(t/ —1")B;(") + C]

(AD)

The vibronic two-point functions A;;(t' — ¢") and V;;(t —
t"), which enter in Eq. (52), are contracted from the Green’s
functions of the LI 7, I. and L' operators:

Aij() = [LTLY'(0) = [(M378;; + y M3,8;; + Hij)
x (M2, — y Moy +Hi) | (A2)
Vi) = [EN' 0 + L1 (0) = [M (92 + va,)8i; + Hy ]
+[M (92 —yd,) 8, +Hi] (A3)

In order to compute them it is convenient to consider the
Fourier transform to frequency space. We also transform into
the normal mode basis, by applying the unitary transformation
U which diagonalizes the Hessian operators. We obtain

~ 1
Aij(w) = WU;W —iyw—Q,)
x (0* +iyw — Q)1 Uy, (A4)
(@) = U [(@ = iy — )"
J M in
+ (@ +iyw — Q) U, (A5)

where 'H;; is the Hessian, and 2, are the corresponding
normal modes. The expressions (54) and (55) for A;;(¢) and
V;(t) are obtained by Fourier transforming back to the time
representation, taking the continuum limit for the Fourier sum.

The following traces enter the derivation of the perturbative
estimate (71):

ey "y 747’1 = Npin, (A6)
—te[y " y°l = trly4¥°] = Nepin, (A7)

—tly Yy Y vyl = aly Y vy Pyl
= Nspins (A8)

wly "y vy vy vy 1 = el y vy vy Ty
= Nspina (A9)
where Ngpi, is the degeneracy number associated to the spin

of the excitation and is equal to 2 for spin-1/2 fermions and
1 for spin-0 bosons. We recall that also the dimensionality
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and definition of the y matrixes depend on the spin of the
propagating particle. In particular, for spin-O bosons they
reduce to yy = 13, and y5 = 11, where 73 and t; are Pauli
matrices.

APPENDIX B: MEASURING QUANTUM DECOHERENCE

In this Appendix we review the proof that the ratio

R(1) = Te[p*(1)]/ Tl p(1)] (B

PHYSICAL REVIEW B 88, 085428 (2013)

provides a measurement of the degree of decoherence of the
system. We first consider a pure state, denoted by the vector
| x), and we represent the corresponding density operator with

0 =1x){xl, so that Tr[p] = (x|x). The operator p?* reads
5% = 1x) O lx) (x|, while its trace is
Tr[p%] = (x|x) = (Tr[p])*; (B2)

hence R(#) = 1. For a mixed state, there is no single state
vector describing the system, and R(¢) < 1.
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