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Entanglement in quantum impurity problems is nonperturbative
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We study the entanglement entropy of a region of length 2L with the remainder of an infinite one-dimensional
gapless quantum system in the case where the region is centered on a quantum impurity. The coupling to this
impurity is not scale invariant, and the physics involves a crossover between weak- and strong-coupling regimes.
While the impurity contribution to the entanglement has been computed numerically in the past, little is known
analytically about it, since in particular the methods of conformal invariance cannot be applied because of the
presence of a crossover length. We show in this paper that the small coupling expansion of the entanglement
entropy in this problem is quite generally plagued by strong infrared divergences, implying a nonperturbative
dependence on the coupling. The large coupling expansion turns out to be better behaved, thanks to powerful
results from the boundary CFT formulation and, in some cases, the underlying integrability of the problem.
However, it is clear that this expansion does not capture well the crossover physics. In the integrable case—which
includes problems such as an XXZ chain with a modified link, the interacting resonant level model or the
anisotropic Kondo model—a nonperturbative approach is in principle possible using form factors. We adapt in
this paper the ideas of Cardy et al. [J. Stat. Phys. 130, 129 (2008)] and Castro-Alvaredo and Doyon [J. Stat.
Phys. 134, 105 (2009)] to the gapless case and show that, in the rather simple case of the resonant level model,
and after some additional renormalizations, the form-factors approach yields remarkably accurate results for the
entanglement all the way from short to large distances. This is confirmed by detailed comparison with numerical
simulations. Both our form factor and numerical results are compatible with a nonperturbative form at short
distance.
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I. INTRODUCTION

Quantum entanglement has given rise to much work in
the condensed-matter community as a new way to explore
interesting aspects of physical systems. The Kondo problem,
for instance, has been revisited along these lines, with studies
addressing the interplay between the impurity screening and
the information shared between the impurity and the bath.1,2 It
is certainly reasonable to expect that entanglement—together
with other quantities inspired by quantum information theory,
such as the Loschmidt echo or the work distribution—might
shed new light on, and offer new experimental/numerical
probes of, the key physical features of the Kondo and
other problems.1,3 A particularly interesting question in this
direction is whether the Kondo screening cloud—which has
had so elusive an appearance in standard thermodynamic
quantities4—might play a bigger role in quantum information
aspects. Other aspects of interest in the context of two-level
systems interacting with gapless excitations—generalizing
the Kondo problem—apply to the decoherence of qubits
interacting with the environment.5–7

A large part of the work combining entanglement and
quantum impurities has been numerical so far. Indeed, apart
from the scale invariant situations, where conformal invariance
techniques have led to spectacular progress,8,9 the general

situations involving crossover are very difficult to tackle. This
is mostly because the entanglement is a different kind of
quantity, not amenable to simple Bethe-ansatz calculations, for
instance. There is, however, another reason for the relative lack
of analytical results in this area: entanglement, being a zero-
temperature quantity, is naturally plagued by IR divergences,
which make it nonperturbative in the impurity strength. In that
respect, it does behave somehow like some properties of the
Kondo screening cloud studied in Refs. 4 and 10.

In order to clarify the main features of entanglement in the
presence of impurities—in particular its scaling properties, and
flow from small to strong coupling—we focus in this paper on a
couple of representative situations, which we handle by a mix
of analytical and numerical techniques. The lessons learned
will be put to use in forthcoming papers, with applications of
more direct physical interest.

The paper is organized as follows. In Sec. II we discuss
the basic models we want to study, and define precisely
the entanglement entropy. In Sec. III we put together the
perturbative calculation of the entanglement at small coupling,
and show that it is plagued by strong IR divergences. In
Sec. IV we discuss this difficulty in a more general context.
In Sec. V we show how the nonperturbative nature of the
entanglement entropy can be obtained using general conformal
field-theoretic arguments. In Sec. VI we recall the principles
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of the large coupling expansion proposed in Ref. 2 and
carried out to high order in Ref. 11. When the dimension
of the perturbation is h = 1

2 , we develop in Sec. VII the
form-factor approach using the results of Refs. 12 and 13, and
obtain nonperturbative approximations for the entanglement
extrapolating all the way from the UV to the IR limit. Finally, in
Sec. VIII we compare our results with those of exact numerical
calculations on large spin chains. The conclusion contains
some last comments and prospect for future work. Finally, the
Appendix contains a discussion of the equivalence between
our impurity models when the dimension of the perturbation is
h = 1

2 to the boundary Ising model with a boundary magnetic
field at special values of the coupling.

II. MODELS AND QUESTIONS

The main problem we study in this paper—though it
has various, mathematically equivalent formulations (see
below)—is the calculation of the entanglement of a region
of length 2L centered on an “impurity” in an otherwise one
dimensional, gapless quantum system. We characterize this
entanglement by the von Neumann entropy S = −Trρ ln ρ,
where ρ is the reduced density matrix that has been formed by
tracing over the degrees of freedom outside of the segment of
length 2L.

An example of this setup is obtained by taking two semi-
infinite XXZ chains coupled by a weak link:

H =
−1∑
−∞

J
[
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

]

+
∞∑
1

J
[
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i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

]
+ J ′[Sx

0 Sx
1 + S

y

0 S
y

1 + �Sz
0S

z
1

]
. (1)

The bulk chains are in a gapless Luttinger liquid phase for
−1 < � � 1. We shall consider the case of anisotropy � <

0, where the tunneling between the two half infinite chains
is a relevant perturbation, and one observes healing at large
scales. The case � = 0 is exactly marginal. We parametrize
� = − cos μπ

2 , μ ∈ [0,1]. We focus on the physics at energies
much smaller than the bandwidth, where field-theoretic results
can be applied.

Consider then the entanglement of a region of length 2L

centered on the modified link. We can easily surmise what this
entanglement will look like in the high- and low-energy limits
from the existing literature. Indeed, at high energy, the system
is effectively cut in half. Using the well-known formula for
the entropy of a region on the edge of a conformal invariant
system we have

SUV = 2 ×
[

1

6
ln

2L

ε
+ s1

2
+ ln g

]
= 1

3
ln

2L

ε
+ s1 + ln gUV,

(2)

where we used that the central charge is unity, ε is a UV cutoff
of the order of the lattice spacing a, and ln gUV = 2 ln g where
ln g is the boundary entropy14 associated with the conformal
boundary condition corresponding to an open XXZ spin chain.

The remaining constant term s1 is nonuniversal as it obviously
depends on the definition of the cutoff ε.

On the other hand, at low energy, healing has taken place,
the system behaves just as one ordinary quantum spin chain,
and the entropy obeys the general form for a region of length
2L in the bulk of a conformal invariant system:

SIR = 1

3
ln

2L

ε
+ s1 + ln gIR. (3)

Here, we have allowed for a term ln gIR, which can be thought
of as a residual contribution of the weak link at low energy.
In general, comparing entanglements for bulk and boundary
theories is indeed difficult, since the dependency of the cutoff
ε on the physical cutoff (the lattice spacing in the spin chain
a, which is the same in both geometries) is not universal,
and not necessarily the same in the bulk and boundary cases.
This important aspect is discussed in detail in Ref. 13; see
in particular Sec. 6.2.1 in that reference. The point for us
is that the quantity ln gUV − ln gIR is well defined, and its
value ln gUV − ln gIR = − 1

2 ln μ can be easily obtained from
the folded version of the system [see Eq. (6) below].

More generally, since the bulk behavior of the entanglement
entropy is not modified, it is natural to expect the existence of
a scaling relation

S(L) − SIR = Simp(LTB), (4)

where the crossover scale TB is expected to be related to the
coupling J ′.Simp should be a monotonic function extrapolating
between − 1

2 ln(μ) at small values of the argument and 0 at large
values.

To proceed, and conveniently describe the field theory
limit,15 we first observe that the problem, at low energy, can
be turned into a purely chiral one. Indeed, in the low-energy
limit, each half chain is equivalent to a combination of L and
R moving excitations, and we formally map via a canonical
transformation the L moving sector into a R moving one so
as to have two chiral “wires” representing the two half chains.
The additional tunneling between the two chains becomes,
in this language, a hopping term between two chiral wires.
Bosonizing, forming odd and even combinations of the bosons
for each wire, one finds that the odd combination decouples,
while the even one obtains the simple Hamiltonian

H =
∫ ∞

−∞
dx (∂xφR)2 + λ cos βφR(0), (5)

where β2

8π
= μ ≡ h is the conformal weight of the perturbation,

and we have set the Fermi velocity vF = 1. The dimension of
the perturbation being [length]−μ, we see that TB ∝ λ1/(1−μ) ∝
(J ′)1/(1−μ). One can also fold back this problem into the
boundary sine-Gordon model (BSG) with Hamiltonian

HBSG =
∫ 0

−∞
dx

1

2
[(∂x
)2 + �2] + λ cos

β

2

(0). (6)

This shows equivalence to a large variety of other problems,
including the one of tunneling between edge states in the
fractional quantum Hall effect (FQHE).16,17 In this case, μ = ν

is the filling fraction. The RG flows from Neumann (λ = 0)
to Dirichlet (λ = ∞) boundary conditions (BCs), and the
boundary entropy associated with these conformally invariant
BCs satisfy ln gUV − ln gIR = − 1

2 ln μ, as claimed earlier.
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An interesting variant involves modifying two successive
links on the chain:

H =
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This is equivalent to tunneling through a resonant level at the
origin. This time, the dimension of the tunneling operator is
half what it is in the previous situation, J ′ is always relevant for
−1 < � � 1, and the system is always healed at low energy.
The same series of manipulations—“unfolding the two half
chains,” forming odd and even combinations, decoupling the
odd one and bosonizing—leads to the Hamiltonian formula-
tion

H =
∫ ∞

−∞
dx(∂xφR)2 + λ[ei(β/

√
2)φR (0)S− + e−i(β/

√
2)φR (0)S+],

(8)

where we recall that β2

8π
= μ. In this case, the dimension of

the perturbation is h = μ

2 (note the factor 1
2 compared with

the first case). The problem can also be folded back into the
anisotropic Kondo problem

HAK =
∫ 0

−∞
dx

1

2
[(∂x
)2 + �2] + λ[ei(β/2

√
2)
(0)S−

+ e−i(β/2
√

2)
(0)S+]. (9)

Of particular interest is the case � = 0, μ = 1 which
corresponds to free fermions. While the chain with one weak
link is marginal, the chain with two weak links describes an
interesting flow, and is in fact equivalent to a widely studied
problem—that of the resonant level model (RLM). Indeed,
fermionization in this case leads to

H = −J

( −2∑
−∞

c
†
m+1cm + H.c.

)
− J

( ∞∑
1

c
†
m+1cm + H.c.

)

− J ′(c†−1c0 + c
†
0c−1 + c

†
0c1 + c

†
1c0), (10)

where we have redefined the couplings J → −2J and J ′ →
−2J ′. When going to the continuum limit, the i = 0 site
behaves like a two-level impurity, and the Hamiltonian reads

H =
∫ 0

−∞
i[ψ†

1L∂xψ1L − ψ
†
1R∂xψ1R]dx

+
∫ ∞

0
i[ψ†

2L∂xψ2L − ψ
†
2R∂xψ2R]dx

+ λ[(ψ†
1(0) + ψ

†
2(0))d + H.c.], (11)

with ψ1L(0) = ψ1R(0) ≡ ψ1(0), same for the second species,
λ ∝ J ′.18 In contrast with the case of the XX chain with
a single defect, this noninteracting problem is not scale
invariant. The coupling λ flows, and the system again exhibits
healing: at low energy, the impurity level is completely
hybridized with the two half chains.

Let us go back to the general case � = − cos πμ

2 . Pro-
ceeding like before, we can write the limiting behaviors of
the entanglement entropy. At low energy, the impurity is
hybridized, the system behaves just as one nonchiral wire and
a hybridized impurity, and the entropy obeys the general form
for a region of length 2L in the bulk of a conformal invariant
system decoupled from the two baths, so

SIR = 1

3
ln

2L

ε
+ s1 + ln gIR, (12)

where once again, we included a term gIR that accounts for the
remaining boundary condition at x = 0 of the hybridized im-
purity. Meanwhile, at high energy, the impurity is completely
decoupled from the wires, and one gets

SUV = 2 ×
[

1

6
ln

2L

ε
+ s1

2
+ ln g

]

= 1

3
ln

2L

ε
+ s1 + ln gUV. (13)

Using the folded (boundary) version of the system (9), one
can easily argue that ln gUV − ln gIR = ln 2, as a decoupled
impurity has two degrees of freedom. One thus expects a
behavior entirely similar to (4), where the crossover scale TB is
expected to be proportional to a power of the coupling square,
TB ∝ λ2/(2−μ), and Simp should be a monotonic function
extrapolating between ln 2 at small values of the argument
and 0 at large values.

Finally, we note that in the boundary versions (6) and (9),
the entanglement impurity we have discussed is now the
entanglement of a region of length L on the edge of the system
with the rest. If one were to start from an (anisotropic) Kondo
version, this would be the most natural point of view.1

There are of course other variants of the problem,
for instance involving a slightly modified link in the
antiferromagnetic XXZ chain with � > 0, interactions in
the RLM model, etc. In all these cases, we should stress that
the geometry we are considering is probably not the most
interesting: considering the entanglement of the two halves
connected by a weak link or a quantum dot is probably more
physical. This latter problem is however significantly more
difficult technically. We will discuss it in our next paper,
relying on the present work as a stepping stone.

III. UV PERTURBATION

The most natural way to explore the behavior of Simp(LTB)
between the fixed points is to use perturbation theory. The
required calculation is a modification of the one proposed in
Refs. 8,9, and 19. Using the well-known replica trick, one first
observes that the entanglement entropy S can be obtained
from the Renyi entropies Rn = Trρn by considering S =
− limn→1

∂
∂n

Rn.The Renyi entropies in turn can be obtained
as Rn = Zn

(Z1)n , where Zn is the partition function on a n-
sheeted Riemann surface Rn,1 with the sheets joined at a cut
corresponding to the segment of length 2L. The difference
between the problem at hand and the conformal case is
that now there is a perturbation inserted at the origin in the
Hamiltonian formulation, which corresponds to the insertion
of a perturbation along an imaginary time line for each of
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the n sheets. The modified partition functions Zn can in
principle be expanded in powers of the coupling constant,
and perturbative corrections to the Renyi entropies and the
entanglement entropies finally obtained.

To see what happens in more detail, we consider first
Hamiltonian (5). We start with n = 2 sheets, and write formally
the Renyi entropy as a functional integral for a pair of chiral
bosons as

R2 = Z2

(Z1)2
=
∫

twist[Dφ1][Dφ2] exp
{−A[φ1] − A[φ2] − λ

∫∞
−∞ [V1(x = 0,y) + V2(x = 0,y)] dy

}
(∫

[Dφ] exp
{−A[φ] − λ

∫∞
−∞ V (x = 0,y)dy

})2 , (14)

where Vi = cos βφi is the perturbation, and A[φ] =∫
d2xL[φ] is the free action. Note that we are working in

the chiral version, but have suppressed the “R” label in the
fields for simplicity of notation. Finally, the label twist means
the functional integral is evaluated with conditions around the
cut,

φ1(−L � x � L,y = 0+) = φ2(−L � x � L,y = 0−),
φ2(−L � x � L,y = 0+) = φ1(−L � x � L,y = 0−).

(15)

If λ = 0, the ratio (14) is nothing but the correlation function
of an (order 2) twist operator corresponding to (15), which we
will write then as8,19

R2(λ = 0) = z2

z2
1

= 〈τ2(L,0)τ̃2(−L,0)〉L(2),C ∝ L−1/8, (16)

where 〈· · ·〉L(2),C means that the correlator is to be evaluated in
the plane C = R2 (worldsheet) with the Lagrangian L(2) =
L[φ1] + L[φ2]. We also recall that in general, the scaling
dimension of the twist operator τn reads hn = c

24 (n − 1/n).
We now consider the perturbation expansion in powers of λ.
For the denominator, we have immediately

D = d2; d = z1[1 + λ2

2

∫
dydy ′ 1

2|y − y ′|2μ
+ · · ·],

(17)

where the factor 1/2 in the integral comes from the 1/2’s in the
cosines, and we recall that μ is the conformal weight μ = β2

8π

of the perturbation.
For the numerator, things are a little more complicated since

we have two types of fields on the plane, with 1 − 1,1 − 2,

and 2 − 2 contractions, in the presence of the gluing conditions
along the cut. To proceed, we uniformize. We start with the
complex coordinates w = x + iy, and introduce

z =
(

w − u

w − v

)1/2

, (18)

where u = L and v = −L are the complex coordinates of the
cut’s extremities. This maps the whole two-sheeted Riemann
surface R2,1 to the z-complex plane C. We then write (14) as

R2

R2(λ = 0)
= 1 + λ2

2

∫
dwdw′〈cos βφ(w) cos βφ(w′)〉R2,1(
1 + λ2

2

∫
dydy ′ 1

2|y−y ′ |2μ

)2

+ · · · , (19)

where the spatial integrals in the numerator are now over R2,1

(worldsheet), and we have a unique boson φ instead of φ1 and
φ2. Here the integrals in the numerator correspond to insertions
along two lines, corresponding to the two copies of the theory,
so overall there are four possible terms (contractions). The
perturbation V = cos βφ is a primary operator, so we can
calculate the correlations on R2,1 by using the conformal
mapping (18). We have

2 × 22μ〈cos βφ(w) cos βφ(w′)〉R2,1

= (u − v)2μ

N
2μ

12 (w − u)μ/2(w − v)μ/2(w′ − u)μ/2(w′ − v)μ/2
.

(20)

Here,

N12 = (w − u)1/2(w′ − v)1/2 − (w′ − u)1/2(w − v)1/2. (21)

In (19) we have to integrate w,w′ both over the imaginary
axis w = iy, but also over the second sheet, which is obtained
by sending (w − u) → e2iπ (w − u) and the same for w′. This
means we end up with two integrals where w,w′ are on the
same sheet, and two where they are on different sheets.

Replacing everything by the particular choice of coordi-
nates, and expanding the denominator in (19) we get

R2

R2(λ = 0)
= 1 + λ2

4
× 2

∫ ∞

−∞
dydy ′[Gsame(y,y ′)

+Gdiff (y,y ′)] + · · · , (22)

where the factor 2 comes since there are two sheets, and
insertions can be on the same or different sheets, so

Gsame(y,y ′)

= 1

22μ|y − y ′|2μ

× [(iy − L)1/2(iy ′ + L)1/2 + (iy ′ − L)1/2(iy + L)1/2]2μ

(y2 + L2)μ/2[(y ′)2 + L2]μ/2

− 1

|y − y ′|2μ
, (23)

while Gdiff will be the same expression with a minus in the
numerator’s bracket, and no subtraction (the two point function
of the fields in different copies in the denominator of course
vanish identically).
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It is convenient to introduce new variables via tan θ = y

L
,

so the integral becomes

L2−2μ

∫ π/2

−π/2
dθdθ ′(cos2 θ )μ−1(cos2 θ ′)μ−1

(
cos2 θ−θ ′

2

)μ − 1

[sin2(θ − θ ′)]μ
.

(24)

The second integral reads similarly

L2−2μ

∫ π/2

−π/2
dθdθ ′(cos2 θ )μ−1(cos2 θ ′)μ−1 1(

cos2 θ−θ ′
2

)μ . (25)

Both integrals are UV convergent for a relevant perturbation
μ < 1. They are however both IR divergent (here the IR
region being θ ≈ ±π

2 ). This means that, although formally
the perturbation at small coupling looks like it should be an
expansion in powers of λ2L2−2μ, this might actually not be the
case and, as we shall see later, is not. In fact, we will see that
the entanglement is simply nonperturbative in λ2, and cannot
be obtained via this perturbation theory.

This result could appear as a surprise. On the one hand,
the entanglement is a T = 0 quantity, and such quantities
are often plagued by IR divergences. On the other hand, we
are looking for an L-dependent quantity, and it would be
natural to expect that L would act as an effective IR cutoff,
rendering the perturbation expansion finite. This is however
definitely not what happens. The situation is reminiscent of
similar divergences encountered in the Kondo screening cloud
problem.4

We stress finally that the argument applies almost without
modification to the Hamiltonian (8). All that changes is that
the perturbation is of the form eiβφS− + H.c. instead of eiβφ +
H.c., so exponentials of opposite signs have to alternate in the
imaginary time insertions, modifying some of the numerical
coefficients, but not the integrals or their divergences.

IV. IR DIVERGENCES IN QUANTUM IMPURITY
PROBLEMS

To gain a better understanding of the situation, it is useful to
start by discussing another observable20 than the entanglement
entropy for (5). We turn briefly to the boundary formulation (6),
and consider the one point function 〈cos β


2 (x)〉 which appears,
for instance, in the determination of Friedel oscillations for
impurities in Luttinger liquids. Simple scaling arguments
suggest the general form〈

: cos
β


2
:

〉
=
(

2

|x|
)μ/2

F (λ|x|1−μ), (26)

where F is a universal function obeying F (∞) = 1, so the field
sees Dirichlet boundary conditions, and the bulk normalization
has been chosen appropriately.

Determining the function F is also a difficult problem. The
most natural is once again to attempt perturbation theory in λ.
This would share many features of the calculation of one and
two point functions in the bulk sine-Gordon theory.21 There, it
is well known that (in fact, the result essentially goes back to
Coleman), provided h � 1 (that is, the perturbing operator is
not irrelevant), there are no UV divergences in the calculation.
All divergences coming from bringing together two insertions
of the perturbing term cos β


2 are exactly canceled by similar

divergences coming from the expansion of the denominator
(the partition function and associated bubble diagrams). In
general, the divergences are indeed controlled by the operator
product expansion (OPE),

eiβ
(y)/2e−iβ
(y ′)/2

= |y − y ′|−2μ(1 + · · · − πμ(y − y ′)2[∂
(y)]2 + · · · ),

with all fields at x = 0, y the coordinate along the boundary.
The leading order comes from the contribution of the identity
operator and leads to a disconnected piece subtracted off
by a similar term in the denominator. The · · · stand for
higher orders, or lower orders that vanish after integration.
The overall singularity at order O(λ2n−1) thus behaves as
∼ ∫ ∏n−1

i=0 d(y2i − y2i+1) × (y2i − y2i+1)2−2μ, it comes with
dimension dUV = n(3 − 2μ), and for μ � 1 the integrals are
UV finite. Other singularities (when several points are brought
together at once, etc.)21 behave similarly.

However, there will always appear IR divergences at a
certain order, depending on the exact value of the conformal
weight h. Of course, we expect in the end the scaling form to
hold, and thus to depend only on xTB , TB ∝ λ1/1−μ. What will
happen in general is that the divergences in the perturbative
expansion have to be resummed before the proper scaling
form can be obtained. The latter, in general, will thus behave
nonperturbatively in the coupling λ.

This is nicely illustrated in the case μ = 1
2 , where the exact

form of the one point function is known, thanks to a mapping
to the boundary Ising model (see below), together with a
very clever argument by Chatterjee and Zamolodchikov.22 One
finds23〈

: cos
β


2
:

〉
(x) = 4λ

√
π

(
x

2

)1/4

�(1/2,1; 8πλ2x), (27)

where � is the degenerate hypergeometric function. The
asymptotics follows from �(1/2,1; 2x) = ex√

π
K0(x), where

K0 is the usual modified Bessel function, so that we find〈
: cos

β


2
:

〉
(x) ∼

(
2

x

)1/4

, x  1,〈
: cos

β


2
:

〉
(x) ∼ x−1/427/4λx1/2 × − ln(λ2x), x � 1.

(28)

We thus see that this function exhibits a nonperturbative
dependence at small coupling λ. The nonanalyticity in λ arises
from the IR divergence of the first perturbative integral.

There is a general way to understand the nonanalyticity of
course. Whenever a bulk operator (of conformal weights h,h)
is sent to the boundary where it becomes a boundary field of
weight hB , one has

O(x) ≈ xhB−2hOB + · · · . (29)

In our case, the cosine of the bulk field simply goes over
to the cosine of the boundary field. We have thus h = μ

4

and hB = μ, while [OB] = L−hB ∝ T
hB

B ∝ λhB/1−μ. We thus
expect that 〈OB〉 = 〈: cos β
(0)

2 :〉 ∝ λμ/1−μ. The dependence
of the one point function of the boundary field on λ is
nonanalytic in λ, and nonperturbative—of course, because
again of IR divergences. This problem is the cousin of a similar
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problem in bulk massive theories, and has been studied in
Refs. 24 and 25. We deduce from this that, to leading order,

〈O(x)〉 ∝ xhB−2hλhB/1−μ (30)

More generally, we can write

O(x) ≈
∑

i

xhi
B−2hOi

B (31)

so

〈O(x)〉 ≈
∑

i

xhi
B−2hci

BT
hi

B

B = x−2h
∑

i

xhi
B ci

BT
hi

B

B

≡ x−2hG(xTB) (32)

with G(xTB) ≡ F (λx1−μ),

F (y) ∝ yhB ∝ λhB/1−μxhB . (33)

Going back to the case of Friedel oscillations, we have
therefore F (y) ∝ yμ ∝ xμλμ/1−μ. This leading dependence
in λ replaces the expected perturbative one, which would be
linear in λ.

The foregoing argument applies in the generic case.
Whenever there are “resonances” and the parameter μ takes
special rational values μ = 1 − 1

2n
, extra logarithmic terms

appear in the one point functions of the operators right on
the boundary, which translates in logarithms in the one point
functions of operators at x �= 0 as well. This is the case
precisely when μ = 1

2 .
It is important to stress also that the IR divergences naturally

disappear at finite temperature, 1/T providing a natural cutoff.
Once again this is illustrated in the μ = 1

2 case, where one
finds,23,26 for Friedel oscillations at finite temperature,〈

: cos
β


2
:

〉
(x)

= f (2λ2/T )

(
4πT

sinh(2πT x)

)1/4

×F

(
1

2
,
1

2
; 1 + 2

λ2

T
,
1 − coth 2πxT

2

)
. (34)

Here F is the usual hypergeometric function, f is a function
whose existence and value were determined in Ref. 26. The
right-hand side admits a perturbative expansion in powers of
λ, whose leading term, at fixed x, goes as λ/

√
T when T → 0.

The coefficient of λ thus diverges in the zero-temperature limit,
in agreement with the fact that the true expansion is then in
λ ln λ.

The general IR behavior can easily be investigated. One
finds that at order O(λ2n+1), there is no IR divergence
provided μ >

n+1/2
n+1 . Only when μ = 1—that is, the boundary

perturbation is exactly marginal, and the bulk is a Fermi
liquid—are all orders finite. In this case, the Friedel oscillations
admit a perturbative expansion in powers of λ.27

While the nature of the divergences is quite generic, the
quantities for which they occur depend on the problem at
hand. For instance, for the screening cloud in the (anisotropic)
Kondo model, divergences occur even when the boundary
perturbation has dimension 1—in that case, it is marginally
relevant.4

V. SMALL COUPLING BEHAVIOR OF THE
ENTANGLEMENT ENTROPY

We now go back to the calculation of the entanglement
entropy for Hamiltonian (5). We see that, to obtain the
nonperturbative UV behavior, we must discuss twist fields and
their OPEs. We follow the paper28 but focus more directly on
the question at hand. Imagine that we have a single interval for
which we want to calculate the entanglement with the rest of
the system, and introduce accordingly the n-sheeted Riemann
surface (n replicas) Rn,1. In the limit where the interval of
length L shrinks, we expect the presence of the two sewing
points to decompose like an operator product expansion of the
form

I =
∑
{kj }

C{kj }
n∏

j=1

�kj
(zj ), (35)

where we allowed for fields inserted at points zj , the point
z on the j th sheet, and the set {�k} denotes a complete set
of local fields for one copy of the CFT. Recall that the cut
in the Riemann surface Rn,1 corresponds to the insertion of
twist fields in the complex plane, so that I ∼ τn(L)τ̃n(−L)
and (35) should be considered as the OPE of these twist fields.
What (35) means more precisely is that, if we have other
operators inserted elsewhere, we can expect to have

Zn(L)

Zn
1

〈
n∏

j=1

Oj

〉
Rn,1

=
〈
I

n∏
j=1

Oj

〉
Cn

=
∑
{kj }

C{kj }
n∏

j=1

〈
�kj

(zj )Oj

〉
Cj

, (36)

where Oj designates operators inserted on the j th sheet, and
Cj is the j th copy of the complex plane. Note indeed that the
expectation on the right is taken in a fully factorized theory.

Restricting now to the �k that make an orthonormal basis
(so in particular they are all quasiprimary), and choosing Oj =
�kj

shows that the structure constant C{kj } will not vanish only
if the average of

∏
j Oj on the Riemann surface Rn,1 does not

vanish. It is useful to make things concrete now, so for instance
we see that there is no term with a single primary operator on
the right-hand side of (35) since the corresponding one point
function on Rn,1 vanishes. There is, however, at least one term
with a single operator, the stress energy tensor, since we know
that 〈T 〉Rn,1 �= 0. Apart from this, the most important terms
will be those involving the same primary operator on two
different sheets

∏n
j=1 �kj

= �1�2, whose average on Rn,1

will be nonzero in general. If the field � has conformal weights
h,h̄, we will thus have that

C ∝ L−4hnL2×(h+h̄), (37)

where hn = c
24 (n − 1

n
) is the conformal weight of the twist

field. The crucial point is that C involves twice the scaling
dimension of primary fields, in contrast with ordinary OPEs
where only the scaling dimension would appear.

The discussion carries over to the boundary case. One can,
for instance, think of it after unfolding the system so as to
keep only chiral fields as in (5). Everything then formally goes
through after setting h̄ = 0. The question is then, what kind
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of fields ψ (the chiral part of �) can appear in the OPE of
two twist fields? The one copy bulk theory is a compact boson
which allows for the fields exp(±i

β

2 
) on the boundary. This
means that the radius is R = 2

β
, and thus the bulk conformal

weights are given by

�wk = 2π

(
βk

8π
− w

β

)2

, �̄wk = 2π

(
βk

8π
+ w

β

)2

. (38)

Restricting to scalar operators we get � = k2β2

32π
or � = 2π

β2 w2.
For instance, the first values of � correspond to fields
exp(±ik

β

2 
), or, for the chiral part, exp(±ik
β

2 φR).
We now go back to the entropy calculation in the folded,

nonchiral theory (6). Upon folding, the chiral vertex operators
e±ik(β/2)φR(0) become e±ik(β/4)
(0), as 
(0) = φR(0) + φL(0) =
2φR(0). Recall also that the nonchiral twist field in the folded
version can be thought of as the chiral part of I in the unfolded
theory. Hence, going through the discussion of short-distance
expansions we find, for the nonchiral twist field,

τn(L) ≈ L−2hn

×

⎛
⎜⎜⎜⎝1 +

∑
k

L2�kcn

n∑
i,j = 1
i �= j

eik
β

4 
i (0)eik
β

4 
j (0) + · · ·

⎞
⎟⎟⎟⎠

(39)

where we used the fact28 that the two fields ψ in the twist
OPEs must belong to different copies. We are only interested
in terms whose one point function acquires a nonzero value in
the presence of the perturbation. This means the first term with
k = 1 cannot contribute, and thus we need k = 2, �2 = μ.
Taking derivative with respect to n gives then the leading term
for the entanglement correction, which should go as

Simp − ln 2 ∝ (LTB)2μ ∝ L2μλ2μ/(1−μ). (40)

For μ = 1
2 in particular, this can be corrected by a resonance,

and it is tempting to speculate then that one has

Simp − ln 2 ∝ LTB [cst + cst ln(LTB)] . (41)

Finally, we note once again that the RLM or the various
(anisotropic) Kondo versions will behave identically, the
presence of the operators S+,S− not modifying in any essential
way the OPE argument—but one will have to be careful with
the dimensions of the operators involved, and their relationship
with μ. In the end, we find that for the RLM (41) is expected
to hold as well.

VI. LARGE COUPLING EXPANSION

While the small coupling expansion is plagued with IR
divergences, a large coupling expansion is possible. It is
now finite in the IR, and exhibits UV divergences which
are easily taken care of using integrability and analyticity.
Let us recall how the calculation goes at leading order in
the anisotropic Kondo case29 (see also, e.g., Ref. 30). The
leading IR perturbation is nothing but the stress energy
tensor H = HIR + 1

πTB
T (0) + · · · . The correction to the Renyi

entropy can therefore be expressed as

−δZn = n

πTB

∫ +∞

−∞
dτ 〈T (w = iτ )〉Rn,1

= n − n−1

24πTB

∫ +∞

−∞

(2L)2

(iτ − L)2(iτ + L)2
dτ

= 1

12LTB

(
n − 1

n

)
. (42)

The first correction to the entanglement entropy thus reads

Simp = 1

6LTB

+ · · · . (43)

It is quite remarkable that this result does not depend on
the anisotropy parameter μ

2 (recall that � = − cos π
μ

2 in the
XXZ language). It turns out that this IR expansion can be
generalized to higher orders.11 The results for the Kondo case
are as follows:

Simp = 1

6
ln

(
1 + 1

LTB

)
− 18

35

(πg4)2

(2LTB)6
(4α4 − 8α2 + 9)

+O[(LTB)−7], (44)

where the coefficient g4 has the following dependence on the
dimension h = μ

2 of the tunneling operator:

g4 = μ

12π2

(
�[μ/2(2 − μ)]

�[1/(2 − μ)]

)3
�[3/(2 − μ)]

�[3μ/2(2 − μ)]
,

α = (2 − μ)√
2μ

. (45)

Note that in (44), the first term in the right-hand side has to be
truncated at order 6.

While in principle higher orders in the IR expansion could
be determined, the complexity of the calculations increases
considerably. Moreover, the convergence properties of this
expansion are not clear. Finally, we observe that, in this point of
view, the pure BSG case turns out to be quite different, because
different operators appear in the IR effective description. The
corresponding result has not even been worked out yet.

Making analytical progress therefore requires developing
nonperturbative approaches. The problems we are interested
in are indeed integrable, at least in their boundary versions.
While it is natural to expect that this can be used in some way,
integrability has been mostly used to calculate local properties
such as magnetization, energy, or impurity entropies. von
Neumann entanglement is nonlocal, and therefore much harder
to obtain in general.

VII. FORM FACTOR APPROACH TO THE
ENTANGLEMENT ENTROPY

We will in what follows restrict to the case where the
dimension of the perturbation is h = 1

2 : this corresponds to

� = −
√

2
2 (μ = 1

2 ) for the problem of tunneling between
XXZ chains, and to � = 0—the RLM (μ = 1)—for the
tunneling through an impurity. These cases are closely related
to the boundary Ising model with a boundary magnetic
field (see Appendix). While the problem of calculating the
entanglement nonperturbatively remains extremely difficult—
entanglement still involving nonlocal observables in the
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fermionic language—it can be tackled using the idea of form
factors.

It has been known for many years that correlation functions
of local observables in massive integrable theories can be cal-
culated using the form-factors approach, where the integrable
quasiparticles provide a basis of the Hilbert space, and the form
factors (FFs)—that is, the matrix elements of the operators
in that basis—can be obtained using an axiomatic approach
based on the knowledge of the S matrix and the bootstrap.
It is a natural idea to extend this approach to the case of
entanglement entropy. Indeed, the von Neumann entanglement
is obtained form the Renyi entropy by taking an n derivative
at n = 1, and the Renyi entropies can be considered formally
as correlation functions of twist operators that live in n copies
of the theory of interest. The integrability of a single theory
carries over to integrability of the n copies, and a calculation
similar to the one of ordinary correlators can be set up, after
some additional work to determine the form factors of the twist
operators τ,τ̃ .12,13

We are interested here in a variant where the bulk is
massless. The form-factors technique in this case is more
delicate to use, since particles can have arbitrarily low energies,
and the convergence of the approach is not guaranteed. Various
regularization tricks have to be used in the calculation of local
quantities (e.g., the charge density for Friedel oscillations),31,32

and we will see below that the situation for the entanglement
is not better. Nevertheless, Simp(LTB) can be calculated for
h = 1

2 , by using the Ising model formulation, and relying
heavily on the work.12,13

To fix ideas, and explore the feasibility of form-factors
calculations in our problem, we first discuss briefly the bulk
case and the massless limit. One can find in12,13 the first order
contribution to the two point function of the bulk Ising model
twist field in the bulk,

〈τ (r)τ̃ (0)〉 = 〈τ 〉2 + 1

2

n∑
i,j=1

∫
dθ1

2π

dθ2

2π

∣∣F τ |ij
2 (θ12,n)

∣∣2
× e−mr(cosh θ1+cosh θ2) + · · · , (46)

where n is the number of copies, θi is the rapidity of the
ith particle with energy e = m cosh θi and momentum p =
m sinh θi , and F

τ |ij
2 (θ12,n) is the two-particle form factor of

the twist field τ ,

F
τ |ij
2 (θ12,n) = 〈0|τ (0)Z†

i (θ1)Z†
j (θ2)|0〉. (47)

In this last expression, we have used the notation Z
†
j for

the usual Faddeev-Zamolodchikov creation operators (here,
the fermions) living in the j th copy. Since the theory is
integrable, the form factors F

τ |ij
2 (θ12,n) can be computed

exactly and are conveniently expressed using the function

K(θ ) = F
τ |11
2

〈τ 〉 = −i
cos π

2n
sinh θ

2n

n sinh iπ+θ
2n

sinh iπ−θ
2n

, (48)

which vanishes when n = 1. The other form factors
F

τ |ij
2 (θ12,n) can then be obtained from F

τ |11
2 (θ12,n) by shifting

appropriately θ12 by a factor of 2πi. Going to variables θ1 ± θ2

one can perform one integration, and be left with

〈τ (r)τ̃ (0)〉
= 〈τ 〉2

(
1 + n

4π

∫ ∞

−∞
dθf (θ,n)K0[2mr cosh(θ/2)]

)
+ · · · , (49)

where

〈τ 〉2f (θ ) ≡ ∣∣F τ |11
2 (θ )

∣∣2 +
n−1∑
j=1

∣∣F τ |11
2 (θ + 2iπj )

∣∣2. (50)

Doyon et al. then argue the crucial result that

d

dn
nf (θ,n)

∣∣∣∣
n=1

= π2

2
δ(θ ). (51)

Taking the derivative of the two point twist correlation function
meanwhile should give, at short distances, the entanglement
entropy of the CFT. Since (46) is only a first-order approxima-
tion where contributions with a larger number of particles
have not been included, we get an approximation to the
entanglement entropy of a segment of length r in the bulk
with the rest of the system,12

SA = · · · − K0(2mr)

8
+ · · · ≈ · · · + ln r

8
+ · · · , (52)

and thus the expected factor c
3 = 1

6 is approximated by 1
8 at

this order.
Since in this paper we are interested in bulk CFTs, we

need to take an m → 0 limit. This corresponds formally to
describing the CFT using massless particles and massless
scattering. We thus set m

2 = Me−θ0 and send θ0 → ∞. Only
two types of excitations remain at finite energies: those for
which θ = ±θ0 ± β with β finite. In the first case, one obtains
right moving particles with e = p = Meβ and in the second
case left moving particles with e = −p = Meβ . Conformal
fields factorizing into left and right components are not
expected to mix the L and R sectors. Indeed,

limθ→∞K(θ ) = 0, (53)

so only the LL and RR sectors will contribute in the massless
limit of (46). Therefore, setting (say for the R sector)

θ1,2 = θ0 + β1,2, (54)

and introducing β± ≡ β1 ± β2, we obtain

〈τ (r)τ̃ (0)〉 = 〈τ 〉2 + 1

2

n∑
i,j=1

∫
dβ+
2π

dβ−
2π

∣∣F τ |ij
2 (β−,n)

∣∣2
× e−2Mreβ+/2 cosh(β−/2) + · · · , (55)

where the 1/2 coming from the Jacobian was canceled by the
fact that there are two integrals, the L and the R one. Using (51)
we get the correction to the entanglement entropy as

SA = · · · − 1

16

∫ ∞

−∞
dβ+e−2Mreβ+/2

= · · · − 1

8

∫ ∞

0

dx

x
e−2Mrx. (56)

This integral is divergent at small energy, a feature which is
quite general in the use of massless form factors. We regularize
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by considering the integral∫ ∞

0
dxxα−1e−2Mrx

= 1

(2Mr)α
�(α) =

(
1

α
+ · · ·

)
[1 − α ln(2Mr) + · · ·]

(57)

so the finite part of the integral is − ln(2Mr) and thus we
recover

SA = · · · + 1
8 ln r + · · · . (58)

Let us now consider the Ising model with a boundary
magnetic field as in (A5), and to start assume that the bulk
is massive. The form-factors approach can be applied to this
case as well. The first nontrivial contribution reads then13

〈0|τ (r)|B〉 = 〈τ 〉 + 1

2

n∑
i=1

∫
dθ

2π
R

(
iπ

2
− θ

)
e−2mr cosh θ

×F
τ |11
2 (−θ,θ,n) + · · · (59)

coming from the boundary state

|B〉 = exp

⎡
⎣ 1

4π

n∑
j=1

∫
dθR

(
iπ

2
− θ

)
Z

†
j (−θ )Z†

j (θ )

⎤
⎦ |0〉,

(60)

where we recall that Z
†
j are the usual Faddeev-Zamolodchikov

creation operators living in the j th copy, and R (θ ) is the
reflection matrix33 of the Ising field theory with a boundary
magnetic field hb [proportional to λ in (A5)]. Ultimately, we
want once again to take the massless limit m → 0. Notice
that (59) involves F2 instead of |F2|2. We write

〈0|τ (r)|B〉 = 〈τ 〉 + n

4π

∫
dθR

(
iπ

2
− θ

)
F

τ |11
2 (−θ,θ )

× e−2mr cosh θ + · · · (61)

and observe that the analytical continuation in n is trivial
because the particle and its reflection must belong to the same
copy. To every order, contributions are linear in F . But there is
a lot of similarity—e.g., between the term with four particles
here, and the term with two particles in the bulk entropy. In the
massless limit case, since the boundary produces as many L as
R particles, and since we need both these numbers to be even,
only the terms with 2l R movers and 2l L movers contribute.

Indeed, the first correction to the entanglement, after taking
derivative with respect to n at n = 1, reads explicitly

s1 = −1

4

∫ ∞

0
dθ

(
κ + cosh θ

κ − cosh θ

)(
cosh θ − 1

cosh2 θ

)
e−2mL cosh θ ,

(62)

with κ = 1 − h2
b/(2m). To obtain a scaling expression in the

massless limit, we boost rapidities like in the bulk case, and
we obtain

s1 ≈ 1

4

∫ ∞

−∞
dβ

eβ − h2
b

2M

eβ + h2
b

2M

× 2e−θ0e−βe−2LMeβ → 0, (63)

a vanishing result—natural, since in this limit, the two-particle
form factor factorizes onto one-particle form factors (one for
the left, one for the right), which both vanish. We thus need to
go to the next order (corresponding to four particles), where
we use formula (3.25) in Ref. 13:

s2 = 1

16

∫ ∞

0
dθ

(
κ + cosh θ

κ − cosh θ

)2 (1 − cosh θ

1 + cosh θ

)
e−4mL cosh θ .

(64)

We obtain then

s2 ≈ − 1

16

∫ ∞

−∞
dβ

(
eβ − h2

b

2M

eβ + h2
b

2M

)2

e−4LMeβ

= − 1

16

∫ ∞

−∞
dβ

(
eβ − TB

eβ + TB

)2

e−4Leβ

, (65)

where we have set

TB ≡ h2
b

2
(66)

and we have shifted the β integral. Now the expression (65)
is divergent at low energies, just like (56). To regularize it, we
consider the difference:

s2(LTB) − s2(∞) = 1

4

∫ ∞

−∞
dβ

eβ

(1 + eβ)2
e−4LTBeβ

= 1

4

∫ ∞

0

du

(1 + u)2
e−4LTBu. (67)

The UV value is 1
4 = 0.25, to be compared with the exact value

1
2 ln 2 = 0.346 574 . . .. This indicates that we are on the right
track.

To proceed, we now take Eq. (3.54) in Ref. 13 and perform
the appropriate limits and rescalings to get

s4 ≈ 1

28π2

∫ ∏
i

dβiδ
(∑

βi

)[
e−2L

∑
eβi
∏

i

eβi − TB

eβi + TB

×
∏

i

1

cosh βi−βi+1

2

− β1,3 → β1,3 ± iπ
4

β2,4 → β2,4 ∓ iπ
4

]
, (68)

where products and sums run over i = 1, . . . ,4 and we have
set β4+1 ≡ β1. The second term is obtained by shifting the
contours of integration in the imaginary direction as indicated.
We observe the same divergence at low energy, and the same
regularization [subtracting the formal expression for s4(∞)]
also works like for s2. We find

s4(LTB) − s4(∞)

=
∫ ∞

0

du1du2du3

16π2

[
e−2LTB (u1+u2)(u2+u3)/u2

× u2

(u1 + u2)2(u2 + u3)2

(∏
i

1 − ui

1 + ui

− 1

)
− . . .

]
, (69)

where the dots correspond to the two other terms obtained by
shifting the contours of integration as in (68). The UV value is
s4(0) − s4(∞) = 1

24 , so at second order we have the UV value
1
4 + 1

24 = 0.291 667 . . ., to be compared once again with the
value 1

2 ln 2 = 0.346 574 . . ..
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FIG. 1. (Color online) The form factor approximations together
with the IR expansion.

We find that higher orders can be dealt with in the same
way, and that the UV values can be resummed exactly to yield
the exact result,

SUV − SIR =
∞∑
l=1

[s2l(0) − s2l(∞)] =
∞∑
l=1

1

4l(2l − 1)
= 1

2
ln 2,

(70)

as expected.
We now return to the RLM, whose results are obtained

simply by multiplying those for Ising by a factor of 2.
In the following, we will allow for an extra multiplicative
renormalization to obtain the UV result exactly, that is

consider, at lowest order, the ratio

S (2)
imp(LTB) ≡ ln 2

s2(LTB) − s2(∞)

s2(0) − s2(∞)

= ln 2
∫ ∞

0

du

(1 + u)2
e−4LTBu. (71)

It is then interesting to consider the IR expansion of this
quantity. Using

s2(LTB) − s2(∞) = 1
2 [αeαEi(−α) + 1], α = 4LTB, (72)

where Ei is the usual exponential integral function. One finds

S (2)
imp(LTB) = 2 ln 2

n∑
k=1

(−1)k−1 k!

2(4LTB)k
+ O

(
1

(LTB)n+1

)
,

(73)

where the expansion is only asymptotic. We see thus that our
“renormalized” first-order approximation interpolates between
ln 2 and to ln 2

4LTB
= 0.173 287/(LTB ), while the exact result

goes from ln 2 to 1
6LTB

= 0.166 66/(LTB ), which is quite good.
The next order approximation can be handled similarly, and
we will simply provide the corresponding results on the curves
below.

We plot our results for the FF approach in Fig. 1 where the
dashed line is the IR expansion (see above and Ref. 11), and
the full colored lines are form factors approximations. Clearly,
on this scale, the (renormalized) FF expansion has converged
very quickly. We shall soon see how close it is to the real data
from numerical simulations on the XX chain.

We now discuss briefly the UV behavior. For s2, the standard
tables give

S (2)
imp(LTB) = ln 2 + 4 ln 2 × (LTB) [ln 4 + γ + ln(LTB)]

+ · · · , (74)
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FIG. 2. (Color online) Singularity in the UV, with �S ≡ Simp(LTB ).
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FIG. 3. (Color online) Comparison of numerical results and various approximations (recall that �S = Simp(LTB )).

where γ � 0.5772 . . . is the Euler constant. This pro-
vides a leading-order correction in the UV which reads
4 ln 2(LTB) ln(LTB). Note that this is compatible with what
was expected from the general discussion about the nonper-
turbative behavior in the UV: we get a term linear in LTB ,
decorated by logarithmic corrections. The next order is more
difficult to handle analytically, but very accurate numerics
shows that it does behave similarly, only leading to a correction
of the slope which goes from 4 ln 2 = 2.772 59 to 3.53. We plot
in Fig. 2 the leading correction divided by LTB as a function of
− ln(LTB), together with numerical data that shall be discussed
in the next section. We see that the FF expansion converges
very well except in the UV, where it seems to still converge,
but more slowly, giving us only a rough approximation of the
exact leading singularity.

Finally, the results for the entanglement for the problem of
weakly coupled XXZ chains at � = −

√
2

2 would be identical
but for an overall normalization by a factor 1/2.

VIII. NUMERICS

We now turn to a numerical determination of the entangle-
ment entropy in the RLM, going back to the formulation (10)
where we will now also have to be careful with the overall
finite size of the system. We write

H = −J

−2∑
m=−M ′

(c†mcm+1 + H.c.) − J

M ′−1∑
m=1

(c†mcm+1 + H.c.)

− J̃ (c†−1c0 + c
†
0c−1 + c

†
0c1 + c

†
1c0). (75)

So the left and right leads have M ′ sites, and the impurity
sits at site 0. We can now switch to a representation of
symmetric and antisymmetric combination of the lead sites,

C(C̃) = (cj ± c−j )/
√

2. Since the antisymmetric combination
decouples from the rest, its contribution to the impurity
entanglement will drop out. It is therefore sufficient to study a
system of M ≡ M ′ + 1 sites:

H = −J

M ′−1∑
m=1

(C†
mCm+1 + H.c.) − J̃

√
2(C†

1C0 + C
†
0C1).

(76)

Here a single resonant level couples to a single chain of M sites.
In order to compare with field theory we use the exactly half
filled system to exploit the linear regime of the cosine band. In
return we have to use an even number of M = M ′ + 1 sites.

The scale of the resonant level with a coupling of J ′ = √
2J̃

is

TB/vF = J ′2

2
√

1 − J ′2 , (77)

with vF = 2 as we have chosen the normalization J = 1.
Following the recipe of Ref. 34 we now calculate the reduced
single-particle matrix ρI,L+1 for the last L + 1 sites, where the
first site (labeled 0) corresponds to the impurity. In order to
obtain the bulk result we determine the reduced density matrix
ρB,L for the first L sites of the chain. The reason for taking
the bulk result from the opposite end of the chain is that we
cannot just study a chain of M ′ sites, as we would then have
a degenerate ground state as M ′ is odd. The diagonalization
is performed within double precision, while the trace for the
entropy is performed using quadruple (128 bit) precision.

The entanglement entropy corresponding to the single-
particle reduced density matrix is now given by

S = −Trρ ln ρ − Tr (1 − ρ) ln (1 − ρ) , (78)
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FIG. 4. (Color online) Comparison of numerical results and various approximations: focus on the IR.

which finally leads to

Simp,L = SI,L+1 − SB,L. (79)

In Fig. 3 we plot the numerical results together with the first
three orders of the IR expansion and the first order of the FF
expansion. We would like to remark that on the lattice we get
small 2kF oscillations on top of the continuum result. Figure 4
is a similar plot emphasizing the IR behavior.

Finally, in Fig. 2—as commented on already—we focus
on the singularity in the UV, comparing slopes obtained from
the FF expansion. Our numerics on system sizes M = 3 ×
104 · · · 105 is consistent with a singularity

Simp = ln 2 + αLTB ln(LTB) + · · · , (80)

with a slope −7.5 � α � −8. By applying damped boundary
conditions (DBCs),35 one can access very small energy scales
on system sizes which are accessible by numerics. By looking
at systems of M = 4000 sites where we scale down the bulk
hopping elements by a factor of � = 0.98 on each bond
from site 2000 to 3000 and using a bulk hopping element
of J�1000 on the last 1000 sites we find an indication that the
singularity is even slightly stronger. While we can exclude
an L2 behavior, we cannot rule out the possibility of an
LTB ln2(LTB) contribution. Note that the DBCs change the
form of the density of states at the Fermi surface; for details
see Ref. 36. It is therefore possible that this additional increase
is due to this modification of the level spacing at the Fermi
surface. Due to the slow increase of the logarithm such a
clarification is asking for multiprecision arithmetic.

IX. CONCLUSION

This study shows that the entanglement entropy of quantum
impurities involved in an RG flow is a quantity which is

difficult to access. It is nonperturbative in the UV, and the IR
perturbation, while well defined, does not capture the crossover
regime very well. The form-factors approach, on the other
hand, is remarkably successful. It is, however, difficult to
develop except in the simple case of the Ising model, and more
work will have to be done in that direction. Nevertheless, we
believe that the essential features of Simp are under control,
although it would be useful to check the UV singularities for
other values of the coupling (anisotropy).

In conclusion, we emphasize that the geometry considered
in this paper where the interval for the entropy is centered
on the impurity is probably not the most natural physically.
To characterize the Kondo physics, one would rather be
interested in the entanglement of the two wires tunneling
through an impurity. This could be characterized physically
by the entropy of an interval with the impurity at its boundary
or, for example, by the negativity of two intervals in the
different wires (see, e.g., Refs. 37–39 for examples related
to the Kondo problem). This situation is unfortunately much
more complicated technically, mostly because the folding
procedures described in this paper no longer apply. However,
we still expect the conclusions of this paper to hold in that case
as well, namely, we expect the entanglement entropy (or other
entanglement estimators) to depend nonpertubatively on the
coupling to the impurity when this is weak. We believe that
improper regularizations of the IR divergences encountered in
perturbation theory led to some confusion in the literature.40

We will report on this—together with a correct calculation—in
a subsequent paper.
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APPENDIX: RELATIONSHIP BETWEEN THE CASE h = 1
2

AND THE BOUNDARY ISING MODEL

Let us begin by discussing the relationship between the
RLM and the Ising model with a boundary magnetic field. This
can be seen in various ways. Start from the Hamiltonian (11),
unfold the wires to get only right movers, and form the
combinations

�R ≡ 1√
2

(ψ1R + ψ2R) , �̃R ≡ 1√
2

(ψ1R − ψ2R) . (A1)

The fermion �̃R decouples from the impurity entirely, and we
will mostly discard it from now on. The remaining dynamics
is then encoded in the Hamiltonian

H = −i

∫ ∞

−∞
�

†
R∂x�Rdx + λ

√
2[�†

R(0)d + H.c.]. (A2)

We then refold this Hamiltonian to map back to a boundary
problem, introducing a �L component:

H = −i

∫ 0

−∞
[�†

R∂x�R − �
†
L∂x�L]dx

+ λ
√

2[�†(0)d + H.c.], (A3)

where �(0) ≡ �L(0) = �R(0). The next—and almost final
step—is to go to a Majorana version of this problem. We
decompose the fermions into real and imaginary parts as

�R = 1√
2

(ξR + iηR), �L = 1√
2

(ξL + iηL), (A4)

where ξ,η are real and obey {ξR(x),ξR(x ′)} = δ(x − x ′), etc.
We set similarly d = a+ib√

2
with {a,a} = {b,b} = 1. The prob-

lem then decouples into two independent Majorana problems
H = H1 + H2, with

H1 = − i

2

∫ 0

−∞
[ξR∂xξR − ξL∂xξL] dx + i√

2
λξ (0)b,

(A5)

H2 = − i

2

∫ 0

−∞
[ηR∂xηR − ηL∂xηL] dx − i√

2
λη(0)a,

and ξ (0) ≡ ξR(0) + ξL(0), the same for η. The problems
correspond of course to two Ising models with a boundary
magnetic field proportional to ±λ (up to normalizations), the
boundary spin operator being σB(0) = i(ξR + ξL)(0)b.

Note that this result is compatible with boundary entropy
counting. The flow from UV to IR in the original problem
leads to gUV/gIR = 2 since a dot with two states is screened.
In each of the Ising models meanwhile, we have a flow from
free to fixed, with gfree/gfixed = √

2, so the product of the two
ratios—one for each Ising copy—is 2 indeed.

Turning now to entanglement entropy, we see that the RLM
entanglement for a region of size 2L centered around the
impurity is exactly twice the entanglement for a region of
length L on the edge of the system in the boundary Ising
model. This has been studied numerically, e.g., in Refs. 2
and 41, and Sec. VII presents an analytical calculation of this
quantity.

The boundary sine-Gordon problem at μ = 1
2 is also well

known to be equivalent to two boundary Ising models,23 where
this time only one of these models experiences a nonzero
boundary magnetic field. Hence, we shall also be able to obtain
the entanglement entropy for (1) for this value of μ, that is
� = −

√
2
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