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RKKY interaction induced by two-dimensional hole gases
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We analytically compute the RKKY range function as induced by two-dimensional (2D) hole gases. The
bulk valence-band includes heavy-hole (HH) and light-hole (LH) states and their dynamics is described by the
Luttinger Hamiltonian which we adopt as our framework. We show that even for situations where only the lowest
HH-like subband is occupied the resulting form of the RKKY function can be very different as compared to the
one of a 2D electron gas. The associated spin susceptibility tensor has entries along the quantum-well directions
and perpendicular to it. Our formulas for the spin susceptibility tensor reveal the crucial influence of HH-LH
mixing which gives rise to large anisotropies both among the in-plane components as well as among the in-plane
components and the component perpendicular to the quantum well.
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I. INTRODUCTION

The mechanism of indirect spin interaction of nuclei1

or magnetic impurities2,3 mediated by conduction electrons
has already been found in the 1950s and has been dubbed
the Rudermann-Kittel-Kasuya-Yosida (RKKY) mechanism.
The corresponding effective Hamiltonian that describes the
induced spin interaction of two magnetic impurities is given
by

H RKKY
αβ = −G2

∑
i,j

S
(α)
i S

(β)
j χij (Rα,Rβ), (1)

where S
(α)
i denotes the ith Cartesian component of an impurity

spin located at position Rα , and G is the exchange constant for
the contact interaction between the spin density of delocalized
charge carriers with the impurity spins. In Eq. (1), χij (Rα,Rβ)
is the spin susceptibility which governs the form and range
of the RKKY interaction and is determined by quantities of
the carrier system. In the cases of an electron gas in three and
two dimensions4,5 the spin susceptibilities have a rather simple
functional form with respect to the distance R between two
impurities, given as

χ (R) ∼
{

1
R3

[ sin(2kF R)
2kF R

− cos(2kF R)
]

(3D)

J0(kF R)Y0(kF R) + J1(kF R)Y1(kF R) (2D).
(2)

Here kF is the Fermi wave vector and Jn(·) and Yn(·) are Bessel
functions of the first and second kind, respectively. It follows
from (2) that the associated Friedel oscillations decay as R−3

and R−2 for a 3D and 2D electron gas (2DEG), respectively.
Ever since its discovery, the RKKY mechanism has been

studied for a large variety of systems as it allows one not only
to determine the spin orientation of two isolated impurities but
still more importantly to obtain valuable information about the
magnetic properties of a macroscopic system. For the case of
a 2DEG recent calculations have considered the influence of
electron-electron interaction,6 Rashba7–10 spin-orbit coupling
with Dresselhaus11,12 spin-orbit coupling, and a combination
of electron-electron interaction and spin-orbit couplings.13,14

For graphene it was noticed15,16 that Friedel oscillations decay
as R−2 for the doped case and like R−3 in the undoped case.

In the case of dilute magnetic semiconductors (DMS) it has
been demonstrated17 that the experimentally found ferromag-
netic order and transition temperatures can be ascribed to the
RKKY mechanism. In this case, however, it is not mediated
by conduction electrons but by valence holes. Subsequent
theoretical studies18–22 have considered various effects that
can account for the observed magnitude of magnetization (for
a recent review see Ref. 23). Also for two-dimensional DMS it
has been suggested24–29 that the RKKY mechanism accounts
for observed phenomena. The RKKY interaction in such
two-dimensional hole systems is often modeled in the same
fashion as in the case of electrons (2), assuming a one-band
effective mass approximation. Such assumptions, however,
neglect the nonparabolic character30 of hole dispersion bands
and is therefore not always warranted.

Also taking into account the subtle effects due to non-
parapolicity by means of a numerical subband k · p theory31

calculation for a hole system based on GaAs, it has been
shown32 that the spin susceptibility tensor exhibits strong
anisotropy with the variation of the carrier density. In par-
ticular, it has been pointed out that easy-plane entries of the
spin susceptibility tensor can dominate over the easy-axis
component. This feature was attributed to the effect of heavy
hole (HH) light hole (LH) mixing which increases when the
density of the hole gas is increased.

In the present paper we provide further insight into the
mechanism of HH-LH mixing and its influence on the RKKY
range function, where we give analytical results for the spin
susceptibility tensor. This is advantageous as it allows us
to retain the explicit dependence on relevant band structure
parameters. We base this calculation on an effective Luttinger
model,33–36 and demonstrate that the anisotropy of the spin
susceptibility tensor entries is intimately connected to the
HH-LH mixed character of the hole states. Such an analytic
result for the spin susceptibility tensor of two-dimensional
hole gases is still missing in the literature and deviates from
the simple form of an equivalent electron system [Eq. (2)].

In Sec. II we give a short account of the effective Luttinger
model and define the relevant band structure parameters. In
Sec. III we outline the calculation of the spin susceptibility
tensor. Numerical results are presented in Sec. IV. Section V
contains a short summary.

085417-11098-0121/2013/88(8)/085417(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.085417


T. KERNREITER PHYSICAL REVIEW B 88, 085417 (2013)

II. MODEL

In order to calculate the RKKY interaction mediated by 2D
holes our starting point will be the 4 × 4 Luttinger model37 as it
provides a useful description of the uppermost valence band of
typical semiconductors in situations where its couplings to the
conduction band and split-off valence band can be neglected.
We adopt the Luttinger model in axial approximation, where
we neglect anisotropic terms which are usually small:

HL = H0 + H1 + H2, (3a)

H0 = − h̄2

2m0

[
γ1

(
k2

‖ + k2
z

) + γ̃1
(
k2

‖ − 2k2
z

)(
Ĵ 2

z − 5

4
1

)]
,

(3b)

H1 = h̄2

m0

√
2γ̃2({kz,k+}{Ĵz,Ĵ−} + {kz,k−}{Ĵz,Ĵ+}),

(3c)

H2 = h̄2

2m0
γ̃3(k2

+Ĵ 2
− + k2

−Ĵ 2
+). (3d)

Cartesian components of the spin-3/2 matrix vector are
denoted by Ĵx,y,z, and we use the abbreviations k± = kx ±
iky , Ĵ± = (Ĵx ± iĴy)/

√
2, and {A,B} = (AB + BA)/2. The

constants γ1 and γ̃j are materials-dependent band structure
parameters,38 where γ̃j depend also on the quantum-well
growth direction and their explicit expressions in terms of
the standard Luttinger parameters37,38 γ2 and γ3 can be found,
e.g., in Table C.10 of Ref. 39.

A potential V (z) along the z direction models the con-
finement of holes to a 2D quantum well. In the following
we assume the potential V (z) to be a hard-wall confinement
with width d. An effective Hamiltonian that describes the
lowest size-quantized orbital bound state approximately is
then obtained from (3a) by replacing kz → 〈kz〉 = 0 and
k2
z → 〈k2

z 〉 = (π/d)2.33–36 In such a way we neglect HH-LH
mixing among different orbital subbands. In order to absorb
the width dependence of our results into prefactors, we
introduce the energy scale E0 = −π2h̄2γ1/(2m0d

2) and define
wave vector components in units of π/d. Throughout this
paper we will work with dimensionless wave vectors and
dimensionless energies and include factors of π/d and E0

in the calculation where it is appropriate. The (dimensionless)
effective Hamiltonian is then given by

H 2D
L (k‖) = E0

{
1 − 2γ̄

(
Ĵ 2

z − 5
41

) + [
1 + γ̄

(
Ĵ 2

z − 5
41

)]
k2

‖
−αγ̄ (k2

+Ĵ 2
− + k2

−Ĵ 2
+)

}
, (4)

where we define the parameters γ̄ ≡ γ̃1/γ1 and α ≡ γ̃3/γ̃1

to discuss the effects of HH-LH splitting and HH-LH mixing
separately. Note that for k‖ = 0, the Hamiltonian (4) commutes
with Ĵz which has eigenvalues ±3/2 (HH) and ±1/2 (LH).
Their corresponding energies are split up which is described
by the parameter γ̄ . For k‖ 	= 0 (and α 	= 0), on the other hand,
the eigenstates of the Hamiltonian are not simultaneously
eigenstates of Ĵz, with α describing the effect of HH-LH
mixing.

III. SPIN SUSCEPTIBILITY TENSOR

In the following we will calculate the spin susceptibility
tensor for a 2D hole gas. The analytical expression for the
spin susceptibility tensor in linear response theory and for
finite temperature is conveniently given in terms of Matsubara
Green’s functions of the holes and reads40

χij (R) = kBT
∑

n

Tr
{
ĴiGωn

(R)ĴjGωn
(−R)

}
, (5)

where ωn = (2n + 1)πkBT are the Matsubara frequencies. In
the following we will consider the case of zero temperature
for which the result of the spin susceptibility tensor is
straightforwardly obtained from Eq. (5) by making in the
Green’s functions the replacements iωn → ω + iδ sgn(ω) to
obtain the retarded and advanced Green’s functions for zero
temperature.41 Furthermore, we have to replace the sum by an
integral according to kBT

∑
n → 1

2πi

∫
	1

dω, with the contour
of the integration given by 	1 = (−∞ − iδ,−iδ) ∪ (iδ,∞ +
iδ). The Green’s function in real space is calculated by a
Fourier transformation of the Green’s function in momentum
space, where the latter is given by

Gω(k‖) = 1

E0

[
ω̄ + εF − H 2D

L (k‖)
/
E0

]−1
. (6)

Here we use the abbreviation ω̄ ≡ ω + iδ sgn(ω), εF is the
Fermi energy, and again we use dimensionless quantities as
εF → E0εF and ω̄ → E0ω̄.

From Eq. (6) we obtain for the Green’s function in
momentum space (using polar coordinates):

[Gω(k‖)]ij = [A−(δi1 + δi4) + A+(δi2 + δi3)]δij

+B[e−i2φk (Ĵ 2
+)ij + ei2φk (Ĵ 2

−)ij ], (7)

with

A∓ = 1

E0

1 + k2 ∓ γ̄ (k2 − 2) − (ω̄ + εF )

[γ̄ 2(1 + 3α2) − 1]
(
k2 − k2

1

)(
k2 − k2

2

) ,

(8)

B = 1

E0

αγ̄ k2

[γ̄ 2(1 + 3α2) − 1]
(
k2 − k2

1

)(
k2 − k2

2

) ,

and δij being the Kronecker symbol. The Green’s function has
poles at

k1,2 = 1√
1 − γ̄ 2(1 + 3α2)

{ω̄ + εF − 1 − 2γ̄ 2

∓
√

(ω̄ + εF − 3)2 + 3α2[(ω̄ + εF − 1)2 − 4γ̄ 2]}1/2,

(9)

which coincide with the Fermi wave vectors35 of the two hole
states for ω̄ = 0. Thus, in order to obtain the Green’s function
in real space, we have to evaluate integrals of the form

{I ,J ,K±} =
(

π

d

)2 1

E0

∫ 2π

0

dφk

(2π )2

∫ ∞

0
dkk

× {1,k2,k2e±i2φk }eikR cos(φk−φR )(
k2 − k2

1

)(
k2 − k2

2

) , (10)

where we also use a dimensionless description for the distance
by changing R → (d/π )R and with φR being the angle
between the x axis and the axis given by the two impurities. We
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calculate these integrals by using the Cauchy integral theorem,
where we close the contour along the upper half-plane to
obtain42

I = i

4

(
π

d

)2 1

E0

H
(1)
0 (k1R) − H

(1)
0 (k2R)

k2
1 − k2

2

,

J = − i

4

(
π

d

)2 1

E0

k2
1H

(1)
2 (k1R) − k2

2H
(1)
2 (k2R)

k2
1 − k2

2

, (11)

K± = −J e±i2φR .

Here H (1)
n (·) denote Hankel functions of the first kind. From

Eqs. (7) and (11) we find for the Green’s function in real space

[Gω(R)]ij = [A−(δi1 + δi4) + A+(δi2 + δi3)]δij

+B[e−i2φR (Ĵ 2
+)ij + ei2φR (Ĵ 2

−)ij ], (12)

with

A∓ =
(

π

d

)2 1

E0

[1 ± 2γ̄ − (ω̄ + εF )]I + (1 ∓ γ̄ )J

γ̄ 2(1 + 3α2) − 1
,

(13)

B = −
(

π

d

)2 1

E0

αγ̄J

γ̄ 2(1 + 3α2) − 1
,

where we have that Gω(−R) = Gω(R). Performing the trace in
Eq. (5) for the various nonvanishing entries of the susceptibility
tensor, yields

Tr{ĴxGωĴxGω} = 3A+A− + 2A 2
+ + 9B2

+ 12A+B cos 2φR, (14a)

Tr{ĴyGωĴyGω} = 3A+A− + 2A 2
+ + 9B2

− 12A+B cos 2φR, (14b)

Tr{ĴxGωĴyGω} = 12A+B sin 2φR, (14c)

Tr{ĴzGωĴzGω} = 1
2

[
9A 2

− + A 2
+ − 18B2

]
. (14d)

Due to the appearance of the last term in Eqs. (14a) and (14b)
in-plane anisotropy of the RKKY interaction is introduced by
HH-LH mixing (α 	= 0) which is a distinctive feature of a 2D
hole system as compared to the corresponding electron system.

To obtain the final result for the spin susceptibility tensor,
we still have to integrate the terms in Eqs. (14a)–(14d) over the
frequency along the contour 	1. For this integration, we use the
method proposed in Ref. 41. Within our framework [Eq. (4)],
where we assume that only the lowest HH-like subband is
occupied, we can replace the integral along the contour 	1 by
an integral along the two lines 	2 = (−iδ,ω0 − iδ) ∪ (ω0 +
iδ,iδ), with ω0 = −εF + 1 − 2γ̄ . Note that the two lines are
below and above the branch cut in the complex frequency
plane which corresponds to the domain (ω0,∞), where the
real part under the square root in k2 is positive. The possibility
to exchange the integration domains is a consequence of
Cauchy’s integral theorem which states that the integral of
an analytic function over a closed curve is zero, which means
in our case

∫
∩ + ∫

	1
+ ∫

	2
= 0. The symbol ∩ denotes the

curve in the upper half plane extended to infinity, and the
corresponding integral gives zero as the Hankel functions
vanish in this limit. Thus we can make the replacement∫
	1

→ − ∫
	2

. We then evaluate all possible products of Hankel

functions in Eqs. (14a)–(14d), where we find∫
	2

dωf (ω)H (1)
n (k1R)H (1)

m (k2R)

= i
4

π
e−inπ/2

∫ ω0

0
dωf (ω)Kn(|k1|R)Jm(k2R), (15a)∫

	2

dωf (ω)H (1)
n (k2R)H (1)

m (k2R)

= −2i

∫ ω0

0
dωf (ω)[Jn(k2R)Ym(kjR) + Jm(k2R)Yn(kiR)],

(15b)

for n,m = 0,2 and f (ω) denotes an analytic function in ω.
In obtaining Eq. (15b) we have used the relation Kn(z) =
iπ
2 einπ/2H (1)

n (zeiπ/2) for Hankel functions that have k1 (which
is imaginary) in their argument, where Kn(·) are the modified
Bessel functions of the second kind. In addition we have
used the relation H (1)

n (zeiπ ) = −e−iπnH (2)
n (z) between Hankel

functions of the first and second kind that contain k2 and the
definition of Hankel functions in terms of Bessel functions.
The integrated products of Hankel functions involving only
k1 give zero. Using Eqs. (14a)–(14d) together with Eqs. (15a)
and (15b) we finally obtain the (semi-)analytical result for the
spin susceptibility tensor.

Considering the limit of large distances, kF R � 1, a partic-
ular simple expression can be found for the spin susceptibility
tensor, because in this case the Bessel functions can be
approximated very well by

Jn(x) ≈
√

2

πx
cos(x − nπ/2 − π/4),

(16)

Yn(x) ≈
√

2

πx
sin(x − nπ/2 − π/4),

whereas Kn(x) decays exponentially with the distance and can
be approximated as Kn(x) ≈ 0. Using these approximations
and setting φR = 0, the spin susceptibility tensor elements can
be given by the compact expression

χii(R) = χ0

∫ ω0

0
dω

[
aii + biik

2
2 + ciik

4
2(|k1|2 + k2

2

)2

]
cos(2k2R)

k2R
, (17)

with χ0 = 2m0π
2/(h̄2γ1d

2) and coefficients

axx = ayy = Z[12γ̄ (ω − ω0) − 5(ω − ω0)2],

bxx,yy = Z{[10 + 4γ̄ (1 ± 3α)](ω − ω0) − 12γ̄ (1 + γ̄ )},
cxx,yy = Z{γ̄ [γ̄ − 9α2γ̄ − 4 ∓ 12α(γ̄ + 1)] − 5},

azz = Z[36γ̄ (ω − ω0) − 5(ω − ω0)2 − 72γ̄ 2],

bzz = Z[2(5 − 4γ̄ )(ω − ω0) + 36γ̄ (γ̄ − 1)],

czz = Z{γ̄ [γ̄ (9α2 − 5) + 8] − 5}, (18)

where Z = 1
(8π2) [(3α2 + 1)γ̄ 2 − 1]−2 and k1,2 are given in

Eq. (9) with ω̄ → ω. We note that in the limit of zero HH-LH
mixing, α → 0, we find that the elements χxx(R) = χyy(R)
decay exponentially. This can be understood from the form of
the Green’s function in Eq. (12) and the spin susceptibility
tensor in Eqs. (14a)–(14d). As there are only HH states
mediating the RKKY interaction but no mixing with LH states,
only the first term in Eq. (14d) can be nonvanishing, and every
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single term in the sums vanishes identically (after integration).
The spin susceptibility tensor element χzz(R), on the other
hand, is nonvanishing and coincides with the RKKY range
function of a 2DEG in the limit α → 0.

Furthermore, we note that due to the axial symmetry of the
Hamiltonian, the result for the spin susceptibility tensor for
arbitrary φR is obtain by an orthogonality transformation of
χii(R,φR = 0) with a rotation about the z axis with an angle
φR . Of course this leaves χzz(R) invariant, and one simply
has to transform the coefficient matrices in Eq. (17), e.g.,
aii → O · diag(aii) · OT , etc.

Moreover, we find that the largest in-plane components
of spin susceptibility tensor are obtained in the case where
the axis connecting two localized impurities coincide with
their spin-quantization axis, i.e., |χxx | is largest (smallest) for
φR = 0 (φR = π/2), whereas for the magnitude of χyy the
opposite relation holds.

IV. NUMERICAL RESULTS

Now we turn to a numerical analysis to study the depen-
dence of the spin susceptibility χij (R) [Eq. (5)] on the Fermi
energy EF and the band structure parameters γ̄ and α. In
accordance with the calculation of the spin susceptibility in
the previous section, we consider only cases where only the
lowest HH-like subband is occupied.

We have checked that the result based on the analytical
approach given in the present paper agrees with the numerical
method of calculating the spin susceptibility by means of
eigenbasis functions of the Hamiltonian, i.e., by employing
the Lehmann representation for the Green’s functions.35

A. Spin susceptibility of GaAs

We start by presenting results of the RKKY range function
for the case of a [001]-grown GaAs heterostructure where the
corresponding band structure parameter values are γ̄ = 0.31
and α = 1.2. In the following examples we vary the Fermi
density EF = E0εF with the dimensionless parameters εF . In
Fig. 1 we show χij (R) (with φR = 0) as function of kF R,
for the Fermi energies εF = 0.9 and εF = 1.4, respectively.
In both plots, the Friedel oscillations decay as R−2, which is
the usual result for two-dimensional systems. By comparing
Figs. 1(a) and 1(b) we see that for lower hole densities χzz(R)
dominates, whereas for increased hole density χxx(R) becomes
the dominant entry of the spin susceptibility tensor. In Fig. 1(b)

we can also clearly see the strong influence of the HH-LH
mixing parameter α which gives rise to χxx(R) � χyy(R).

B. Full parameter dependence of spin susceptibility

Now we will consider scenarios where in addition to
the Fermi energy the band structure parameters γ̄ and α

are varied. Obviously most values will not correspond to
actual semiconductor materials. As we will see however,
such an approach allows us to elucidate the influence of
HH-LH mixing on the spin susceptibility tensor entries. Again
we discuss density ranges where only the lowest HH-like
subband is occupied. The next-to-lowest subband is either
the lowest LH-like subband or the next-to-lowest HH-like
subband. Which of the two situations is realized depends on
the value of the HH-LH splitting parameter γ̄ , which is related
to the corresponding band edge energies by ε = 1 + 2γ̄ and
ε = 4(1 − 2γ̄ ), respectively. Thus we impose the following
constraint on the Fermi energy: εF < min{1 + 2γ̄ ,4(1 − 2γ̄ )}.

To study the influence of HH-LH mixing for this general
case, it is convenient to define the following HH-LH mixing
angle35

sin θHL =
√

3αk2
F√

3α2k4
F + [√

3α2k4
F + (

k2
F − 2

)2 − k2
F + 2

]2

,

(19)

which depends only on α and kF . The Fermi wave vector kF

depends in turn on the Fermi energy εF and the band structure
parameters γ̄ and α, see Eq. (9). The modulus squared of
sin θHL tells us the amount of light hole character of the lowest
HH-like band and is therefore a measure for HH-LH mixing. In
order to show the sin2 θHL dependence on the Fermi energy as
well as on the parameters γ̄ and α, we plot in Fig. 2 sin2 θHL as
a function of γ̄ and εF for α = 1.0 (dashed lines) and α = 1.2
(solid lines). It can be seen that sin2 θHL is monotonically
increasing with εF , γ̄ , and α.

1. Anisotropy between χxx and χ yy

Now we analyze the size of in-plane anisotropy due to HH-
LH mixing, where we define the following ratio to quantify
the deviation from the isotropic case:

r ≡ χxx(R) − χyy(R)

χxx(R) + χyy(R)
. (20)

FIG. 1. (Color online) The spin susceptibility tensor entries χij (R) as a function of kF R (with φR = 0), for (a) εF = 0.9 and (b) εF = 1.4.
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FIG. 2. (Color online) Contours of sin2 θHL [Eq. (19)] in the γ̄ -εF

plane, for α = 1.0 (dashed lines) and α = 1.2 (solid lines).

We then randomly generate 1000 number triples of the struc-
ture parameters within their respective ranges γ̄ ∈ (0.2,0.4)
and α ∈ (0.9,1.4) and the Fermi energy in the range εF ∈
(0.9,1.5). Using these number triples, we calculate r and
sin θHL. The result is displayed in Fig. 3, where we plot r

(for kF R = 10 and φR = 0) versus sin2 θHL. We find a clear
correlation between the in-plane anisotropy and the HH-LH
mixing angle, showing that r is a monotonically increasing
function of sin2 θHL. The in-plane anisotropy can go up to
90%. We note that this result is not very sensitive to the choice
for kF R, provided we take values in the vicinity of a maxima
of the Friedel oscillations (and kF R � 1).

2. Anisotropy between χxx and χzz

We have seen in Fig. 1 that the dominance between χxx(R)
and χzz(R) changes with the value of the Fermi energy. This
can be attributed to HH-LH mixing because by increasing the
Fermi energy (density), hole states with larger wave vectors
are populated which exhibit a stronger HH-LH mixing.39

However, for Fig. 1 the band structure parameters γ̄ and
α were held fixed and it is not clear if other values would
give rise to a different behavior. To answer this question,
whether HH-LH mixing is indeed the underlying mechanism
for the change from easy-axis to easy-plane dominance, we
show in Fig. 4 the boundary lines of χxx(R) = χzz(R) in
the γ̄ -εF plane for various values of α, choosing kFR = 10
and φR = 0. Below the lines we have χzz(R) > χxx(R) and

FIG. 3. (Color online) The ratio r [Eq. (20)] versus sin2 θHL.

FIG. 4. (Color online) Boundaries in the γ̄ -εF plane where
χxx(R) = χzz(R), for HH-LH mixing parameter values α =
0.8,1.0,1.2,1.4 (black lines). For the area above [below] the respec-
tive line we have χxx(R) > χzz(R) [χxx(R) < χzz(R)]. Corresponding
to each value of α the red dashed lines are the contour lines for
sin2 θHL = 0.35. The yellow area is excluded by the condition that
only the lowest subband is occupied. The red star symbol indicates
the point for GaAs, where for all εF � 1.2 we have χxx(R) > χzz(R).

above the lines the opposite relation. The dashed lines are
contour lines for sin2 θHL = 0.35 associated to each value of
α. As can be seen from Fig. 4, the boundary lines where
the transition χxx(R) < χzz(R) to χxx(R) > χzz(R) occurs
almost coincides with the corresponding contour of sin2 θHL =
0.35. Figure 4 implies that an increase of the amount of
HH-LH mixing also entails an increase of χxx(R)/χzz(R)
and determines the easy-axis versus easy-plane dominance
of the impurity spins. Moreover, Fig. 4 shows that there is an
approximately universal value for the HH-LH mixing angle
sin2 θHL ∼ 0.35 at which the phase transition occurs. The
behavior of the easy-axis versus easy-plane components of
the spin susceptibility tensor can be understood intuitively by
considering the influence of a in-plane magnetic field on a
two-dimensional hole gas. An in-plane magnetic field has a
suppressed coupling to HH states,39,43 which in turn implies
a tiny Zeeman splitting. On the contrary, the coupling of an
in-plane magnetic field to LH states is not suppressed. Thus,
these features of HH and LH states get interchanged when
HH-LH mixing is promoted, and clearly leaves an imprint
in the spin susceptibility tensor. Consequently, one could
conjecture that the easy-plane components χxx and χyy are
increased with respect to the easy-axis component χzz when
HH-LH mixing increases. It is however worth emphasizing
that the transition happens not for sin2 θHL ∼ 0.5, as one would
naively expect from this argument, but for a much lower value.

So far we have considered the case of two isolated
impurities and their exchange interaction mediated by the
spin susceptibility tensor as given in Eqs. (14a)–(14d). In
semiconductor systems with a high density of magnetic
impurities it is useful to average over the distances of all
impurities assuming that they are randomly but on average
homogeneous distributed. This corresponds to taking the mean
field limit in the calculation of the Curie temperature.25 In such
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FIG. 5. (Color online) Same as in Fig. 4 but for the integrated
spin susceptibility elements χ⊥ and χ‖ [Eq. (21)].

a way the discrete sum can be replaced by an integral44

χii = nimp
∫

dRχii(R), (21)

where nimp denotes the density of impurities and we define
χzz ≡ χ⊥ and χxx = χyy ≡ χ‖ since the angular part of the
in-plane components drops out after the integration over φR ,
see Eqs. (14a) and (14b). In Fig. 5 we show the boundary lines
of χ‖ = χ⊥ in the γ̄ -εF plane for the same values of α as in
Fig. 4. Again we include the contours sin2 θHL = 0.35 as in
Fig. 4. In comparison with Fig. 4, we see that an averaging
over the distance leads to a distortion of the linear character
of the boundary lines. This is mainly due to short distance
contributions which show a different behavior. As a result, the
boundary lines do not follow the linear behavior of sin2 θHL

over the whole parameter region shown. However, we still find
that χ‖/χ⊥ is monotonically increasing with the Fermi energy

εF and the structure parameters α and γ̄ , and thus is correlated
with the HH-LH mixing angle. Exceptions to this behavior
are found for 0.6 � α � 0.8, where an increase of γ̄ does
not yield larger χ‖/χ⊥. Clearly, also the universal behavior
of Fig. 4 is lost and a transition from easy-axis to easy-plane
dominance does not happen globally close to a particular value
of sin2 θHL. For example, in the cases α = 1.4 and γ̄ � 0.3,
the phase transition occurs at sin2 θHL ∼ 0.39. Whereas for
α = 0.8, the value for sin2 θHL can be around 0.32 to still
obtain χ‖/χ⊥ > 1.

V. SUMMARY

We have calculated and analyzed the spin susceptibility
tensor of a homogeneous 2D hole gas, based on the Luttinger-
model description of the lowest valence band within axial
approximation. In such a way analytical results can be
obtained that comprise the explicit dependence on the relevant
band structure parameters. Our formulas show the important
influence of HH-LH mixing on the elements of the spin
susceptibility tensor. We find strong anisotropies both among
the easy-plane components as well as among the easy-plane
and easy-axis components. Moreover, we have pointed out
that these anisotropies are intimately connected to the HH-LH
mixed character of the hole states. In particular, we find
that the anisotropy between easy-plane components depends
only on the amount of LH character in the lowest HH-like
band, characterized by sin2 θHL [Eq. (19)]. Also, we find an
almost universal value for sin2 θHL for the switching from
easy-axis to easy-plane aligned impurity spins. In contrast, we
recover the well-known result of an 2DEG in the limit of zero
HH-LH mixing, with impurity spins aligned perpendicular to
the quantum well.
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