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Electronic Raman spectra in superconducting graphene: A probe of the pairing symmetry
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Motivated by the hot issue of the pairing symmetry of superconducting (SC) graphene, we theoretically study
the electronic Raman spectra on a two-dimensional honeycomb lattice with two possible SC pairing symmetries,
the dx2−y2 + idxy wave (d + id ′ wave) and extended s wave, at half filling and different doping levels. When it is
not doped, the Raman spectrum for d + id ′-wave pairing consists of a low-energy kink and a high-energy Raman
peak, while the spectrum for the extended-s-wave pairing is similar to that in the normal state. On the other hand,
when it is doped, besides the high-energy Raman peak, a low-energy pair breaking peak arises in both of the
two pairings, which is forbidden in the otherwise normal state graphene at the same doping level. For the Raman
spectrum of d + id ′-wave pairing, there is an energy cutoff at low energy, below which no Raman absorption is
allowed, indicating a full gap. While for the extended-s-wave pairing, with the increasing of the doping level,
the low energy Raman behavior changes from a linear line to the appearance of cutoff energy, indicating that the
gap changes from nodal to full. Therefore, we propose that the distinct features of Raman spectra can be used to
differentiate the two pairings of SC graphene.
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I. INTRODUCTION

Graphene, first isolated by Novoselov and Geim,1 is a
two-dimensional electronic system on a honeycomb lattice
with its electronic excitations being described by linear
dispersing Dirac fermions. It has attracted lots of attention
in the condensed matter community.2,3 One of the intriguing
properties of graphene is that the chemical potential can be
tuned by chemical doping4 or electrolytic gating;5 therefore it
is possible to change the type of carriers (electrons or holes)
and dope graphene far away from the Dirac point. In particular,
the carrier density can be tuned to the vicinity of the van Hove
singularities (VHSs) in the band structure,4 which occur at
1/4 electron or hole doping. Doped graphene has a finite
density of state at the Fermi level, which, combined with
the antiferromagnetic spin fluctuations around half filling,6,7

may lead to unusual superconductivity. Experimentally, su-
perconducting (SC) states have been realized in graphene by
the proximity effect through contact with SC electrodes,8–10

indicating that Cooper pairs can propagate coherently in
graphene. In addition, first principles calculations suggest that
superconductivity in graphene could be induced by sulfur
absorption11 or lithium deposition.12

To understand the superconductivity of graphene, various
theoretical researches have been done. Uchoa and Castro
Neto13 suggested that an extended-s-wave superconductor
with spin singlet bond pairing may be realized at the mean-field
level with possible phonon- or plasma-mediated mechanisms.
While in the strong correlation scenario with the well-known
resonant-valence-bond (RVB) pairing picture, Black-Schaffer
and Doniach11 found a SC state with dx2−y2 + idxy (d + id ′)
symmetry to be the lowest energy state in the mean-field
theory, which is similar to the SC state in the triangular
lattice.14,15 The d + id ′-wave SC state is interesting in that it is
topologically nontrivial and breaks the time reversal symmetry.
This pairing symmetry is also supported by the functional

renormalization group (FRG) method with on-site and nearest-
neighbor interacting terms16 and extensive variational Monte
Carlo (VMC) simulations of the repulsive Hubbard model17

when graphene is doped away from half filling. Besides, the
d + id ′-wave SC state of graphene can be obtained from the
quantum Monte Carlo (QMC) simulations of the extended
Hubbard model close to half filling.18 When it is doped near
the VHSs (at 1/4 doping), renormalization group (RG),19

FRG,20,21 and VMC20 methods all support the d + id ′ pairing.
Regardless of the microscopic mechanism, the determina-

tion of the pairing symmetry of SC graphene, both theoretically
and experimentally, is highly desirable. In this paper, we try
to figure out a method to differentiate the novel d + id ′-
wave symmetry from the extended-s-wave symmetry. Jiang
et al.22 calculated the Andreev conductance spectra through a
normal/SC graphene structure, which show different behaviors
for the two symmetries and can be used to discern them.
Here, we determine to use electronic Raman scattering as an
additional but important probe for the pairing symmetry. The
electron Raman response has been applied successfully for
detecting the pairing symmetry of cuprate superconductors23

and iron-based superconductors.24 It is, therefore, natural to
explore how it can be applied to SC graphene.

In this paper, using a tight-binding model within the
mean-field approximation11,22 and the standard Green function
method, we study theoretically the electronic Raman spectra
on a two-dimensional honeycomb lattice with d + id ′-wave
and extended-s-wave pairing symmetries at half filling and
away from half filling. We find that the electronic Raman
spectra for each pairing symmetry behave differently when
the doping level changes. At the same doping level, the Raman
spectra for the two parings are also different. At the half filling,
the Raman spectrum for d + id ′ wave shows a low-energy
kink and a high-energy Raman peak, while for the extended s

wave, the Raman spectrum is similar to that in the normal state.
When doped away from half filling, there is a low-energy pair
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FIG. 1. (Color online) Honeycomb lattice structure of graphene
consisting of two sublattices labeled as A and B. δα (α = 1,2,3) are
the nearest-neighbor vectors, which are denoted by red arrows.

breaking peak and a high-energy Raman peak. The position of
Raman peaks and the low-energy Raman behavior are different
for the two pairings; therefore they can be used to distinctively
discern them.

II. MODEL AND METHODS

Graphene consists of two sublattices labeled as A and B,
as shown in Fig. 1. Here we consider the SC pairing between
the two sublattices; then the mean-field Hamiltonian can be
written in reciprocal space as follows:11,17

H =
∑
kσ

[f (k)a†
kσ bkσ + H.c.] − μ

∑
kσ

(a†
kσ akσ + b

†
kσ bkσ )

−
∑

k

[�(k)(a†
k↑b

†
−k↓ − a

†
k↓b

†
−k↑) + H.c.], (1)

where a
†
kσ and b

†
kσ are electron creation operators on A and B

sublattices with momentum k and spin σ , μ is the chemical
potential, and f (k) is the free electron dispersion and can
be written as f (k) = −t

∑
α eik·δα with δα (α = 1,2,3) being

vectors that go from an A site to the three nearest B sites
as seen in Fig. 1. t is the hopping energy between nearest
neighbors. The SC gap function is �(k) = ∑

α �δα
eik·δα . For

the extended-s-wave pairing, �δα
= �, where � is the pairing

strength. While for the d + id ′-wave pairing, the mean-field
solution provides �δα

= �ei2π(α−1)/3 (α = 1,2,3).11 In our
calculations, we use t as the unit of energy, and set � = 0.1t .

For convenience, we rewrite the Hamiltonian as H =∑
k �

†
khk�k, where �k = (ak↑,bk↑,a

†
−k↓,b

†
−k↓)T is the

Nambu spinor and hk is a 4 × 4 Hermitian matrix associated
with the SC Hamiltonian,

hk =

⎛
⎜⎜⎜⎝

−μ f (k) 0 −�(k)

f (k)∗ −μ −�(−k) 0

0 −�(−k)∗ μ −f (−k)∗

−�(k)∗ 0 −f (−k) μ

⎞
⎟⎟⎟⎠ .

(2)

By diagonalizing hk, we can obtain the eigenvalues Ek,m (m =
1,2,3,4) and the corresponding eigenvectors |k,m〉. Then the
Matsubara Green function G(k,iωn) [ωn = (2n + 1)πT is the
Matsubara frequency with T the temperature] can be written

in the form of 4 × 4 matrix as

G(k,iωn) =
4∑

m=1

|k,m〉〈k,m|
iωn − Ek,m

, (3)

which forms the basis for further calculations.
Next, we calculate the electronic Raman spectra for

SC graphene. The electronic Raman scattering measures
the fluctuations of the effective density operator ρq =∑

kσ γkC
†
k+qσCkσ in the limit of q → 0. Here q is the

momentum transfer from the lights, which is vanishingly
small. γk is the Raman vertex which describes the second-order
coupling between electrons and lights. In the case of small
momentum transfers and the energy of incident light smaller
than the optical band gap, it can be written in terms of the
curvature of normal state energy band dispersion.23 In our
case, in the matrix form, it can be written as

γk = (ni · ∇k)(ns · ∇k)hk|�(k)=0, (4)

in which ni and ns are unit vectors for the polarizations
of the incident and scattered lights. The bare electronic
Raman response function can be written as23 χ0

γ γ (iνn) =∫ β

0 dτeiνnτ 〈Tτ [ρq(τ )ρ−q(0)]〉, where Tτ is the complex time
τ ordering operator, β = 1/T with T the temperature. By
further calculations, it can be written as

χ0
γ γ (iνn) = − T

N

∑
k,iωn

Tr[γkG(k,iωn)γkG(k,iωn + iνn)],

(5)

where N is the number of lattice sites, and G is the single
particle Green function given above.

The long-range Coulomb interactions between the fluctuat-
ing electrons have a screening effect on the electronic Raman
scattering. By virtue of the random-phase approximation
(RPA), the effect of Coulomb screening on the electronic
Raman response function can be written as23,25,26

χγγ = χ0
γ γ + χ0

γ 1χ
0
1γ

v−1
q − χ0

11

, (6)

where χ0
γ 1 and χ0

11 are obtained by replacing one or two
momentum-dependent vertices γk by a constant matrix

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ (7)

in χ0
γ γ . The −1 terms in the matrix originate from the particle-

hole transform. vq in Eq. (6) is the Fourier transform of the
Coulomb interaction and v−1

q ∼ q for graphene. In the limit
of q ∼ 0, v−1

q is negligible and the electronic Raman response
function can be further written as

χγγ = χ0
γ γ − χ0

γ 1χ
0
1γ

χ0
11

. (8)

The Raman intensity (RI) is finally determined by
− 1

π
Imχγγ (iνn → ω + iη), in which ω is the Raman shift.
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To better understand the electronic Raman spectra, we also
calculate the spectral weight at the Fermi surface (FS) and the
density of states (DOS), which could be, respectively, obtained
by

A(k,ω = 0) = − 1

π
Im[G11(k,ω = 0) + G22(k,ω = 0)

+G33(k,ω = 0) + G44(k,ω = 0)], (9)

and

ρ(ω) = − 1

πN

∑
k

Im[G11(k,ω + iη) + G22(k,ω + iη)

+G33(k, − ω + iη) + G44(k, − ω + iη)]. (10)

III. RESULTS AND DISCUSSION

We now present and discuss the numerical results. First, we
show the amplitude of the gap function in the reciprocal space
for d + id ′-wave and extended-s-wave pairing symmetries,
which behave differently and can be seen in Fig. 2. From
Fig. 2(a), we can see that the gap amplitude is zero at one
Dirac point K , but is at a maximum at the other Dirac point K ′
for the d + id ′-wave pairing. While for the extended-s-wave
pairing, the amplitude of the gap is zero at both the Dirac points
as shown in Fig. 2(b). This difference will lead to different
behaviors of SC graphene, such as spectral weight on the FS,
DOS, and electronic Raman spectra, which will be shown later.

We have done calculations at half filling (μ = 0) and
at different electron/hole doping levels. We found that the
electronic Raman spectrum for the SC state graphene with
a certain pairing symmetry and at a certain doping level is
independent of the light polarization configuration. Besides,
the Raman spectra are the same for the same doping level, no
matter whether it is electron doped or hole doped. These two
behaviors of the Raman spectra are the same as those in the nor-
mal state graphene.27 To check our calculations on the SC state
graphene, we set the SC pairing strength � = 0, and found the
Raman spectra can return to results of normal state graphene,
which partly proves the correctness of our calculations.

Then we show and discuss the results at half filling and
two electron doped cases, which, respectively, correspond to
chemical potential μ = 0, μ = 0.5t , and μ = t (doping to the
VHSs). At μ = 0, all the results, including spectral weight at

FIG. 2. (Color online) Amplitude of the gap |�(k)| in the
reciprocal space for the (a) d + id ′ wave and (b) extended s wave.
Here we set the pairing strength � = 0.1t . The amplitude can be seen
from the color bar. The black hexagons indicate the Brillouin zone
(BZ) boundary, with K and K ′ being Dirac points on the corners of
it and the M point at the middle of the K and K ′ points.

FIG. 3. (Color online) The results for μ = 0. (a), (b), and (c),
respectively, show spectral weight at the FS, DOS, and Raman spectra
(Raman intensity of the screened Raman response function as a
function of Raman shift) for d + id ′-wave pairing. For extended-
s-wave pairing, the corresponding results are shown in (d), (e), and
(f). In the figures of the DOS and Raman spectra, lines in the color of
blue and green, respectively, denote results in the SC state and normal
state. In (b), the inset shows the DOS around the Fermi level μ = 0.
Note that RI in the vertical ordinates of (c) and (f) is an abbreviation
for Raman intensity.

the FS, DOS, and Raman spectra for d + id ′-wave pairing and
extended-s-wave pairing can be seen in Fig. 3. For comparison,
the DOS and Raman spectra in the normal state are also
drawn (in green lines). For the d + id ′-wave pairing state,
by enlarging Fig. 3(a), we find that the FS near K and K ′ are
four points instead of one point in the normal state. Near the K

point, one of the four Fermi points is at the K point; the other
three points are centered around the K point and along the three
�-K directions. The FS at K ′ points can be obtained from that
of the K point by revolving 60◦ around the center of the first
BZ. Although the gap for d + id ′ pairing is different for K and
K ′ points, the FS is similar because of the symmetry between
the two sublattices of graphene. Reviewing the amplitude of
the gap |�(k)| in Fig. 2(a), we can see that though a gap opens
at K ′, it is zero at the K point. Therefore, the amplitude of the
DOS is not zero around ω = 0 as seen in Fig. 3(b). To see this
more clearly, an inset is plotted, from which we can see that
two kinks arise at ω = ±0.3t and the DOS at ω = 0 is higher
than that of the normal state. The kinks originate from the
SC pairing gap at K ′ with the gap amplitude |�(k)| = 0.3t ,
which can be seen from the color bar of Fig. 2(a). At the
other range of energy, the DOS is the same as that of the
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normal state graphene. For the electronic Raman spectrum,
it is well known that a pair breaking peak (PBP) appears at
ω = 2|�(k)|. In this case, a kink arises at around ω = 0.6t

[Fig. 3(c)]. This also originates from the SC pairing gap at K ′.
At the other range of energy, the Raman absorption comes from
the vertical excitations from the valence band to the conduction
band. We can see that the Raman intensity is finite and reaches
a maximum at ω = 2.5t , which overlaps with the Raman
spectrum of normal state graphene.27 For extended-s-wave
pairing, since the gap is zero at the Dirac points [Fig. 2(b)],
the FS and DOS at μ = 0 [Figs. 3(d) and 3(e), respectively]
are the same as those of the normal state graphene. For the
Raman spectrum [Fig. 3(f)], it also follows that of the normal
state except that the intensity is a little higher at high energy.
As is known, the position of the Raman peak (Raman shift) is
more meaningful, from which we can obtain the information
of the SC gap or quasiparticle excitation gap. Therefore, the
small difference of Raman intensity between the SC state and
normal state can be ignored. From the results above, we can
see that the Raman spectra are different for the two pairings
at μ = 0, but since the Raman spectrum for extended-s-wave
pairing can not be easily distinguished from the normal state
one, more features of the spectra are needed. We then show
Raman spectra for the two pairings in doping cases.

At μ = 0.5t , the results are shown in Fig. 4. The FS of
normal state graphene at this doping level is six near-triangles
centered at the six Dirac points (not shown here). While for
the SC state graphene, the SC gap opens on the FS. For
the d + id ′-wave pairing, Fig. 4(a) shows that the gap on the
near-triangle is anisotropic. While for the extended-s-wave
pairing, Fig. 4(d) shows that the gap is isotropic. These are

FIG. 4. (Color online) The same plot as Fig. 3 but for μ = 0.5t .
For the DOS in (b) and (e), only the results around the Fermi level
are shown.

understandable by comparing the shape of the FS and the
amplitude of the gap on it in Fig. 2. The opening of the gap on
the FS for the two pairings can also be seen from the DOS in
Figs. 4(b) and 4(e). For the d + id ′-wave pairing, the amplitude
of the DOS is nearly zero for −0.1t < ω < 0.1t and can be
viewed as a full gap. For the Raman spectrum [Fig. 4(c)], it
follows that of the normal state at ω > t . Below ω = t , where
Raman absorption is forbidden in the normal state, a PBP arises
in the SC graphene with d + id ′-wave pairing. Particularly, for
ω < 0.2t , there is also no Raman absorption, indicating the SC
gap is full. While for the extended-s-wave pairing, the DOS is
zero only at ω = 0 [Fig. 4(e)], and, therefore, can be viewed
as a nodal gap. This leads to a linear Raman spectrum at low
energy as shown in Fig. 4(f). In this figure, Raman absorption
is forbidden at 0.5t < ω < t , which can be understood from
the fact that besides the SC pair breaking Raman peak, the
zero-momentum interband particle-hole excitation needs a
threshold energy 2μ (equals to t here), below which there is no
phase space for the excitation. For ω > t , the Raman spectrum
is the same as that of the normal state graphene at μ = 0.5t .
From these results, we can see that the Raman spectrum for SC
graphene with the two pairings behaves differently at μ = 0.5t

and can be used to discern them.
At μ = t , it is doped to the VHSs. The FS in the first BZ

for the normal state graphene is a hexagon with the vertices
located at M points which is labeled in Fig. 2. For the SC state,
a gap opens on the FS, which can be seen in Figs. 5(a) and
5(d) for d + id ′- and extended-s-wave pairings, respectively.
From the DOS in Figs. 5(b) and 5(e), we can see that the
gaps at the FS are full for both of the two pairings. For the
d + id ′-wave pairing, the DOS is zero at −0.1t < ω < 0.1t ,
and two van Hove singularity peaks arise at ω = ±0.2t ,
leading to a Raman peak at ω = 0.4t and an energy cutoff at

FIG. 5. (Color online) The same plot as Fig. 4 but for μ = t .
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ω = 0.2t , below which Raman absorption is forbidden [Fig.
5(c)]. While for the extended-s-wave pairing, the DOS is zero
at −0.1t < ω < 0.1t and the two van Hove singularity peaks
arise at ω = ±0.1t ; therefore, the PBP is at ω = 0.2t , below
which there is also an energy cutoff for Raman absorption
[Fig. 5(f)]. For the two pairing symmetries, beyond the Raman
peak, the Raman spectra for SC graphene are similar to those
in the normal state. These are understandable since the SC
gap only influences the DOS around the FS, away from which
the DOS is barely changed.

We have not mentioned the effect of Coulomb screening
on the Raman spectrum of SC graphene. By comparison, we
find that when it is not doped (at μ = 0), the Raman spectrum
obtained from the screened response function is the same as
that obtained from the bare one. While when it is doped, for
example, at μ = 0.5t and μ = t discussed above, the intensity
of pair breaking peak obtained from the screened response
function decreases slightly compared with that obtained from
the bare one, but the positions of the peak (Raman shift)
are the same for the two cases. For the high-energy Raman
peak, the bare and screened Raman spectra overlap with
each other, which are the same as those of the normal state
graphene.27 Experimentally, it is the screened Raman spectra
that could be detected.

From the results above, we find that the Raman spectra for
each pairing symmetry are different when the doping level
changes, i.e., for d + id ′-wave pairing, when it is not doped,
the Raman spectrum has a low-energy kink and a high-energy
Raman peak. When it is doped, there is a low-energy SC PBP,
below which there is an energy cutoff. No Raman absorption
is allowed below the cutoff energy, indicating a full gap. While

for extended-s-wave pairing, when it is not doped, the Raman
spectrum is similar to that of the normal state graphene. When
it is doped, there is also a low-energy SC PBP. When the doping
level increases, the low energy behavior changes from a linear
line to the appearance of cutoff energy, indicating that the gap
changes from nodal to full. Besides, the Raman spectra of the
two pairing symmetries at the same doping level are also differ-
ent. These features of Raman spectra can be used to discern the
d + id ′-wave and extended-s-wave pairings of SC graphene.

IV. CONCLUSION

In conclusion, we theoretically studied the electronic
Raman response of SC graphene with two possible pairing
symmetries (d + id ′ wave and extended s wave) at half filling
and different doping levels. We found that the electronic
Raman spectra for each pairing symmetry behave differently
when the doping level changes. At the same doping level, the
Raman spectra for d + id ′- and extended-s-wave parings are
also different. From the number and position of Raman peaks,
as well as the low energy Raman behavior, the two pairing
symmetries can be clearly discerned.
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