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Plasmon anomaly in the dynamical optical conductivity of graphene
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We theoretically consider the effect of plasmon collective modes on the frequency-dependent conductivity
of graphene in the presence of the random static potential of charged impurities. We develop an equation of
motion approach suitable for the relativistic Dirac electrons in graphene that allows analytical high-frequency
asymptotic solution (ωτ � 1 where τ is the scattering time) in the presence of both disorder and interaction.
We show that the presence of the gapless plasmon pole (in graphene the plasmon frequency vanishes at long
wavelengths as the square root of wave number) in the inverse dynamical dielectric function of graphene gives
rise to a strong variation with frequency of the screening effect of the relativistic electron gas in graphene on the
potential of charged impurities. The resulting frequency-dependent impurity scattering rate gives rise to a broad
peak in the frequency-dependent graphene optical conductivity with the amplitude and the position of the peak
being sensitive to the detailed characteristics of disorder and interaction in the system. This sample-dependent
(i.e., disorder, electron density, and interaction strength) redistribution of the spectral weight in the frequency-
dependent graphene conductivity may have already been experimentally observed in optical measurements.
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I. INTRODUCTION

Electronic transport and electrical conductivity of graphene
is a subject1 of great current interest in both fundamental
physics and in applied physics and engineering. Recently,
optical conductivity measurements have been used to identify
the effects of electron-electron interactions of relativistic Dirac
electrons,2,3 which have attracted a great deal of interest. In
particular, the linear band dispersion as well as its gapless
chiral two-dimensional (2D) nature make graphene a unique
laboratory system for studying electron-electron interaction ef-
fects and their interplay with disorder since the lack of Galilean
invariance associated with the nonclassical linear band dis-
persion leads to qualitative and quantitative phenomena not
present in regular parabolic band metals and semiconductors.
For example, graphene violates the well-known Kohn’s theo-
rem, and both cyclotron resonance and optical conductivity are
directly affected by electron-electron interaction effects in con-
trast to the corresponding parabolic band systems. In the con-
text of engineering applications, strong broadband absorption
and high tunability make monolayer graphene uniquely suited
for a wide range of optoelectronic and plasmonic devices.4

These prospects have motivated numerous measurements of
the optical conductivity of monolayer graphene in the wide
frequency range from the far infrared to the ultraviolet.5–12 A
detailed understanding of the optical properties of monolayer
graphene is required for the progress in both of these directions.
In this paper we consider only monolayer graphene within
the effective linear gapless Dirac band model, and graphene
in this article refers exclusively to monolayer graphene. Our
goal here is to theoretically study the effects of electronic
collective modes on the graphene dynamical conductivity
treating disorder and interaction on the same footing.

A. Experimental motivation

The optical conductivity of undoped graphene is dominated
by interband processes (arising from the particle-hole excita-
tions from the filled valence band to the empty conduction

band) in the gapless Dirac spectrum. In the noninteracting
case this gives rise to a universal frequency-independent
value of the conductivity that can be expressed in terms of
fundamental constants, a prediction13,14 remarkably confirmed
by the measurements,11,15 establishing the basic gapless chiral
massless Dirac band dispersion of graphene to be valid. At
finite doping the interband processes are strongly suppressed
by Pauli blocking in the partially filled conduction band
(assuming positive Fermi level EF > 0, but obviously the
same physics also applies for the hole-doped system) whereas
the universal value of the conductivity is reached at higher
frequencies h̄ω � 2EF where Pauli blocking effects become
small, and the interband transitions again dominate the optical
conductivity. The partially filled conduction band gives rise to
the intraband response reflected in the Drude peak at ω ≈ 0 in
the optical conductivity. In graphene electron-electron interac-
tions are expected to give rise to relatively small yet observable
corrections to the optical conductivity via the many-body
renormalization of the electron spectrum and the excitonic
effects near the absorption threshold h̄ω = 2EF .1,3 An im-
portant difference between graphene and ordinary parabolic
band semiconductor systems in this context is that the linearly
dispersing graphene electron and hole bands violate the usual
Galilean invariance dominating the long-wavelength optical
response of the semiconductor systems where the electron-
electron interaction, being a property of the relative coordi-
nates of the individual electrons themselves, does not affect the
long-wavelength translationally invariant optical conductivity
of the system since the latter is a specific property of the
center of mass coordinates coupling to the external light in the
long-wavelength limit. The long-wavelength optical properties
in graphene, however, are explicitly affected by the interaction
effects since graphene obeys Lorentz invariance, which does
not enable the usual separation of the system Hamiltonian into
the center of mass and relative coordinates components.

In particular, the Drude weight in graphene has been
predicted to be renormalized by the interaction effects.16

Experimentally this effect is demonstrated by analyzing
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the parameters of the Drude peak. The latter is routinely
phenomenologically fitted by a two-parameter Lorentzian
σ = iD/[π (ω + i/τ )] characterized by a width 1/τ due to
the disorder scattering and the Drude weight D.2,3 The
latter has shown discrepancy with the free-electron value
D = (ve2/h̄)

√
πρ suggestive of electron-electron interactions

playing a role. Here v is the slope of the linear dispersion
in graphene (i.e., the so-called graphene velocity) and ρ is
the electron density. On the other hand, the data reported in
Ref. 17 suggest a non-Lorentzian shape of the Drude peak in
graphene possibly reflecting a frequency-dependent relaxation
rate 1/τ (ω) or the presence of other nonuniversal background
at ωτ � 1. More recently, additional measurements of the
plasmon decay,18,19 directly related to the optical conductivity,
confirmed the discrepancies with the simple Lorentzian fits.
The questions of the origin of the non-Lorentzian shape of the
Drude peak and the actual value of the Drude weight extracted
from the Drude response remain open.

B. Theoretical motivation

Several theoretical models of the optical response of
graphene have been put forward that include the effects of
disorder,13,20,21 the band structure corrections due to the next-
nearest neighbor hopping in the tight binding description,22

excitonic effects near h̄ω ≈ 2EF ,23,24 effects of phonons25–30

relevant at high temperatures, plasmaron effects31 near the
Dirac point, the effect of strain,32 and the spectrum renormal-
ization effects of electron-electron interactions.29,33

An effect omitted so far in the literature is the frequency
dependence of the Lorentz invariant screening effect of the
graphene relativistic electron gas. Formally, the dynamical
screening of an electron gas is characterized by the in-
verse of the dynamical dielectric function, 1/ε(q,ω). The
presence of a plasmon pole in the dynamical dielectric
function, Im[1/ε(q,ω)] ∼ δ(ω − ωpl(q)), results in the fail-
ure of the screening at the plasmon frequency ω ≈ ωpl(q)
and therefore gives rise to an enhancement of the disorder
scattering rate. As a result, the gapless plasmon dispersion
ωpl(q) (i.e., the plasma frequency going as the square root of
the wave number at long wavelength) in the 2D electron gas
(2DEG) gives rise to a strong frequency dependence of the
scattering rate due to charged impurities.34–37

Despite the conceptual simplicity, a formal calculation of
the frequency-dependent scattering rate in the electron gas
in the presence of disorder and interaction is not straightfor-
ward. The standard method is to construct a diagrammatic
perturbation theory for the current-current correlator relying
on the metallic expansion parameter EF τ � h̄ characterizing
the disorder strength and then employing some sort of
approximation scheme for the electron-electron interactions.
Such a construction, however, requires the inclusion of an
infinite series of diagrams. The summation of the infinite series
results in an integral Bethe-Salpeter equation for the vertex
function, which is difficult and cumbersome to solve in the
presence of both disorder and interaction even for the simplest
approximation schemes.

In the case of the 2DEG with the parabolic dispersion the
problem was successfully solved with a lot of work using the
so-called memory function approach.34 This solution relied on

a substantial simplification that is possible in the parabolic case
due to the separation between the slow dynamics of the center
of mass of the electron gas and the relative motion of electrons.
As a result the dynamics of the 2DEG is described by an ef-
fective quantum Langevin equation for a macroscopic particle
with a large mass (the mass of the electron gas) subject to a ran-
dom force due to the disorder potential.38 In this case the force-
force correlator determines the response of the 2DEG to the ex-
ternal field. Electron-electron interactions enter the force-force
correlator in a particularly simple way, only via the polarization
operator, which greatly simplifies the calculation.34

In graphene the situation is more challenging. Due to the
broken Galilean invariance the dynamics of the center of
mass of the electron gas is coupled to the pseudospin degree
of freedom.16,39 This is reflected in the violation of Kohn’s
theorem in graphene. Therefore one has to take great care
when applying the quantum Langevin equation approach to
graphene. In particular, in the presence of electron-electron
interactions the force-force correlator does not have the simple
form of the parabolic case. Therefore the Langevin equation
does not readily provide any advantage over the standard
Bethe-Salpeter equation.

The situation is greatly simplified in the high-frequency
regime ωτ � 1 where the summation of the infinite series of
diagrams in powers of the disorder potential is not required.
In this paper we adopt for the case of the Dirac electrons
in graphene an equation of motion framework, developed in
Refs. 40 and 41, which is suitable for the high-frequency
regime. This approach is somewhat similar to the derivation
of the quantum kinetic equation,39,42–44 however, here we
will employ an equal time correlator, the density matrix, as
opposed to the quasiclassical Green’s function used in the
former approach.

C. Summary of the calculation and results

In this paper we develop an equation of motion approach in
order to calculate the high-frequency asymptotic, 1/(ωτ ) � 1,
(accessible in current experiments45) of the optical conductiv-
ity of graphene in the presence of electron-electron interactions
and charged impurities. Interaction effects are included in the
self-consistent mean-field approximation, which is equivalent
to the random phase approximation (RPA) of the diagrammatic
perturbation theory.

We find an enhancement of the disorder scattering rate
at finite frequencies due to the presence of the graphene
plasmon excitation in the spectrum. We make a quantitative
prediction for the frequency-dependent correction to the
optical conductivity of graphene due to the plasmon anomaly
in the perturbative regime, h̄/τ � h̄ω � EF . In the following
we use two frequency-dependent expansion parameters, ωτ �
1 and h̄ω/EF � 1. The former will be referred to as the
high-frequency asymptotic and the regime ωτ � 1 will be
referred to as low-frequency regime. We also discuss the
extension of our results beyond this frequency range. The
plasmon enhanced scattering gives rise to a broad peak in
the frequency-dependent conductivity given by,

Re σ (ω) ∝
(

h̄ω

cEF

)3

exp

[
−

(
h̄ω

cEF

)2]
.
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The dimensionless coefficient c ≡ √
α/(kF d), depends on the

Fermi wave vector kF and for typical values of parameters
can be small c � 1. Here d is the effective separation of the
charged impurities from the graphene plane, and α ≡ e2/(κvh̄)
is the dimensionless interaction strength (i.e., the so-called
graphene fine structure constant) and κ is the effective
dielectric constant. The rapid increase of the scattering rate
at h̄ω � cEF is limited by the flattening of the Coulomb
potential of the impurities at the length scale d. Both the
location h̄ω∗/EF = √

3/2c and the magnitude Re σ (ω∗) of
the peak are sensitive to the characteristics of disorder and the
Fermi level EF in the system. Therefore the effect is expected
to be strongly sample dependent (i.e., impurity distribution,
carrier density, and interaction strength).

We use our perturbative high-frequency results to make
a qualitative prediction for the frequency-dependent optical
conductivity at low frequencies ωτ � 1. We find that in this
regime the plasmon induced frequency-dependent scattering
rate leads to a redistribution of the spectral weight in the optical
conductivity, which may be substantial in the low-density
regime in strongly disordered samples. The redistribution of
the spectral weight results in the non-Lorentzian shape of the
Drude peak, which has to be accounted for when extracting
various system parameters from measurements of the Drude
response.

The paper is organized as follows. In Sec. II we discuss
the low-energy Hamiltonian of monolayer graphene and the
model of Coulomb disorder arising from charged defects.
An equation of motion is derived in Sec. III and solved
in Sec. IV and details given in Appendix B. The plasmon
propagator is introduced in Sec. V. Asymptotic solutions of
the equation of motion presented in Sec. VI are used to obtain
quantitative predictions for the optical conductivity in Sec. VII.
We conclude in Sec. VIII. Appendix A contains a description
of the formal theory of the low-energy excitations in graphene
that includes a band cutoff and Appendix B gives some details
of the derivation for the results in Secs. IV and VI.

II. MODEL SETUP

The unit cell of the hexagonal lattice of monolayer graphene
contains two chemically equivalent carbon atoms (labeled A

and B). The resulting degeneracy ensures the crossing of the
conduction and valence bands at the corners of the hexagonal
Brillouin zone (labeled K and K ′). The low-energy excitations
(<1 eV) are described by the two-flavor Dirac Hamiltonian,

H0 =
∑

k

�̂
†
kĥk�̂k, ĥk = v� · k,

with �x/y/z being the 4 × 4 matrices in the sublattice and
valley space that form a Pauli matrix algebra [�j,�l] =
2iEj lm�m where Ej lm is the antisymmetric tensor. The basis
chosen here is �̂

†
k = [ψ†

AKηψ
†
BKηψ

†
BK ′ηψ

†
AK ′η] where ψ

†
AKη

and ψAKη are the creation and annihilation operators for an
electron on the sublattice A at the K point, characterized
by momentum k and spin η. Below we assume that the
Hamiltonian of graphene is diagonal in spin indexes (and a
spin degeneracy of 2 as well as a valley degeneracy of 2 will
be assumed throughout). Throughout the text we set h̄ ≡ 1 and

restore it in the final answers presented in Secs. VII and VIII,
unless explicitly stated. The full low-energy Hamiltonian,

H = H0 + Hee + Himp (1)

includes the interelectron Coulomb interaction,

Hee = 1

2S

∑
k,k′,q �=0

Vq�
†
βk�

†
γ k′�γ k′+q�βk−q, (2)

with Vq ≡ 2πe2/(κq), characterized by a dimensionless ratio
of the typical Coulomb energy to the typical kinetic energy
α = e2

κv
(here h̄ ≡ 1) that is independent of the electron density.

The full Hamiltonian also includes the potential of random
charged impurities,

Himp =
∑
k,q

V (i)
q �

†
βk�βk+q, (3)

V (i)
q =

∑
i

Vqe
iqri−qdi , (4)

which dominates the elastic disorder scattering in typical
graphene devices fabricated on SiO2/Si substrate. Here q is
a 2D momentum in the graphene plane, ri is the location of
the ith impurity (assumed random) in the 2D plane parallel
to the graphene layer, and di is the distance between the
graphene layer and the impurity in the direction perpendicular
to the graphene plane. For simplicity, and with no loss of
generality we assume that all impurities are located in a
2D plane parallel to the graphene layer located a distance
d away from it. We will comment on the implications of the
impurities being distributed in three dimensions later in the
paper. We assume without loss of generality the distribution
of impurities to be charge neutral such that the average of
the disorder potential over the random disorder configurations
vanishes (V (i)(r)) = 0. We use the Born approximation for
the disorder scattering rate such that the disorder scattering is
fully characterized by the correlator of the disorder potential
averaged over the random disorder configurations,

(
V

(i)
q V

(i)
q′

) = δq,−q′ρimpV
2
q e−2qd , (5)

where δq,q ′ stands for Kronecker symbol. Our model of uncor-
related random disorder can be straightforwardly generalized
to correlated disorder scattering46 if experimental information
about disorder correlations is available. To keep the number
of parameters a minimum, we assume the impurity-induced
random disorder to be completely characterized by just two
parameters, the impurity density ρimp and their location with
respect to the graphene layer d, which is the minimal possible
model for Coulomb disorder.

III. EQUATION OF MOTION

We introduce an equal time correlator

ĝk,k+q(t) ≡ 〈�̂†
k(t)�̂k+q(t)〉,

which will be called the density matrix in this paper. The
density matrix, ĝk,k+q(t), is an 8 × 8 matrix defined in terms
of the spinor creation/annihilation operators �̂

†
k in the basis of

the Bloch wave functions labeled by the sublattice, valley and
spin indices. The density matrix is diagonal in the spin indices,
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which will give rise to a factor of η = 2 each time the trace is
taken.

In the Heisenberg representation a time derivative of an
operator −i∂t ĝk,k+q(t) is given by a commutator with the full
Hamiltonian,

−i∂t ĝk,k+q(t) = [H,ĝk,k+q(t)]. (6)

Calculating the commutators of the density matrix with the
Hamiltonian in Eq. (1) (see also Appendix A) we find,

[H0,ĝk,k+q(t)] = ĥkĝk,k+q(t) − ĝk,k+q(t)ĥk+q, (7)

and,

[Himp,ĝk,k+q(t)] =
∑

q′
V

(i)
q′ [ĝk−q′,k+q(t) − ĝk,k+q+q′(t)]. (8)

The interactions are included in the mean-field approximation,

[Hee,ĝk,k+q(t)] =
∑

q′
Vq ′ρ(−q′)[ĝk−q′,k+q(t) − ĝk,k+q+q′ (t)],

(9)

where ρ(q) ≡ ∑
k Trĝ(k,k + q,t) is the Fourier transform of

the spatial fluctuation of the electron density.
We include the external electric field in a gauge invariant

formulation,47 which requires the monochromatic field E(t) =
Eeiωt to enter as follows,

(−ω − ieE · ∇k)ĝk,k+q(ω) = [H,ĝk,k+q(ω)], (10)

where we also take the Fourier transform with respect to time.
Here and throughout the text we assume that the frequency
ω > 0 has an infinitesimal positive imaginary part, which is
set to zero at the end in the usual manner.

A. Diagonalized equation of motion

We introduce a projection operator,

Psnk ≡ 1
2 (1 + s� · nk), (11)

that projects on the subspace of positive and negative energy
eigenstates of the Dirac Hamiltonian H0 for s = 1 and s = −1,
respectively. Here nk ≡ k/k. It can be verified directly that
P2

snk
= Psnk and Pnk + P−nk = 1.

Multiplying both sides of Eq. (10) byPsnk on the left and by
Ps ′nk+q on the right we diagonalize the free particle part Eq. (7)
in the right-hand side of the equation of motion Eq. (10),

Psnk (ĥkĝk,k+q(ω) − ĝk,k+q(ω)ĥk+q)Ps ′nk+q

= (sεk − s ′εk+q)Psnk ĝk,k+q(ω)Ps ′nk+q .

where we used that Psnkv� · k = sεkPsnk and εk ≡ vk. We
use an identity,

ĝk,k+q(ω) =
∑
s,s ′

Psnk ĝk,k+q(ω)Ps ′nk+q,

which can be verified directly, in the left-hand side of
Eq. (10) multiplied by the projectors (as described above)

to obtain,

ĝk,k+q(ω) =
∑
ss ′

Psnk [Hee + Himp,ĝk,k+q(ω)]Ps ′nk+q

s ′εk+q − sεk − ω

+
∑
ss ′

Psnk (ieE · ∇kĝk,k+q(ω))Ps ′nk+q

s ′εk+q − sεk − ω
, (12)

where all the terms containing perturbations are collected in
the right-hand side, which will be more convenient for the
construction of the perturbation theory.

IV. SOLUTION OF THE EQUATION OF MOTION

The solution of the matrix integra-differential equation (12)
can be used to obtain the current response,

J
j

total = ev
∑

k

Tr{�j ĝk,k(ω)}, (13)

where j = x,y. Here and throughout the text we take the
trace over the sublattice, valley, and spin indexes. In the
linear response J i

total = σijEj , i,j = x,y, and therefore it will
be sufficient to keep the electric field to the first order in
the solution of (12). The conductivity averaged over random
disorder configurations is isotropic, nevertheless, it will be
more convenient for us to discuss components of the current
response and give the results for the isotropic conductivity at
the end.

Solving the equation (12) is still a daunting task as both
the disorder potential and interactions have to be included
self-consistently. In the present work we solve this equation
only in the high-frequency regime ωτ � 1 where τ is the
disorder scattering time. In this high-frequency regime it is
sufficient to keep the terms up to the second order in the
disorder potential. We treat electron-electron interactions in
the self-consistent mean-field approximation. This approach is
equivalent to the standard random phase approximation (RPA)
of the many-body perturbation theory, which has been shown
to provide an accurate description of the plasmon dispersion in
graphene.48 We neglect self-energy and vertex corrections due
to Coulomb interactions in the plasmon dispersion because
of the relatively weak electron-electron interaction strength in
graphene. We emphasize that the long-wavelength square root
in wave number plasmon dispersion in graphene is protected
by current conservation, but the coefficient of this long-
wavelength dispersion term is affected (weakly) by interaction
effects in graphene (in contrast to parabolic band systems),
because of the violation of Galilean invariance in graphene.49

We introduce a notation for the expansion of the density
matrix,

ĝ = ĝ(0) + ĝ(10) + ĝ(01) + ĝ(02) + ĝ(11), (14)

where ĝ(ij ) corresponds to the ith order expansion in the
electric field and the j th order in the disorder potential, and
we drop the subscripts of ĝ

(ij )
k,k+q(ω) in Eq. (14). Note that due

to the violation of the Kohn’s theorem by the Dirac electrons,
the external electric field couples to the homogeneous electron
density, ĝ

(10)
k,k+q(ω) �= 0, in contrast to the ordinary parabolic

band spectrum 2D electron systems.41

In the following we find successive approximations of
ĝk,k+q(ω) defined in (14) by recursively solving Eq. (12) in
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each order of the perturbation theory. In the zeroth order, free
Dirac quasiparticles are described by the Fermi-Dirac distri-
bution fsεk = 1

1+eβsεk
, and the density matrix is proportional to

the projector Eq. (11),

ĝ
(0)
k,k+q ≡ ĝ

(0)
k = δk,k+q

∑
s=±

fsεkPsnk ,

where β = 1/(kBT ) is the inverse temperature and kB is
the Boltzmann constant, and δk,k+q stands for the Kronecker
symbol.

A. First-order terms

The linear response of disorder free graphene to an external
electric field is described by ĝ

(10)
k,k+q(ω), which satisfies

ĝk,k+q(ω) =
∑
ss ′

Psnk [Hee,ĝk,k+q(ω)]Ps ′nk+q

s ′εk+q − sεk − ω

+
∑
ss ′

Psnk (ieE · ∇kĝk,k+q(ω))Ps ′nk+q

s ′εk+q − sεk − ω
. (15)

We first solve Eq. (15) ignoring the Coulomb interaction. In
this case, in the first order in the electric field we obtain,

ĝ
(10)
k,k+q(ω) = ieE0 ·

∑ Psnk

(∇kĝ
(0)
k

)
Ps ′nk

−ω + (s ′ − s)εk
δk,k+q, (16)

where the sum is over s,s ′ = ±1. From this we directly obtain
that the electron density response to the homogeneous electric
field,

ρ(10)(q,ω) ≡
∑

k

Tr ĝ
(10)
k,k+q(ω) = 0,

vanishes in the linear order. Using Eqs. (16) and (13) we
reproduce the universal value13,14 of the conductivity of
noninteracting disorder free graphene at the charge neutrality
point (EF = 0),

Re σEF =0 = e2

4h̄
,

where we restore the Planck’s constant. At finite doping
Eq. (16) describes the optical absorption due to interband
transitions with energies ω > 2EF as well as the disorder-free
zero-frequency Drude peak,16

Re σ = e2

h̄
EF δ(ω),

where we restore Planck’s constant.
In general, electron-electron interactions give rise to correc-

tions to Eq. (16) reflected in the many-body renormalization
of the Drude weight16 and the renormalization of the universal
conductivity σEF =0.50 Accounting for these renormalization
effects would require including self-energies and vertex
corrections in the expansion in the electron-electron interaction
strength. We reiterate here that in the present work we neglect
all such effects. We include the electron-electron interactions
within the self-consistent mean-field approximation, which in
the first order in the electric field gives the density matrix
correction that is proportional to the density response,

[Hee,ĝk,k+q] = Vqρ
(10)(q)

(
ĝ

(0)
k+q − ĝ

(0)
k

) = 0,

which therefore vanishes. As a result, the interactions produce
no change in Eq. (16) within the chosen approximation
scheme in our model. The full inclusion of interaction-induced
self-energy and vertex corrections in the graphene dynamical
conductivity in the doped situation in the presence of impurity
disorder is a formidable task, which is well beyond the scope
of our work where our interest lies in treating disorder and
interaction on an equal footing, treating disorder perturbatively
(i.e., high-frequency approximation) and interaction at a mean-
field level (i.e., RPA, which correctly incorporates the plasmon
collective mode in the high-frequency conductivity).

The static density fluctuation induced by the disorder
potential ĝ

(01)
k,k+q satisfies Eq. (12) with the first-order terms

in disorder included and the terms proportional to the electric
field omitted in the right-hand side,

ĝ
(01)
k,k+q(0) =

∑
ss ′

Psnk

[
ĝ

(0)
k+q − ĝ

(0)
k

]
Ps ′nk+q

s ′εk+q − sεk

× [
V (i)

q + Vqρ
(01)(−q,0)

]
, (17)

where s,s ′ = ±1, and we used Eqs. (8) and (9). Taking the
trace over the spinor indices and summing over k on both
sides of Eq. (17) we solve it for the density ρ(01)(q,0) ≡∑

k Trĝ(01)
k,k+q(0),

ρ(01)(q,0) =
∑

k

Tr
{
ĝ

(01)
k,k+q(0)

} = V
(i)
−qχ (q,0)

ε(q,0)
. (18)

Here we introduced the RPA dielectric function, 1/ε(q,ω) ≡
1/[1 − V−qχ (q,ω)], with the free electron polarization opera-
tor defined as,51,52

χ (q,ω) ≡ η
∑
ss ′,k

(
fs ′εk+q − fsεk

)
[1 + ss ′nk · nk+q]

−ω − sεk + s ′εk+q
, (19)

where η = 2 is the spin degeneracy. Going back to Eq. (17)
we obtain the first-order correction to the density matrix
due to the disorder potential screened by the interacting
electron gas,

ĝ
(01)
k,k+q(0) = V

(i)
−q

ε(q,0)

∑ (
fs ′εk+q − fsεk

)
PsnkPs ′nk+q

−sεk + s ′εk+q
, (20)

where the sum is over s,s ′ = ±1.

B. Second-order terms

The contribution to the static density fluctuations in the
second order in disorder ĝ

(02)
k,k+q vanishes after the averaging

over the disorder configurations. This is because the disorder

averaged value (ĝ(02)
k,k+q) = ξδq,0 is homogeneous in space. The

charge neutral distribution of disorder does not give rise to
nonzero homogeneous corrections to the density, therefore
ξ = 0. This conclusion can also be confirmed by showing that
in the second order in the disorder potential Eq. (12) does not
have nontrivial static homogeneous solutions.

The interplay of the disorder potential and the electric field
gives rise to the dynamical fluctuation of the electron density
matrix ĝ

(11)
k,k+q(ω) that satisfies the following equation obtained
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from Eq. (12) in the respective expansion,

ĝ
(11)
k,k+q(ω) =

∑
ss ′

ieE · Psnk∇kĝ
(01)
k,k+q(0)Ps ′nk+q

s ′εk+q − sεk − ω

+ V
(i)
−q

ε(q,0)

∑
ss ′

Psnk

(
ĝ

(10)
k+q(ω) − ĝ

(10)
k (ω)

)
Ps ′nk+q

s ′εk+q − sεk − ω

+Vqρ
(11)(q,ω)

∑
ss ′

Psnk

(
ĝ

(0)
k+q − ĝ

(0)
k

)
Ps ′nk+q

s ′εk+q − sεk − ω
.

(21)

We take the trace over the spinor indices and sum over k on
both sides of Eq. (21) as before, and solve this equation for the
density fluctuation ρ(11)(q,ω) ≡ ∑

k Tr ĝ
(11)
k,k+q(ω),

ρ(11)(q,ω) = 1

ε(q,ω)

∑
Tr

[
ieE · Psnk∇kĝ

(01)
k,k+q(0)Ps ′nk+q

s ′εk+q − sεk − ω

+ V
(i)
−q

ε(q,0)

Psnk

(
ĝ

(10)
k+q(ω) − ĝ

(10)
k (ω)

)
Ps ′nk+q

s ′εk+q − sεk − ω

]
,

(22)

where the sum is taken over s,s ′ = ±1 and the momentum
k. Note that the combination of the left-hand side and the
last term on the right-hand side of Eq. (21) ensure that the
density fluctuation ρ(11)(q,ω) is proportional to the inverse of
the dynamical dielectric function 1/ε(q,ω). Using the explicit
result for ρ(11)(q,ω) we can find the density matrix correction
ĝ

(11)
k,k+q(ω).

The full solution ĝ
(11)
k,k+q(ω) is straightforward to obtain. The

result however is rather cumbersome (and not particularly illu-
minating) and therefore below we will present only the terms
that play a key role in the plasmon enhanced scattering rate,
which dominates the frequency-dependent optical response in
the frequency range 1/τ � ω � EF .

C. Electric current

Using Eq. (12) we can express the linear response current in
terms of ĝ

(11)
k,k+q(ω), which spares us the necessity of calculating

ĝ
(12)
k,k+q(ω). We multiply Eq. (12) by �j (where j = x,y) take

the trace in the spinor space and sum over k. Comparing the
result to the definition in Eq. (13) we arrive at

J
j

total = ev
∑
ss ′,k

Tr
{
�jPsnk [Hee + Himp,ĝk,k(ω)]Ps ′nk

}
(s ′ − s)εk − ω

+ ev
∑
ss ′,k

Tr
{
�jPsnk (ieE · ∇kĝk,k(ω))Ps ′nk

}
(s ′ − s)εk − ω

. (23)

The term in the second line in Eq. (23) is proportional
to the homogeneous component of the correlator ĝk,k and
therefore does not give any contribution to the disorder induced
correction, see Sec. IV B for details. The presence of this
free electron contribution is an artifact of the perturbation
theory, which does not correctly describe the broadening of
the singular response at ω = 0. In the following we focus on
the high-frequency correction to the optical conductivity due
to disorder scattering, which is accurately described by the

first line in Eq. (23), and is denoted J j (ω) in the following.
Using Eqs. (8), (9) and the cyclic property of trace we write the
current response due to the disorder scattering in the second
order in disorder as,

J j (ω) = ev
∑ Tr

{
Ps ′nk�

jPsnk (ĝk−q,k(ω) − ĝk,k+q(ω))
}

(s ′ − s)εk − ω

× [
V (i)

q + Vqρ(−q,ω)
]
, (24)

where the sum is taken over s,s ′ = ±1 and the momenta
k and q. The numerator in Eq. (24) contains the bracket
[ĝk−q,k(ω) − ĝk,k+q(ω)]. We shift the sum over momentum
k → k + q in the first term of this bracket so that the
corresponding difference appears in the factor in front of the
bracket denoted �j ,

J j (ω) = ev
∑

ss ′,k,q

Tr
{
�

j

ss ′ ĝk,k+q(ω)
}[

V (i)
q + Vqρ(−q,ω)

]
,

(25)

where we introduced,

�
j

ss ′ = Ps ′nk+q�
jPsnk+q

−ω + (s ′ − s)εk+q
− Ps ′nk�

jPsnk

−ω + (s ′ − s)εk
.

This procedure has to be formally justified by an introduction
of a band cutoff. The details of this formulation are described
in Appendix A. Finally, using the expansion (14) and the
result (18) the current response Eq. (25) to the external electric
field in the second order in the screened disorder potential is
written as

J j (ω) = ev
∑
ss ′,k

Tr

{
�

j

ss ′

(
V

(i)
q

ε(q,0)
ĝ

(11)
k,k+q(ω)

+Vqρ
(11)(−q,ω)ĝ(01)

k,k+q(0)

)}
. (26)

V. PLASMON PROPAGATOR IN GRAPHENE

The excitation spectrum of the interacting Dirac electron
gas consists of the electron-hole continuum and the collective
plasmon mode. The latter is described by the pole of the inverse
dielectric function given within RPA by51,52

1 − Vqχ (q,ω) = 0. (27)

Here χ (q,ω) is the free electron polarization function Eq. (19).
Equation (27) has solutions only when ω > vq, which corre-
spond to the plasmon band with the dispersion,51,52

ωpl = v
√

ηαkF

√
q.

In this frequency range ω > vq, the imaginary part of the
dynamical dielectric function is proportional to the plasmon
propagator,

Im
χ (q,ω)

ε(q,ω)
= ImDpl(q,ω), vq < ω. (28)

In the relativistic electron gas the Landau damping is absent,
i.e., Imχ (q,ω) = 0, in the frequency range vq < ω < 2EF −
vq.51,52 Therefore within this range we can approximate the
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imaginary part of the plasmon propagator by a δ function
neglecting the relatively weak damping by disorder,

Im
1

ε(q,ω)
≈ 1

Vq
∂χ(q,ωpl(q))

∂ω

πδ(ω − ωpl(q)). (29)

The plasmon momentum is restricted to vq < ω, which
therefore allows an expansion in both the frequency ω � EF

and momentum q � kF in the prefactor in front of the plasmon
propagator in Eq. (26). At higher frequencies, when the
condition ω + vq > 2EF is satisfied, the plasmon is damped
by electron-hole excitations, and the frequency-dependent
plasmon width (i.e., Landau damping) has to be taken into
account. The plasmon damping does not give rise to any
qualitatively different behavior. Therefore we consider only the
δ-function form of the plasmon propagator which gives quanti-
tatively accurate results at frequencies ω � EF . Electron-hole
excitations determine the behavior of the dielectric function for
ω < vq,

Im
1

ε(q,ω)
= Imχ (q,ω)

|ε(q,ω)|2 . (30)

At low frequencies ω � EF the frequency dependence of the
dynamical screening due to electron-hole excitations given by
Eq. (30) is weak. Therefore the frequency dependence of the
current response is dominated by the terms proportional to
the plasmon propagator in Eq. (29). This allows us to drop
the frequency dependence in all other terms in the current
response,

J j (ω) ≈ J j (ω = 0) + J
j

pl(ω),

where J
j

pl(ω) is the frequency-dependent part of Eq. (26) that
contains the plasmon propagator,

J
j

pl(ω)

= ev
∑

Tr

{
�

j

ss ′

(
Vqρ

(11)(−q,ω)ĝ(01)
k,k+q(0)

+ V
(i)

q Vqρ
(11)(q,ω)

ε(q,0)

∑ (
ft ′εk+q − ftεk

)
PtnkPt ′nk+q

t ′εk+q − tεk − ω

)}
,

(31)

where we kept only the last term in Eq. (21) for ĝ
(11)
k,k+q(ω),

which is the only one containing the plasmon propagator. The
sum in the first line of Eq. (31) is over s,s ′ = ±1 and the
momenta k and q, in the second line the sum is over t,t ′ = ±1.

The final analytical expression for the plasmon enhanced
optical conductivity is rather cumbersome and therefore
is left for the Appendix B. In the next section we find
a simplified form of this result introducing an additional
expansion parameter, ω/EF � 1.

VI. ASYMPTOTIC SOLUTIONS

A. Intraband solution of the equation of motion

At frequencies much lower than the Fermi level ω/EF � 1
both the static scattering rate and the frequency-dependent
plasmon-induced correction to it are dominated by the
intraband processes. Therefore in the right-hand side of
Eq. (12) we can neglect all interband terms that contain large

denominators ≈ 2EF in the low-frequency limit,

ĝk,k+q(ω) ≈ Pnk [Hee + Himp,ĝk,k+q(ω)]Pnk+q

εk+q − εk − ω

+ Pnk (ieE · ∇kĝk,k+q(ω))Pnk+q

εk+q − εk − ω
. (32)

Using Eq. (32) instead of Eq. (12) greatly simplifies the algebra
needed to implement the program outlined in Sec. IV. Thus
solving Eq. (32) for ĝ

(01)
k,k+q(0) and ρ(11)(q,ω) and using Eq. (26)

and performing some tedious but straightforward algebraic
calculations we arrive at

Re σ = Re σD + Re σpl, (33)

where,

Re σD = −e2v2ρimp

2ω2

∑
q

V 2
q e−2qd

ε2(q,0)
Im �σ (q,ω), (34)

Re σpl = −e2v2ρimp

2ω

∑
q

V 3
q e−2qd

ε2(q,0)
Im

[Xj (q,ω)]2

ε(q,ω)
, (35)

and j = x,y, and we used Eq. (5) for the averaged correlator
of the disorder potential. We introduced above the correlation
functions,

�σ (q,ω) ≡ η
∑

k

(
fεk+q − fεk

)
[nk+q − nk]2Fk,k+q

(−ω − iδ − εk + εk+q)(−εk + εk+q)
,

(36)

and

Xj (q,ω) ≡ η
∑

k

(
fεk+q − fεk

)[
n

j

k+q − n
j

k

]
Fk,k+q

(−ω − iδ − εk + εk+q)(−εk + εk+q)
.

(37)

Here we introduced a notation,

Fk,k+q ≡ (1 + nk · nk+q). (38)

The first term in Eq. (33) reproduces the high-frequency
expansion of the standard Drude conductivity,

Re σ Drude = ηe2νv2τ

1 + (ωτ )2
≈ ηe2νv2

ω2τ
, (39)

with the frequency-independent transport relaxation rate due
to impurity scattering. Here ν is the density of states of the
Dirac electrons per spin and valley. To demonstrate the relation
between Eqs. (34) and (39) explicitly we keep only the main
term in the low-frequency expansion of Eq. (36),

Im�σ (q,ω) ≈ q2Im
χ (q,ω) − χ (q,0)

ω
.

Substituting the above result into Eq. (34) and comparing it
to Eq. (39) we reproduce the standard definition1 of the static
elastic scattering rate due to screened Coulomb disorder in
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graphene,

Re σD ≈ 2e2νv2

ω2τ (0)
,

1

τ (0)
= 2πρimp

h̄

×
∑

p

e−2|p−p̃|dV 2
|p−p̃|Fp,p̃(1 − cos θpp̃)δ(εp − εp̃)

ε2(|p − p̃|,0)
,

(40)

where we restore the Planck’s constant.
The second term in Eq. (33) describes the frequency-

dependent contribution to the optical conductivity due to the
plasmon anomaly. This part can be simplified by keeping only
the main order in the parameter ω/EF � 1 in Eq. (37),

Xj (q,ω) ≈ 2η
1

v

∫
dϕ

(2π )2

qj + n
j

knk · q
ω − vnk · q

.

Taking the integral over the angle ϕ we arrive at,

Xj (q,ω) = η
1

π

n
j
q

v2

�√
1 − �2

(
1 + 1√

1 − �2 + 1

)

≈ ζη

π

n
j
q

v2
�, (41)

where � ≡ vq

ω
and ζ = 3/2. Therefore the expansion of

Eq. (35) in the parameter, ω/EF with the use of Eq. (41)
gives,

Re σpl = −ζ 2η2e2ρimp

2π2ω3

∑
q

q2V 3
q e−2qd

ε2(q,0)
Im

1

ε(q,ω)
. (42)

Here Im 1/ε(ω,q) is given by Eq. (29).

B. Expansion of the full solution in the parameter, ω/EF � 1

We can verify the intraband result for Re σpl obtained above
by extracting the main order contribution in the parameter
ω/EF � 1 from the plasmon anomaly induced correction to
the optical conductivity Eq. (B1) obtained by solving the full
equation of motion valid at frequencies ω < 2EF . We find that
the result of this procedure coincides with Eq. (42).

The result (42) is somewhat analogous to the one derived for
the case of the 2D electron gas with the parabolic dispersion,34

albeit with a different numerical coefficient. However, in the
case of graphene Eq. (42) corresponds to the main order
in ω/EF � 1 and describes only the frequency-dependent
scattering rate due to the plasmon anomaly, the frequency
dependence of screening due to the electron-hole excitations
is neglected. At higher frequencies ω ∼ EF Eq. (B1) provides
a more quantitatively accurate description. At yet higher
frequencies ω � 2EF the solution of Eq. (21) with (26) has to
be used including all interband effects.

VII. RESULTS

A. High-frequency regime: ωτ � 1

Substituting the plasmon propagator Eq. (29) into the
expression for the optical conductivity Eq. (42) and taking
the trivial integral over the momentum q, which is equivalent

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

ω E

Re
σ
,2
e2

h

F

FIG. 1. (Color online) The real part of the conductivity (in units
of conductance quantum) approximated by the sum of the Drude
peak with the frequency-independent scattering rate and the plasmon
peak Eq. (43). The Drude peak corresponds to the very narrow
feature at ω = 0. The dashed line shows the limit of applicability
of the perturbative expansion ωτ ∼ 1. The impurity density is ρimp =
6 × 1012 cm−2 located at d = 10 × 10−9 m, the electron density
varies from 1012 cm−2 to 3 × 1012 cm−2 top to bottom, the strength
of interactions is α = 0.58 corresponding to graphene on hBN.

to the substitution q → qω ≡ ω2/(2αvEF ), we calculate the
frequency-dependent part of the optical conductivity (in units
of conductance quantum σ0 ≡ 2e2/h),

Re σpl = 9πρimpσ0

64α
1
2 (kF d)

3
2 ρ

(
h̄ω

cEF

)3

e
−( h̄ω

cEF
)2

. (43)

with c ≡ √
α/(kF d). Here and throughout this section we

restore the Planck’s constant. Figure 1 shows Eq. (33) using
Eq. (43) and the Lorentzian peak Re σD(ω) ≈ Re σDrude(ω)
with the static elastic relaxation rate given by Eq. (40). The
effect of the plasmon pole on the optical conductivity is weak at
lower frequencies h̄ω � cEF , however, at higher frequencies
h̄ω � cEF there is a sharp increase in the optical conductivity
with increasing frequency that is limited by the flattening of the
potential of charged impurities as determined by their position
d. A consequence of this behavior is a broad peak in the
frequency-dependent optical conductivity with the maximum
located at

h̄ω∗ =
√

3

2
cEF , (44)

and the width defined by the solution of the equation
∂2
ωσpl(ω) = 0,

h̄δω = 5
2cEF , (45)

as shown in Fig. 1.
We define a frequency-dependent relaxation rate associated

with the plasmon enhanced dissipation using the Drude form
Eq. (39) and comparing it to Eq. (43) we get,

Im
h̄

τpl(ω)
= 9πρimp

64α2ρ

(h̄ω)5

E4
F

e
−( h̄ω

cEF
)2

, (46)

In a wide range of parameters the plasmon enhanced scattering
rate varies greatly with frequency and can be well over an
order of magnitude larger than the static transport scattering
rate, see Fig. 2(a). This strong frequency dependence of the
imaginary part of the relaxation rate gives rise to a nonzero
real part shown in Fig. 2(b). The strong dynamical variation of
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(a) (b)
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FIG. 2. (Color online) The ratio of the static transport scattering
time τ (0) to the frequency-dependent scattering rate due to plasmon
anomaly τpl(ω) for graphene. The parameters are, d = 20 nm,
the dimensionless interaction strength is α = 0.58, the impurity
density ρimp = 3 × 1012 cm−2. Different lines correspond to the
different electron densities from ρ = 0.5 × 1012 cm−2 to ρ = 5.5 ×
1012 cm−2 bottom to top on the left (red, orange, green, blue, magenta,
black). Maximum of the scattering rate h̄ωmax = EF

√
5α/(2kF d) is

dependent on the electron density in the system. (a) and (b) correspond
to the imaginary and real part of the complex frequency-dependent
scattering rate 1/τpl(ω), respectively.

the scattering rate leads to the spectral weight redistribution in
the optical conductivity which will be particularly important
in the strongly disordered samples at low densities for which
the above perturbation theory is expected to fail. This regime
will be discussed in the following section.

In the following we take into account the finite spread of the
spatial distribution of impurities along the z axis perpendicular
to the graphene layer. Including the distribution spread requires
the additional averaging of Eq. (43) over positions of impurities
along the z axis, which results in an overall suppression of
the magnitude of the effect of the plasmon-enhanced scat-
tering. For comparison, we calculate the plasmon-enhanced
frequency-dependent optical conductivity for the case of a
uniform density of impurities along Oz in a layer d1 � z � d2,
so that the 3D impurity density equals ρ3D

imp = ρimp

|d2−d1| . The
result for d2 � d1 reads,

Re σ 3D
pl ≈ 1

kF |d2 − d1|
9πρimpσ0

64α
1
2 (kF d1)

1
2 ρ

h̄ω

c1EF

e
−( h̄ω

c1EF
)2

. (47)

where c1 = √
α/(kF d1). Note that the 3D impurity distribution

is reflected in a different power of ω/EF in the frequency-
dependent optical conductivity and therefore in a different
shape of the plasmon-induced peak. The maximum of the
peak given by Eq. (47) is suppressed with respect to the peak
maximum of Eq. (43) with d = d1 by

max
[
Re σ 3D

pl

]
max[Re σpl]

≈ 4.7 × αd1

|d2 − d1| ,

which is not necessarily a very small number for typical pa-
rameters. Therefore we expect the effect of plasmon-enhanced
scattering to be observable even in the case of the impurities
distributed three dimensionally throughout the substrate layer
in the typical field effect geometry of the graphene based
devices.

B. Low-frequency regime: ωτ � 1

In the following we extend the perturbative results (relying
on ωτ � 1) obtained above into the low-frequency regime,
ωτ � 1. This procedure allows us to make a qualitative

prediction about the low-density behavior of strongly dis-
ordered samples. In this low-frequency regime the spectral
weight redistribution in the optical conductivity is expected to
be substantial and the shape of the Drude peak is expected to
be non-Lorentzian.

The frequency-dependent scattering is described by a
generalized self-energy or memory function M(ω) that reflects
the divergent nature of the response of the electron gas
at ω = 0,

σM (ω) = iσ0EF

ω + M(ω)
.

The real part of the optical conductivity then reads

Re σM = 1

ω2

σ0EF ImM(
1 + ReM

ω

)2 + (
ImM

ω

)2 .

In the limit ReM
ω

� 1 and ImM
ω

� 1 we can match the
expression for the memory function with the perturbative
solution found above,

Im M ≈ ω2

σ0EF

Re σ (ω), (48)

where the right-hand side is given by Eq. (33). On the other
hand at ω = 0 the scattering rate in the perturbative expression
for the optical conductivity in Eq. (33) coincides with the static
elastic transport scattering rate Eq. (40). Note that the contribu-
tion due to the plasmon anomaly Eq. (43) vanishes with ω →
0. The memory function is therefore a function of frequency
that equals ImM(0) = 1

τ (0) at ω = 0 and is given by Eq. (48)
at ωτ � 1. Therefore using the expansion (48) with the right-
hand side given by Eq. (33) in the whole range of frequencies
0 � h̄ω � EF provides a reasonable interpolation for the be-
havior of the low-frequency optical conductivity. This interpo-
lation would fail in the presence of any divergence in the mem-
ory function at low frequencies ωτ � 1. We do not anticipate
such a divergence at frequencies of interest here h̄ω � 2EF

(where the interband processes are not expected to play a role).
The result of the low-frequency interpolation procedure is

presented in Fig. 3, which shows the strong evolution of the
Drude peak shape with the changing density (which corre-
sponds to the different lines on the plot). In particular, the top
(blue) line in Fig. 3 demonstrates the importance of the nonzero

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
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1.0
1.2
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Re
σ
,2
e2

h

F

FIG. 3. (Color online) The real part of the conductivity extrapo-
lated to low frequencies, see Sec. VII B. The parameters are α = 0.15,
ρimp = 6 × 1012 cm−2, d = 10 × 10−9 m with the electron density
changing from ρ = 1012 cm−2 to ρ = 4 × 1012 cm−2 for different
lines, top to bottom. Dashed lines correspond to the real part of the
Drude conductivity with the frequency-independent scattering rate.
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real part of the memory function, which gives rise to the strong
redistribution of the spectral weight in the optical conductivity
and the resulting nontrivial shape of the tail of the Drude peak.

VIII. DISCUSSION

In summary, we have developed an equation of motion
approach to describe the linear response of Dirac electrons
in the presence of electron-electron interaction and disorder
scattering due to charged impurities. We obtain quantitative
predictions for the optical conductivity in the high-frequency
regime ωτ � 1. We show that the presence of a plasmon pole
in the dynamical dielectric function leads to a strong enhance-
ment of the dissipation at finite frequency reflected in a wide
peak in the real part of the optical conductivity. Characteristics
of the predicted peak feature are strongly dependent on the
strength of the electron-electron interaction, the location of
the impurities with respect to the 2D Dirac electron gas, and
can be tuned by tuning the Fermi level by changing the carrier
density. Extrapolating to the low-frequency regime ωτ � 1 we
find that the plasmon enhanced scattering may determine the
non-Lorentzian shape of the Drude response.

The theory developed here is quantitatively accurate only in
the high-frequency regime ωτ � 1. An accurate description
at low frequencies must be based on the solution of the
Bethe-Salpeter equation for the vertex function or some analog
of it, which is beyond the scope of the current work where
we focus on the interplay between disorder and interaction
perturbatively (thus necessitating the high-frequency perturba-
tive expansion). We have, however, provided a low-frequency
extrapolation of our theory, which should have qualitative,
if not quantitative, validity, as long as the relevant memory
function does not have a singularity at low frequencies. This
extrapolation is really an interpolation based on an extension
of our high-frequency theory to lower frequencies by using the
known zero-frequency Drude result.

We have neglected effects of the many-body renormal-
ization of the electronic spectrum and exciton energies by
electron-electron interactions. Within the parameter range
considered in this paper, high Fermi level and relatively low
frequencies h̄/τ � h̄ω � EF we expect the renormalization
effects to give only a small quantitative rather than qualitative
corrections to the effect of plasmon enhanced scattering
described here. Thus, our main qualitative prediction of the
broad peak and the associated non-Lorentzian line shape of
the optical conductivity should remain valid independent of
our neglect of the many-body reconstruction of the Dirac
spectrum, which is very small at finite carrier densities by
virtue of the fine structure constant in graphene (particularly
for graphene on substrates) being not too large (of the order
of unity or less).53 Length scales involved in the plasmon
enhanced scattering are short compared to the mean free path
and therefore the disorder related quantum interference effects
give no contribution to the phenomenon discussed in this paper.

The relatively large magnitude of the finite frequency
peak in the optical conductivity may enable an experimental
confirmation of our predictions. Moreover, the possibility
to tune the position of the plasmon induced peak in the
optical conductivity of graphene, controlled by the parameter
c = √

α/(kF d), by tuning the Fermi level in the system

allows an unambiguous identification of the plasmon enhanced
dissipation effect in the optical response, which can otherwise
be masked by the interband transitions, scattering by phonons,
and other inelastic processes. Also, varying the location
of impurities d allows additional tunability of the effect.
This can be achieved using hexagonal boron nitride spacers
of different thicknesses d between the graphene layer and
SiO2/Si substrate with the latter containing the majority of
charged impurities in the vicinity of its surface. In particular,
samples with relatively wide hBN spacers d ∼ 10 nm would
correspond to c � 1 at densities n ∼ 1012cm−2 in which case
the plasmon induced peak appears at the relatively low fre-
quency h̄ω ∼ cEF unobstructed by the interband transitions.
The plasmon enhanced dissipation discussed here is a generic
disordered Fermi-liquid phenomenon, which nevertheless has
not been unambiguously identified experimentally so far,
and graphene is an ideal system to look for signatures of
this phenomenon due to graphene’s high electronic quality
and tunability of various system parameters, and the strong
magnitude of the plasmon-enhanced scattering in graphene.

With regard to the existing optical measurements the
deviation of the low-frequency response from the Lorentzian
shape has been reported by some17,19 but not all3,12 experiments
indicating that the effect is sample dependent, which is
consistent with the mechanism (i.e., disorder plus plasmon)
predicted here. Redistribution of the spectral weight in the
optical conductivity and the resulting non-Lorentzian line
shape of the Drude peak, if present, have to be accounted for
when extracting the Drude weight, which has been recently
used to analyze the spectrum renormalization due to electron-
electron interactions.3,12

The theoretical approach developed here is generic and
can be straightforwardly generalized to the case of the 2D
Dirac fermions observed in other materials such as topological
insulators and 2D transition metal dichalcongenides. The
most important qualitative message of our theory is that
the finite-frequency dynamical conductivity appropriate for
optical measurements in doped graphene cannot be approx-
imated to have a simple constant disorder broadening given
by the corresponding static transport scattering rate because
of the substantial interplay between plasmons and impurity
scattering. In particular, the finite-frequency scattering time
appropriate for the optical conductivity manifests very nontriv-
ial frequency dependence, which could produce unexpected
qualitative phenomena such as the broad finite-frequency
peak in the conductivity with both the peak position and the
peak width being determined nontrivially by both impurity
scattering and Fermi energy.
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APPENDIX A: BAND CUTOFF IN THE LOW-ENERGY
THEORY OF GRAPHENE

Linearized Dirac spectrum contains an infinite number
of states with negative energies which cannot be realized
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in a condensed matter system. Therefore a cutoff scheme
is required to regularize the theory, which may lead to a
number of unphysical results.54–56 Also the spectral weight
redistribution in such a model becomes ambiguous as f -sum
rule is cutoff dependent.57,58 Here we restrict our calculations
to the physical quantities determined by the low-energy states
only. In particular, we neglect the effects of many-body
spectrum renormalization due to electron-electron interactions
keeping only the infrared divergent RPA diagrams. Therefore
our results are independent of the cutoff scheme and are
expected to reproduce the low-energy asymptotic of the
realistic band structure calculation.

Formally, we introduce the hard cutoff which requires
modification of the field operators16 introduced in Sec. II of
the main text,

�̂k → θ (� − k)�̂k, (A1)

ρ(q) → Tr
∑

k

θ (� − k)θ (� − |k + q|)�̂†
k�̂k+q. (A2)

The sum over k is defined over the infinite range and therefore
allows the variable shift k → k + q.

We calculate the commutator [H,ρ(q)]

[H0,ρ(q)] = −vqiTr
∑

k

�̂
†
k�

i�̂k+q, (A3)

[Himp,ρ(q)] = Tr
∑
k,q

V (i)
q (�̂†

k−q�̂k+q′θ (� − k)

− �̂
†
k�̂k+q+q′θ (� − |k + q′|)). (A4)

To include electron-electron interactions we use the mean-field
approximation, introducing

d = �̂
†
k+q�̂k − 〈�̂†

k+q�̂k〉,
and keeping only the first order in this parameter we arrive at,

[Hee,�
†
αk�βk+q′(t)] =

∑
q

Vqρ(−q)[�†
αk−q�βk+q′θ (� − k)

−�
†
αk�βk+q′+qθ (� − |k + q′|)].

(A5)

The cutoff gives rise to corrections to the theory presented in
the main text that vanish in the limit � → ∞ and therefore
we dropped all cutoff-dependent terms in the main text.

APPENDIX B: FULL EXPRESSION FOR THE
PLASMON-INDUCED CORRECTION TO THE OPTICAL

CONDUCTIVITY

Here we present the frequency-dependent contribution to
the real part of the optical conductivity proportional to the
plasmon propagator. This is obtained from Eq. (31) using the
solution of the equation of motion in Eqs. (21), (22), and (20).
Performing some tedious but straightforward calculations we
arrive at (here h̄ ≡ 1),

Re σpl = η2e2v2ρimp

2
Im

∑ ∣∣V (i)
q

∣∣2
Vq

(
AB + CD

2

)
ε2(q,0)ε(q,ω)

, (B1)

where we introduced

A ≡ −2ω
∑

k

nk · nq

[
fεk+q − fεk

εk+q − εk

(1 + nk · nk+q)

ω2 − (εk+q − εk)2

+ fεk+q − fεk

εk + εk+q

(1 − nk · nk+q)

(εk + εk+q)2 − ω2

]
,

B ≡ −2
∑

k

nk · nq

[
fεk+q − fεk

εk + εk+q

(1 − nk · nk+q)

ω((εk + εk+q)2 − ω2)

+ fεk+q − fεk

εk+q − εk

(
(1 + nk · nk+q)

ω2 − (εk − εk+q)2

− (εk+q − εk)(1 − nk · nk+q)

2ωεkεk+q

)]
,

C = −2
∑

k

(1 − (nk · nq)2)
vq

εk+q

×
[
fεk+q − fεk

εk+q + εk

1

ω2 − (εk+q − εk)2

+ fεk+q − fεk

εk+q − εk

1

ω2 − (εk+q + εk)2

]
,

D = −2ω
∑

k

(1 − (nk · nq)2)
vq

εk+q

×
[
fεk+q − fεk

εk+q − εk

ω2 − 2εk(εk+q − εk)

(ω2 − (εk+q − εk)2)
(
ω2 − 4ε2

k

)

+ fεk+q − fεk

εk + εk+q

ω2 + 2εk(εk+q + εk)

(ω2 − (εk+q + εk)2)
(
ω2 − 4ε2

k

)
]
,

where nq ≡ q/q.
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