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Phenomenology of current-induced spin-orbit torques
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Currents induce magnetization torques via spin-transfer when the spin angular momentum is conserved or
via relativistic spin-orbit coupling. Beyond simple models, the relationship between material properties and
spin-orbit torques is not known. Here, we present a novel phenomenology of current-induced torques that is valid
for any strength of intrinsic spin-orbit coupling. In Pt|Co|AlOx , we demonstrate that the domain walls move in
response to a novel relativistic dissipative torque that is dependent on the domain wall structure and that can
be controlled via the Dzyaloshinskii-Moriya interaction. Unlike the nonrelativistic spin-transfer torque, the new
torque can, together with the spin-Hall effect in the Pt layer, move domain walls by means of electric currents
parallel to the walls.
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I. INTRODUCTION

Electric currents can be used to manipulate the magne-
tization in ferromagnets. This phenomenon arises from the
intricate coupling between the quasiparticle flow and
the collective magnetic degrees of freedom, and it has enabled
the development of spin-torque oscillators, spin-logic devices,
and spin-transfer torque (STT)-RAM;1 the last of these entered
the marketplace at the end of 2012. In its simplest manifesta-
tion, current-driven excitations of the ferromagnets are caused
by the STT mechanism, in which spin angular momentum
is transferred from the spin-polarized conduction electrons to
the magnetization. Recent theory2–7 and experiments8–13 have
shown that currents can also cause magnetization torques via
relativistic, intrinsic spin-orbit coupling (SOC), often referred
to as spin-orbit torques (SOTs). Relativistic SOTs provide
alternative and efficient routes for the manipulation of the
magnetization that, in contrast to nonrelativistic STTs, require
neither spin-polarizers nor textured ferromagnets.

SOTs exist in systems with structural asymmetry, which
induces a strong intrinsic SOC. Theory predicts that SOC
in combination with an applied electric field produces an
out-of-equilibrium spin density that in turn yields a torque on
the magnetization.2–8 The effect of an SOT was first detected
in strained (Ga,Mn)As (Ref. 8). The observed switching of
samples with uniform magnetization markedly differs from
the typical behavior in metallic ferromagnets, wherein a
heterogeneous magnetic texture is required to induce an STT.1

A similar switching of a single-domain ferromagnet has also
been observed in an ultrathin Co layer sandwiched between Pt
and AlOx (Refs. 9,10,14). Both SOTs2,9,10 and the spin-Hall
effect (SHE) in combination with conventional STTs14–16

have been proposed to be responsible for the switching Co
magnetization. In the last case, the SHE in the Pt layer produces
a spin current that diffuses into the Co layer, causing an STT on
the magnetization.14 Interestingly, in this system, experiments
have observed fast current-driven motion of ferromagnetic
domain walls (DWs).11,16,17 An SOC-induced antisymmetric
exchange interaction, known as the Dzyaloshinskii-Moriya
interaction (DMI),18,19 stabilizes chiral DWs20,21 with a high
DW mobility whose spin texture is very robust with respect
to high current densities.11,16,17,21–24 Highly efficient, current-
driven DW motion has also been observed in trilayers of Co

and Ni interfaced with Pt (Refs. 25,26). In both Pt|Co|AlOx

and Co|Ni|Co systems, the DWs move at high speeds and
occasionally in a direction opposite of that expected for the
nonrelativistic bulk STT.

The aforementioned experiments demonstrate that ultrathin
metallic ferromagnets in asymmetric heterostructures are
important in the design of future spintronic devices wherein
the magnetization is efficiently controlled by electric currents.
The interplay between SOC effects, such as the DMI, SOTs,
and SHE, is believed to be responsible for the remarkable
behavior of these systems. However, a detailed understanding
of their properties requires improved theoretical models that
exceed the present phenomenological framework used to
model current-induced magnetization dynamics.

In this article, we formulate a general phenomenology
of current-induced torques in systems with arbitrarily strong
spin-orbit interaction. We apply the formalism to compute
the current-driven DW drift velocity in Pt|Co|AlOx trilayers
and to identify a novel SOT. The effect of the new torque
can be manipulated via the DMI and can, together with the
SHE, induce DW motion even when the electric currents are
applied parallel to the DWs. This opens a completely new
path for controlling the dissipative current-induced torque by
engineering the interfaces in ferromagnetic heterostructures.

The magnetization dynamics of metallic ferromagnets is
well described by the Landau-Lifshitz-Gilbert-Slonczewski
(LLGS) equation1

ṁ = −γ m × Heff + m × αṁ + τ . (1)

Here, γ is (minus) the gyromagnetic ratio, m(r,t) = M/Ms

(Ms = |M|) is the unit direction vector of the magnetization
M(r,t), and Heff = −δF [M]/δM is the effective field de-
termined by the magnetic free-energy functional F [M]. The
friction processes in the magnetic system are modeled by the
Gilbert damping that is parameterized by the symmetrical,
second-rank tensor α. The last term on the right-hand side of
Eq. (1) is1

τ (r,t) = − (1 − βm×) (vs · ∇) m, (2)

and describes the current-induced torques. The torques of
Eq. (2) contain reactive and dissipative contributions. The
term proportional to the parameter β represents the dissipative
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torque because it breaks the time-reversal symmetry of Eq. (1).
The vector vs is directed along the out-of-equilibrium current
density J and is proportional to the current density, the
equilibrium spin density, and the spin polarization of the
induced current. Equation (2) is fully rotationally symmetric in
both the spin space and the coordinate space. This can be seen
by applying a global rotation operator R to the magnetization
and the spatial vectors: m̃ = Rm, ṽs = Rvs , and ∇̃ = R∇.
Separate rotations of the spin space and the coordinate space
leave the magnitude of the torque invariant

|(1 − βm̃×) (vs · ∇) m̃| = |(1 − βm×) (ṽs · ∇̃)m|.
Thus, the STT given by Eq. (2) is completely decoupled from
the symmetry of the underlying crystal lattice.

However, in systems with strong intrinsic SOC, Eq. (2)
is not sufficient to describe the magnetization dynamics. The
only possible effect of the intrinsic SOC included in Eq. (2)
is the renormalization of the β parameter. The intrinsic SOC
mediates a coupling between the spin space and the crystal
lattice. As a consequence, the system is only invariant under
proper and improper rotations that leave the crystal structure
unchanged and that act simultaneously on the spin space and on
the coordinate space. The intrinsic SOC therefore introduces
several new torques that are dependent on the orientation of
the magnetization with respect to the crystal lattice. Examples
of such SOTs have been derived theoretically by the authors
of Refs. 2–4,6,12. However, to date, a general theoretical
framework has not been developed that systematically and
correctly extends the LLG phenomenology in Eq. (1) to include
the intrinsic SOC effects.

II. THEORY

To derive our theory, we consider the most general form of
the current-induced torque in the local approximation

τ (r,t) = m × Hc[m,∇m,J ], (3)

where Hc is an effective field induced by the out-of-equilibrium
current density that is dependent on the local magnetization
direction and the local gradients of the magnetization. Here,
∇m is a shorthand notation for all the different combinations
of ∂jmi (∂jmi ≡ ∂mi/∂rj ). In the absence of an out-of-
equilibrium current density, Hc vanishes. Because our interest
is the linear response regime, we expand Eq. (3) to the first
order in J

τ (r,t) = m × η J . (4)

Here, the second-rank tensor (η[m,∇m])ij = (∂Hc,i/

∂Jj )J =0 operates on the vector J . η(r,t) completely deter-
mining the symmetry of the local torque τ (r,t) and includes
all of the current-induced torque effects. Our main aim is to
derive a general and simplified expression for η(r,t).

We will deduce the second-rank tensor η from Neumann’s
principle, which states that “any type of symmetry which is
exhibited by the point group of the crystal is possessed by every
physical property of the crystal”.27 An illustration of how this
principle imposes symmetry relations on the torque in Eq. (4)
is presented Fig. 1. As an example, let us assume that the
material has a four-fold symmetry axis along z. Figures 1(a)
and 1(b) show two systems containing a DW along the y and x
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FIG. 1. (Color online) The magnetic textures and current densi-
ties in (a) and (b) are related by a rotation of 90◦ about the z axis.
Due to the four-fold symmetry of the underlying crystal lattice, the
two cases are equivalent. Neumann’s principle implies that the local
torques on the two textures are related by a four-fold rotation. This
is illustrated in (c) and (d), which show the torque, the gradient, and
the direction of the magnetization at two equivalent points indicated
by the black arrows.

axes, respectively, with a current density applied perpendicular
to the DW. The two systems in Figs. 1(a) and 1(b) are
related by a rotation R4z of 90◦ about the z axis, which
leads to the following transformations: r̃ = R4zr, ∇̃ = R4z∇,
J̃ = R4zJ , and m̃ = |R4z|R4zm. Because the magnetiza-
tion is a pseudovector, its transformation rule includes the
determinant |R4z|. Due to the four-fold symmetry of the
system, the two cases in Figs. 1(a) and 1(b) are equivalent, and
Neumann’s principle implies that the torques induced on the
two magnetic textures are related by R4z, i.e., τ̃ = |R4z|R4zτ
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[Figs. 1(c) and 1(d)]. Thus, by applying Eq. (4), we find
that m̃ × η[m̃,∇̃m̃]J̃ = |R4z|R4z (m × η[m,∇m]J ), which
yields the following symmetry relations for η:

η[m̃,∇̃m̃] = |R|Rη[m,∇m]RT . (5)

This is the first central result of our work. We have removed
the subscript of R denoting the symmetry operation because
Eq. (5) holds for any symmetry operation that is an element
of the crystal’s point group. Although Eq. (5) determines
many symmetry aspects of the torque, the dependence of
torque on the magnetization direction and the gradients of
the magnetization means that a large number of functions can
satisfy Eq. (5). This situation closely resembles the case of the
large number of terms that can describe the magnetocrystalline
anisotropy energy of a system. Although the anisotropy energy
should obey the symmetries of the material, it is common to
approximate the dependence by the first harmonics of this
dependence.

Thus, to simplify the tensor form of η, we assume that
its components can be expressed as a series expansion in
increasing powers of mi and ∂jmi

ηij = �
(r)
ij + �

(d)
ijkmk + βijkl∂kml + Pijklnmk∂lmn + · · · .

(6)
In Eq. (6), and in the following discussion, the summation over
repeated indices is implied. The power expansion in Eq. (6)
represents a systematic scheme for deriving current-induced
torques of increasing degrees of anisotropy. The number of
terms in the expansion required to obtain a sufficiently accurate
description of the magnetization dynamics can be determined
from experimental data. As a demonstration, we limit our
discussion to the terms explicitly written in Eq. (6) because
they lead to a simple extension of Eq. (1), and similar to the
case of magnetic anisotropy, we expect the first harmonics to
provide a sufficient description of many materials.

In Eq. (6), �(r) and �(d) describe the reactive and dissipative
SOTs, respectively, that are present even in systems with uni-
form magnetization. The tensors P and β are generalizations of
the reactive and dissipative torques given in Eq. (2). Our theory
therefore demonstrates that in systems with strong intrinsic
SOC, the reactive torque is generalized to become a tensor of
rank five, while the dissipative torque parameter β becomes
a tensor of rank four. From our derived symmetry relations
in Eq. (5) and the expansion of η in Eq. (6), we find that the
tensors �(r), �(d), β, and P must satisfy the symmetry relations

�
(r)
ij = |R|Rii

′Rjj
′ �

(r)
i
′
j

′ , (7)

�
(d)
ijk = Rii

′Rjj
′Rkk

′ �
(d)
i
′
j

′
k

′ , (8)

βijkl = Rii
′Rjj

′Rkk
′Rll

′ βi
′
j

′
k

′
l
′ , (9)

Pijkln = |R|Rii
′Rjj

′Rkk
′Rll

′Rnn
′ Pi

′
j

′
k

′
l
′
n

′ . (10)

Equations (7) to (10) represent our second central result, and
they reduce the number of independent tensor coefficients and
greatly simplify the forms of the tensors. For example, in
systems that are invariant under the inversion operator Rij =
−δij , Eqs. (7) and (8) imply that �(r) = �(d) = 0. This means
that SOTs are absent in inversion-symmetric systems with
uniform magnetization.2–4,8

The tensors determined from Eqs. (5) and (6), together with
Eq. (4), represent a general phenomenology of current-induced
magnetization dynamics that correctly accounts for intrinsic
SOC effects. The torques originating from the low-order
tensors given by Eqs. (7) to (10) lead to a generalization
of Eq. (2). The torques in Eq. (2) are obtained from our
formalism by assuming a full rotational symmetry under
separate rotations of the spin space and the coordinate space.
Under these symmetry requirements, Eqs. (7) to (10) imply
that �(r) = �(d) = 0, Pijkln = Pδjlεikn, and βijkl = Pβδjkδil ,
which lead to the nonrelativistic STT in Eq. (2) when
PJ = vs . Here, δjn and εilk are the Kronecker delta and the
Levi-Civita tensor, respectively.

III. APPLICATION: Pt|Co|AlOx

Next, we consider the ferromagnetic heterostructure
Pt|Co|AlOx and apply the phenomenology to the study of
current-induced DW motion. The growth of the ultrathin Co
layer, i.e., the stacking direction, occurs along the crystallo-
graphic direction [111] (Ref. 28). We assume a fully epitaxial
system. The single Co layer has a trigonal crystal structure that
is described by the centrosymmetric point group D3d , in which
the three-fold axis of rotation is along the [111] direction.28

The Pt and AlOx layers break the inversion symmetry of the
system and reduce the symmetry group to C3v . The SOC in the
Co layer is, therefore, assumed to be invariant under the action
of C3v when the symmetry operations act simultaneously on
the spin and coordinate spaces. Thus, the allowed torques on
the magnetization in the Co layer are determined from Eq. (5)
with R ∈ C3v . In the following description, we denote the
[111] direction as the z axis, and the x axis is defined such
that the xz plane corresponds to one of the three equivalent
reflection planes of C3v .

The magnetic Co layer is modeled by the free energy
density21

F = (J/2)∂im · ∂im + D (mz∂imi − mi∂imz)

+ (Kν/2) (m · ν)2 − (Kz/2)m2
z. (11)

Here, i ∈ {x,y}, J is the spin stiffness, Kz > 0 and Kν > 0
are anisotropy constants, and the term proportional to D is
the DMI. ν = [cos(φ0), sin(φ0),0] describes the direction of
the DW. To model the DW dynamics, we apply a collective
coordinate description in which the DW is determined by
the ansatz m = [sech(μ) cos(φm),sech(μ) sin(φm), tanh(μ)],
where μ = (ν − rw)/λw. Here, λw is the DW length, which
is assumed to be static, and rw = rw(t) and φm = φm(t) are
the collective coordinates that describe the DW position and
the tilting angle of the texture, respectively. In the absence
of any external fields, the equilibrium value of φm is given
by

cos
(
φeqv

m − φ0
) = πD/2Kνλw. (12)

If πD/2Kνλw � 1 or πD/2Kνλw � −1, the equilibrium
angle is φ

eqv
m = φ0 or φ

eqv
m = φ0 + π , respectively.

We believe that the DW dynamics are dominated by the
lowest-order terms given by Eqs. (7) to (10) in combination
with the SHE torque; higher-order terms can be included
to refine the results. In contrast, a recent experiment on a
homogenous Pt|Co|AlOx system indicates that higher-order
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terms in the series expansion of η in Eq. (6) may influence the
dynamics of a single magnetic domain.12 The SHE torque is
modeled by the Slonczewski torque τ she = τ

(0)
shem × (s × m),

where s = J × ẑ is proportional to the polarization of the
spin current induced within the Pt layer by the electric
current density J = J0[cos(φe), sin(φe),0] (Ref. 14). For
the symmetry group C3v , the tensors �(r), �(d), and β are
described by 1, 5, and 14 independent tensor coefficients,
respectively, and their explicit forms can be found in Ref. 27. In
Eq. (10), we keep only the fully isotropic part Pijkln ∼ δjlεikn.
Its value is largely determined by the spin polarization of
the induced current and the equilibrium spin density. The
remaining part of Pijkln is governed by the SOC and is
therefore assumed to provide a negligible correction. A similar
simplification cannot be applied to the βijkl tensor because
even the isotropic part βijkl ∼ δjkδil is proportional to the
spin-flip rate, which is primarily controlled by the SOC. The
Gilbert damping tensor is diagonal and determined by the two
parameters αxx = αyy = α⊥ and αzz.

The equations of motion for rw and φm are29

(�ij − Gij )ȧj = γFi +
5∑

a=1

L
(a)
i , (13)

where ai ∈ {rw,φm}. The matrices �ij and Gij are
given by Gij = ∫

m · [(∂m/∂ai) × (∂m/∂aj )]dV and �ij =∫
(∂m/∂ai) · α(∂m/∂aj )dV , and Fi is the force due to

the effective field, Fi = ∫
Heff · (∂m/∂ai)dV . The current-

induced dynamics is described by the five terms L
(a)
i =∫

(∂m/∂ai) · [m × τ (a)]dV , where the superscript (a) denotes
the four torques determined from Eqs. (7) to (10) and the
SHE torque. Solving Eq. (13) in the linear response regime,
we compute our final central result, the steady-state DW
velocity

ṙw = 1

2

J0

α⊥ + 2αzz

[
τsoc cos

(
φe − φeqv

m

)

+βiso cos(φe − φ0) + βm cos
(
φe + φ0 − 2φeqv

m

)]
, (14)

where τsoc = (3πλw/2)(�(d)
zyy − �(d)

xxz + 2τ
(0)
she), βiso = βxxyy +

βxyxy + 2βxyyx + 4βzxxz, and βm = βxxyy + βxyxy . The first
term in Eq. (14) arises from the SHE torque and the dissipative
homogeneous SOT. The term proportional to βiso represents a
conventional dissipative STT term in which the current-driven

DW motion depends only on the relative angle between the
applied current and the DW direction.

The expression for ṙw of Eq. (14) also contains a new
dissipative current-induced torque that has not been previously
reported. The term proportional to βm describes a dissipative
torque that is dependent on the DW structure through the angle
φ

eqv
m . This is a purely relativistic torque because its magnitude

depends on the tensor coefficients βxxyy and βxyxy , which van-
ish in the absence of intrinsic SOC. The angle φ

eqv
m is dependent

on the DMI and can be manipulated by engineering the Pt|Co
and Co|AlOx interfaces, as demonstrated experimentally in
Ref. 26. The βm term therefore opens an exciting new path for
controlling the effective dissipative torque on the DW via the
DMI. In principle, even the sign of the total dissipative torque
arising from the βijkl tensor can be controlled by the DMI if
βm is of the same order of magnitude as βiso.

Another interesting phenomenon observed from Eq. (14)
is the current-driven DW motion induced by an electric
current applied perpendicular to the texture direction, i.e.,
J ⊥ ν. Depending on the value of φ

eqv
m , both the τsoc term

and the βm term can induce a DW motion in this case.
However, the effect requires that |πD/2Kνλw| < 1. When
J ⊥ ν, the torque efficiency of the τsoc term is maximized
for φ

eqv
m = φe(modπ ), i.e., a Bloch wall structure, whereas

the βm term attains its maximum efficiency for the angles
φ

eqv
m = φ0 + π/4(modπ/2). For J ‖ ν, Eq. (14) implies that a

Bloch wall motion is only induced by the two β terms, whereas
both the τsoc term and the β terms contribute to the motion of
Néel walls, i.e.,, when φ

eqv
m = φ0(modπ ). This is in agreement

with previously reported results.16,26

In polycrystalline or disordered systems, the discrete three-
fold rotation symmetry is averaged out, and a full rotational
symmetry about the z axis can be assumed. However, this
symmetry still allows for all tensor coefficients in Eq. (14) to
be present, and the equation remains unchanged.

IV. SUMMARY

In summary, we developed a novel phenomenology of
current-induced magnetization dynamics that is valid for any
strength of the intrinsic SOC. The formalism is applied to
the study of current-induced DW motion in the ferromagnetic
heterostructure Pt|Co|AlOx . Our results show that the current-
driven DW motion is dependent on a novel dissipative STT
that can be controlled via the DMI.
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