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Spin decoherence due to a randomly fluctuating spin bath
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We study the decoherence of a spin in a quantum dot due to its hyperfine coupling to a randomly fluctuating
bath of nuclear spins. The system is modeled by the central spin model with the spin bath initially being at infinite
temperature. We calculate the spectrum and time evolution of the coherence factor using a Monte Carlo sampling
of the exact eigenstates obtained via the algebraic Bethe ansatz. The exactness of the obtained eigenstates allows
us to study the nonperturbative regime of weak magnetic fields in a full quantum mechanical treatment. In
particular, we find a large nondecaying fraction in the zero-field limit. The crossover from strong to weak fields
is similar to the decoherence starting from a pure initial bath state treated previously. We compare our results
to a simple semiclassical picture [Merkulov et al., Phys. Rev. B 65, 205309 (2002)] and find surprisingly good
agreement. Finally, we discuss the effect of weakly coupled spins and show that they will eventually lead to
complete decoherence.
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I. INTRODUCTION

The fact that the spin of an electron (or hole) trapped in
a semiconductor-based quantum dot nowadays allows both
single-spin readout and coherent control1 makes it, following
the original proposal of Loss and Di Vincenzo,2 a prime
candidate for a possible realization of a qubit. However, the
presence of nuclear spins in the substrate, which interact with
the electron spin, mostly through the dominant isotropic Fermi
contact hyperfine interaction, ultimately leads to decoherence
of any qubit state prepared in such systems.

A wide range of theoretical approaches have been used
to obtain a better understanding of the decoherence in this
setup, including many perturbative studies valid only at strong
external magnetic fields.3–6 In the opposite regime of weak
magnetic fields, where the coupling to the spin bath dominates
the Zeeman term, no such systematic perturbative treatment is
possible. This has led to the use of a variety of approaches,4,7–10

ranging from semiclassical calculations to time-dependent
mean field theory and including exact studies via either exact
diagonalization or the algebraic Bethe ansatz (ABA). However,
all approaches in the weak-field limit were either based on
a mean field or a semiclassical description of the problem
or were restricted to either very small system sizes N � 20,
specific bath polarizations, or the short-time behavior.

Recently, we introduced11 a new numerical approach based
on a direct Monte Carlo sampling of the exact eigenstates,
themselves calculated through the ABA. The method was
used to treat, in a fully quantum mechanical fashion, the free
induction decay in the central spin problem when the spin
bath is chosen to be initially in a simple pure state. In this
context, it was shown that the system crosses over from a
slow exponential decay of the coherence at strong field to a
weak-field regime where, at B = 0, it settled into a steady
state with a remarkably large coherent fraction maintained for
arbitrarily long times.

In this work, we expand on the decoherence in the central
spin model by considering the experimentally more realistic
scenario where unprepared nuclear spins are, in the initial
configuration, uncorrelated and randomly oriented. Averaging

explicitly over these realizations, we show that the crossover
from strong to weak external field is similar to what it was
for a pure initial state and that, even with strong fluctuations
in the bath, a large nondecaying fraction can still be found
at zero field. We compare our results of the full quantum
mechanical treatment to a simple semiclassical picture7–9

and find remarkably good agreement. Finally, we discuss
the importance of weakly coupled spins on the quantum
mechanical nonequilibrium problem, showing that they can
play an essential role and, in principle, lead to complete
decoherence at late times.

II. CENTRAL SPIN MODEL

We consider a single electron, trapped in quantum dot built
on a substrate containing nuclear spins, with the whole system
subject to an external magnetic field. Denoting by �S0 the
trapped central spin- 1

2 on the dot and by �Ij nuclear bath spins
(also assumed to have spin 1

2 ), the isotropic Fermi contact
hyperfine interaction between them has the form ∝�S0 · �Ij . The
external magnetic field with magnitude h is oriented along the
ẑ direction; it interacts with the central spin and nuclear spins
with g factors g and gn, respectively. Thus. the Hamiltonian
reads as

H = ghSz
0 + gnh

N∑
j=1

I z
j +

N∑
j=1

Aj
�S0 · �Ij , (1)

where N denotes the number of nuclear spins interacting with
the central spin and Aj are the individual interaction strengths
determined by the corresponding wave-function overlaps (see
following).

Evidently, in real systems a number of additional effects will
also influence the dynamics of the central spin. For example,
it should be noted that on a longer-time scale τdd (∼10−4 s
in typical GaAs dots), the dipole-dipole interaction between
the bath spins would start to play a role which can not be
described using the central spin model introduced above. To
some extent, our work can therefore be seen as limited to short
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and intermediate times when talking about experimentally
realistic quantum dots. However, from what can be perceived
as a purely theoretical point of view, we will also extensively
discuss the behavior of the central spin model at very late
times.

Since the Hamiltonian conserves the z component of
the total spin operator Sz

tot = Sz
0 + ∑N

j=1 I z
j , we will first

rewrite3,12 it in the advantageous form

H = BSz
0 +

N∑
j=1

Aj
�S0 · �Ij + gn

g − gn
BSz

tot, (2)

where we defined the effective magnetic field B = (g − gn)h.
In doing so, it becomes clear that, within a given total
magnetization sector where eigenstates are characterized by
the Sz

tot eigenvalue sz
tot, the last term will simply lead to

a constant contribution to the energy gn

g−gn
Bsz

tot. The other
two terms now appear as the typical form of the XXX-
Gaudin magnet13 in an external magnetic field. The model’s
integrability leads to a simple representation of the eigenstates
using the ABA, which we outline now. In any fixed sz

tot
sector with sz

tot = M − N+1
2 , 0 � M � N + 1, eigenstates of

the central spin model (2) are entirely characterized by M

complex rapidities {λ1, . . . ,λM} which have to be a solution to
the system of M coupled nonlinear algebraic Bethe equations
(i = 1, . . . ,M)

−2B +
N∑

k=0

1

λi − εk

−
M∑

j=1(�=i)

2

λi − λj

= 0. (3)

Here, εk = −1/Ak and ε0 = 0. For every solution of (3) the
corresponding eigenstate is obtained by the repeated action of
a generalized creation operator

S+(λi) ≡ S+
0

λi

+
N∑

j=1

I+
j

λi − εj

, (4)

once for each rapidity. The resulting unnormalized eigenstate
of the system

|{λ1, . . . ,λM}〉 =
M∏
i=1

S+(λi)| ⇓; ↓↓ . . . ↓〉 (5)

is then in fact built out of M individual quasiparticles, each
of them fully described by the single complex parameter
λi . Here and in the following, we denote by ⇑ and ⇓ the
states of the central spin and by ↑ and ↓ the nuclear spins,
respectively. In fact, not only does the rapidity define, through
(4), the excitation profile of the associated quasiparticle, it also
captures its contribution to the total eigenenergy of the state,
which is given by

ω({λ1, . . . ,λM}) = 1

2

M∑
i=1

1

λi

− B

2
− 1

4

N∑
j=1

1

εj

+ gn[2M − (N + 1)]

2(g − gn)
B. (6)

While integrability does not restrict the parameters and
therefore any ensemble of Aj is in principle treatable, in
this work, we systematically use a distribution of coupling
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FIG. 1. (Color online) Sketch of the hyperfine couplings Aj

defined in Eq. (7). N0 denotes the number of nuclear spins found
within one Bohr radius l0 of the Gaussian wave function, while
N is the total number of nuclear spins interacting with the central
spin. The effect of N �= N0 on the decoherence will be discussed in
Sec. VI. Note that we will systematically use energy units such that
A1 = A/N ≡ 1.

constants which obeys the exponential law relevant for a
two-dimensional (2D) system with Gaussian electronic wave
function3

Aj = A

N
e
− j−1

N0−1 . (7)

Here, A sets the strength of the hyperfine interaction. N0

represents the number of spins found within one Bohr radius
l0 of the Gaussian wave function, while N denotes the number
of nuclear spins interacting with the central spin (see Fig. 1 for
a sketch of the setup). We note that we will use energy units
(and thus time units) such that A1 = A/N ≡ 1 throughout
the paper. Presupposing that the most strongly coupled spins
should dominate the decoherence process by being more
effective at exchanging energy between the central spin and the
surrounding spin bath, we first restrict ourselves to spins within
the first Bohr radius and thus set N = N0. This assumption was
also made in our previous11 study on the decoherence starting
from a pure initial bath state. In Sec. VI, we will come back to
this point and address the decoherence due to weakly coupled
nuclear spins by considering N > N0.

III. INFINITE-TEMPERATURE BATH

In our recent paper,11 we studied the decoherence of the
central spin assuming that, at time t = 0, the bath spins were
in a specific pure state defined by having, after ordering them
by coupling strength, one out of two nuclear spins, respectively,
pointing up or down. Initializing the central spin in a coherent
superposition of its up and down states, i.e., along the x̂ axis,
the initial state of the full system then reads as |�(0)〉 =

1√
2
(| ⇑〉 + | ⇓〉) ⊗ |↑1 , ↓2 , ↑3 , ↓4 , ↑5 , ↓6 , ↑7 , . . .〉. An

experimental preparation of similar initial states requires the
use of narrowing techniques14 which typically allow one to
create a superposition of (nearly) degenerate eigenstates of
the Overhauser operator

∑N
j=1 AjI

z
j . In this particular initial

configuration, which we will refer to as the “narrowed” case
in the following, we showed that for N = N0 and B = 0 a
remarkably large coherent fraction could be maintained for
arbitrarily long times.

In this work, we first investigate whether allowing thermal
fluctuations in the nuclear bath could be sufficient to lead to
full decoherence in a similar setup. We therefore assume that,
at t = 0, the system can still be described by a tensor product
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state 1√
2
(| ⇑〉 + | ⇓〉) ⊗ |�nucl〉, but the nuclear spins are now

considered to have random uncorrelated orientations. When
one does not perform any form of nuclear bath preparation,
the very weak g factor and dipolar coupling between the
nuclear spins justifies this picture for any finite temperature
which is large compared to these characteristic energy scales.
In this situation, when averaging over the possible initial
configurations, the off-diagonal elements of the nuclear spins’
density matrix average out to zero and the equiprobability
of every nuclear configuration makes it proportional to the
identity ρnucl ∝ I. Thus, the total density matrix at t = 0 is
then given by

ρ(0) = 1

2
(| ⇑〉 + | ⇓〉)(〈⇑ | + 〈⇓ |) ⊗ I

2N
. (8)

Using the solution to the von Neumann equation for
the subsequent unitary evolution ρ(t) = e−iH tρ(0)eiHt , and
performing the trace in the true eigenbasis of the Hamiltonian
(H |n〉 = ωn|n〉), one finds the statistically averaged coherence
factor

〈S+
0 (t)〉 = Tr[ρ(t)S+

0 ]

=
∑
m

〈m|e−iH tρ(0)eiHtS+
0 |m〉

=
∑
m,n

〈m|ρ(0)|n〉〈n|S+
0 |m〉ei(ωn−ωm)t

∝
∑
m,n

|〈n|S+
0 |m〉|2ei(ωn−ωm)t . (9)

In the last step, we have used that due to the S+
0 form factor

only the term | ⇓〉〈⇑ | in the initial density matrix contributes
to the sum. The remaining double sum over m and n extends
over the full Hilbert space restricted to states |n〉 containing
one more quasiparticle than |m〉. While the eigenenergies ωn

and the form factors 〈n|S+
0 |m〉 can be calculated exactly from

the ABA, the double sum will be evaluated using a direct
Monte Carlo sampling of the eigenstates as discussed in the
next section.

The expression (9) is quite similar to the one obtained in the
narrowed case, in that it only contains a double sum over the
Hilbert space. Naively, one might have expected the average
over nuclear configurations to lead to a third sum, but working
effectively at T = ∞ allows us to trivially perform this third
sum analytically. Still, both problems differ in complexity
since the sums in (9) cover the full Hilbert space in every
magnetization sector. One can, however, easily compute the
number of terms involved in summing the full Hilbert space or
just its zero magnetization sector (as required in the narrowed
case). Through straightforward combinatorics, one finds that
at large N the complexity of the infinite-temperature problem
only increases by a factor

√
πN/2, making it numerically as

accessible as the initial pure state problem.

IV. NUMERICAL APPROACH

A. Solving the Bethe equations

The first necessary ingredient to evaluate Eq. (9) is
the capacity to systematically find the eigenstates of the
Hamiltonian. However, considering the level of complexity

involved in solving the Bethe equations (3) in terms of the
M rapidities themselves, we choose an alternative approach
which has been extensively discussed in Refs. 15 and 16.
It relies on the observation17 that an alternative set of N + 1
variables (related18 to the eigenvalues of the model’s conserved
operators) defined by

	k =
M∑
i=1

1

εk − λi

, k = 0, . . . N (10)

obeys a system of N + 1 much simpler quadratic Bethe
equations

	2
k =

N∑
l=0( �=k)

	k − 	l

εk − εl

+ 2B	k. (11)

Since the central spin (index 0) is associated to ε0 = 0, it is
then trivial to show that the eigenenergies (6) are, in terms of
these new variables, given by

ω({λ1, . . . ,λM}) = −1

2
	0 − B

2
− 1

4

N∑
j=1

1

εj

+ gn[2M − (N + 1)]

2(g − gn)
B. (12)

One should note that, although similar quadratic systems of
equations can be found in degenerate models or for larger
spins,16 the particular form of Eq. (11) is only valid for
nondegenerate systems (i.e., εk �= εl for all k �= l) of spins
1
2 to which we limit ourselves here.

Analytical solutions to the Bethe equations (3) are only
known in the trivial B → ∞ limit. At that point, one can
simply define each eigenstate by picking any ensemble of M

spins {i1, . . . ,iM} to point up while the rest is down. Each
of these states corresponds to a Bethe state defined by an
ensemble of M rapidities given by {λij = εij }, which translates
into {	ij /B = 1}, while the variables 	k which do not belong
to the excited set are given by {	īj /B = 0}.

Since nonlinear systems of equations require an iterative
method, and therefore a good approximation to the solution
one is looking for, we use a stepwise (in 1/B) deformation of
the individual B → ∞ solutions in order to obtain individual
eigenstates at finite B. As discussed in Ref. 15, with only the
knowledge of 	k at a given 1/Bc one can easily compute an
arbitrary number of their derivatives with respect to 1/B. This
allows us in principle to obtain a very accurate approximation
of the solution at 1/B = 1/Bc + 
 which can then be refined
by a few iterations of a simple Newton-Raphson method. The
limit on the size of the steps one can make is therefore roughly
dictated by the radius of converge of the Taylor series of 	k( 1

B
)

and allows a fast and stable progression to the desired value
of the magnetic field. The considerable speed-up obtained
by carrying out the calculations in such a fashion has been
directly responsible for making some recent applications11,19,20

possible.
Moreover, by using this approach, we gain a one-to-one

correspondence between a given eigenstate and the B → ∞
solution this particular state descends from. This fact will be of
crucial importance for the design of the Monte Carlo approach
described in Sec. IV C.
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B. Form factors

A second necessity is to be able to compute the form
factors 〈n|S+

0 |m〉 found in Eq. (9). Using an alternative holelike
representation for the right eigenstate

〈n(μ)| = 〈⇑; ↑↑ . . . ↑ |
N−M∏
i=1

S+(
μn

i

)

∝ 〈⇓; ↓↓ . . . ↓ |
M+1∏
i=1

S−(
λn

i

)
, (13)

and the usual one for the left eigenstate |m(λ)〉 =∏M
i=1 S+(λm

i )| ⇓; ↓↓ . . . ↓〉, the form factor 〈n(μ)|S+
0 |m(λ)〉

has been shown18 to be writable as a single N × N matrix
determinant whose entries depend only on the associated sets
of 	k:

〈n(μ)|S+
0 |m(λ)〉 = det(J ), (14)

Jab =
{∑N

c=1(�=a)
1

εa−εc
− 	n

a − 	m
a + 2B, a = b

1
εa−εb

, a �= b.
(15)

While this issue was not addressed in Ref. 18, the
individual eigenstates can be normalized by projecting
them onto both the particle/hole representations of any
given B → ∞ state defined by having the spins labeled
{i1, . . . ,iM}({ī1, . . . ,īN+1−M}) pointing up (down). In doing
so, one finds for the normalized M-particles eigenstate
|{λm

1 , . . . ,λm
M}〉/Nλ and its normalized (N + 1 − M)-holes

representation |{μm
1 , . . . ,μm

N+1−M}〉/Nμ:

Nμ

Nλ

=
〈⇑; ↑ . . . ↑| ∏N+1−M

j=1 S+
īj

∏M
i=1 S+(

λm
i

)| ⇓; ↓ . . . ↓〉
〈⇓; ↓ . . . ↓| ∏M

j=1 S−
ij

∏N+1−M
i=1 S−(

μm
i

)| ⇑; ↑ . . . ↑〉 ,

1

NλNμ

=〈⇑; ↑ . . . ↑|
N+1−M∏

j=1

S+(
μm

j

) M∏
i=1

S+(
λm

i

)| ⇓; ↓ . . . ↓〉,

which gives us direct access to both the product and the ratio
of the normalization factors Nλ and Nμ. All three quantum
mechanical averages on the right-hand sides are partition
functions with domain-wall boundary conditions which were
shown to have a simple determinant representation in terms of
the 	k variables.18 This then becomes completely sufficient to
compute the norms N2

λ and N2
μ for both representations of an

individual state. Using Nμ for the left vector 〈n(μ)| and Nλ for
|m(λ)〉 finally allows us to normalize the form factor (14).

C. Monte Carlo sum

While one is now in a position to compute very efficiently
every individual contribution to the double sum in Eq. (9),
since it covers the full Hilbert space twice, it rapidly grows
too large to be performed fully. We therefore resort to a
simple Metropolis algorithm in order to evaluate it (see
Ref. 21 for another example of combining Monte Carlo
sampling with ABA). To do so, one associates a probability
Pm,n ≡ |〈n|S+

0 |m〉|2 to each element of the sum. Contrarily to
the similar problem for a narrowed bath, here we find a true
probability distribution since every one of these contributions
is strictly positive and they sum up to a constant. This

guarantees the absence of any sign problem in this particular
calculation.22

One can then directly use the Metropolis algorithm to
sample � pairs of eigenstates in a way which, in the � → ∞
limit, will reproduce the distribution Pm,n. Starting from
a randomly selected initial pair of eigenstates (m,n), one
generates the next candidate pair (m′,n′) via a predefined
random updating procedure. The resulting pair (m′,n′) is
accepted as the next element of the Markov chain with
probability min(1,

Pm′ ,n′
Pm,n

g(m′,n′→m,n)
g(m,n→m′,n′) ) where g(m,n → m′,n′) is

the probability of generating the pair (m′,n′) from the current
configuration (m,n). If the new pair is accepted, then (m′,n′)
constitutes the next element of the chain; if it is rejected, one
again adds (m,n) to the chain. The process is then repeated by
updating this current pair again and accepting or rejecting the
resulting new candidate pair. The thus generated chain of �

pair configurations can be summed over with the appropriate
phase factors to reproduce the time-evolved coherence factor

〈S+
0 (t)〉 ≈ 1

2�

�∑
α=1

ei(ωnα −ωmα )t , (16)

where the label α runs along the generated Markov chain.
Rapid convergence of the algorithm requires a certain

smallness of the update. In fact, a rapid exploration of
the large-weight contributions can only be achieved when
the update of a pair giving an important contribution will,
statistically speaking, lead to a new candidate pair which also
carries a large weight. The essential parameter to evaluate
the performances of the algorithm is therefore the acceptance
rate, i.e., the fraction of generated updates which are actually
accepted, which needs to be large enough to ensure this rapid
exploration. In the particular problem we achieve this by using
an update procedure which works by flipping up (down) a
single down (up) spin in the B → ∞ configuration associated
with both the m and n states. The spin to be flipped in state
〈n| is randomly selected from the N + 1 available spins with a
flat distribution. Therefore, g(m,n → m′,n′) is simply linked
to the total number of possible spin flips in |m〉 consistent
with the choice of flipping made for state 〈n|. Indeed, for
〈n|S+

0 |m〉 to be nonzero, we need both states to always differ
by a single spin flip. This systematically leads to updates such
that M → M ± 1 which, with the random choice of the flipped
spins, also guarantees the possible exploration of the whole
configuration space.

Figure 2 presents an example for a small system (N =
N0 = 12) at very weak magnetic field B = 4.16667 × 10−6A.
While the complete ensemble of pair contributions contains
9 657 700 elements and extends all the way down to 10−60,
the first 250 000 pairs generated by the Monte Carlo approach
limit their exploration to contributions larger than 10−6.

In the case presented here, the proposed algorithm leads to
an acceptance rate of roughly ∼0.1 in the weak-field regime.
This is a very good figure considering that we do not have much
information about the target distribution Pm,n defined by the
properties of a strongly coupled quantum system. The high
acceptance rate stems from the fact that the transformation of
the model from B → ∞ down to weak fields is smooth and
continuous so that small deformations of states at B → ∞
will usually lead to small deformations of the corresponding
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FIG. 2. (Color online) The red dots cover the full set of eigenstate
pairs, while the explored configurations after � = 250 000 are circled
in black. We have N = N0 = 12 nuclear spins at B = 4.16667 ×
10−6A. The acceptance rate is ∼0.1.

states at finite B, despite the complete restructuring of every
eigenstate. This one-to-one correspondence between eigen-
states and the configuration they stem from leads to a notion of
proximity between states which energetic considerations could
not provide. This proximity and the resulting capacity to make
“small” deformations is, in turn, necessary for effective Monte
Carlo sampling by maximizing the chance that a large-weight
configuration will be randomly updated to a new candidate
pair which also carries a large contribution. While certain
refinements to the updating procedure might lead to better
acceptance rates, the simple approach described here proves
vastly sufficient to obtain satisfactory results.

As shown in Fig. 3 for the same set of data, both the exact
complete summation and the Monte Carlo sampling agree
remarkably well up to small variations in the sharpness of
the features. In the inset we show that going to very long times
does not affect the degree of precision of the sampling. In
practice, we actually sample the spectrum at t = 0 and obtain
the time evolution through a Fourier transform (16). Since we
are working with the true eigenvalues of the Hamiltonian,
the resulting approximation to the spectrum is obtained
with arbitrary accuracy on the position of the frequencies it
contains. Only the relative height of the various peaks is not
perfectly reproduced due to the limited number of sampled
configurations. While this error does lead to slight variations
in the sharpness of the time-evolved coherence factor, the
knowledge of the precise frequencies allows us to retain a
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FIG. 3. (Color online) Comparison of the real-time evolution ob-
tained through Monte Carlo sampling of 250 000 pairs with the exact
result obtained by full resummation of Eq. (9). We have N = N0 = 12
nuclear spins at B = 4.16667 × 10−6A. The acceptance rate is ∼0.1.

correct description of the evolution up to arbitrarily long times.
This is to be contrasted to methods based on real-time evolution
where accumulated errors, or simply the computation time,
will limit the capacity to reach long times. When trying to
answer questions concerning the long-time decay (or absence
thereof) this can become a critical issue, therefore adding a
particular merit to spectral-based approaches such as the one
used here. Furthermore, the recent development of spin-noise
spectroscopy techniques23 provides experimental access to the
spectrum, thus making its precise direct calculation desirable.

V. RESULTS

A. Magnetic field dependence of the dynamics

In Fig. 4, we present both the spectrum and the resulting
time evolution of the real part of the coherence factor for a
variety of effective magnetic fields B. One should keep in
mind that the results here are presented in a rotating frame
in that we do not keep track of the systematic contribution
gnB/(g − gn) in the energy differences. Since pairs of states
involved in the summation always differ by one excitation,
the M-dependent term in Eq. (6) only leads to this common
factor. Including this energy difference would simply lead to
an additional oscillatory behavior.

Let us first remark that no error bars are presented in this
figure. In fact, we evaluated the variance of the Markov chain
by splitting the data into 30 blocks and computed, at each point
in time, the variance of the resulting 30 curves: σ 2

�/30 . One then

gets an evaluation of the variance of the full data set24: σ 2/�.
Since the resulting absolute errors for the time-evolved data
never gets larger than 0.03271, including errors bars in the
plots simply leads to a barely noticeable broadening of the
lines.

The general features of the spectrum and time evolution of
the coherence factor are quite similar to those obtained11 for
the narrowed case. We will discuss the main differences in the
next section.

First, at strong magnetic fields, one finds a large peak at
the Larmor frequency as well as a smaller feature at low
frequencies. The thermal fluctuations included here lead to
large fluctuations of the ẑ component of the Overhauser
field

∑N
j=1 AjI

z
j , thus resulting in a substantial broadening

of the Larmor peak. Since the Overhauser field acts on the
central spin like an additional magnetic field, one effectively
averages over fluctuating Larmor frequencies when computing
the real-time dynamics. The resulting broad Gaussian spread
of the Larmor peak implies that, even at strong magnetic fields,
one finds a rapid Gaussian decay of the envelope function.

As the external field is lowered, the low-frequency structure
gains more and more weight and, at very low fields, reaches
a scaling regime evidenced in the upper right panel, where it
becomes a scalable function of ω/B. Ultimately, as B → 0 it
therefore collapses into a delta peak at zero frequency, whose
nonzero weight leads, in real time, to a nondecaying coherent
fraction.

This low-field scaling is also instructive since it allows us
to understand the nature of the contributions leading to this
nondecaying fraction. In fact, we know that in the B → 0
limit every eigenstate of the system is characterized by two
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FIG. 4. (Color online) Results for N = N0 = 36 nuclear spins within one Bohr radius. Upper panels: rescaled spectrum. Note that the right
panel is plotted in terms of the rescaled frequencies ω/B. Lower panels: time evolution of the real part of the coherence factor (the curves have
been offset along the y axis by one with respect to one another). All curves used � = 107 sampled pairs of eigenstates.

types of quasiparticles: A number of them have finite rapidities
λi = Ci + O(B) giving a finite energy Ei → 1/Ci at B = 0,
while the rest diverge as λi = Li/B + O(1) (Li denoting
the roots of a Laguerre polynomial25) and therefore has a
contribution to the energy which scales linearly with B in
the weak-field limit. The creation operator associated with
such diverging rapidities becomes identical for each of them
S+(λi → ∞) ∝ S+

0 + ∑N
j=1 I+

j ≡ S+
tot so that, at zero field,

the ensemble of eigenstates has the structure of a Bose-Einstein
condensate (BEC). In a given magnetization sector (a fixed
number of quasiparticles M), the ground state is characterized
by M diverging rapidities and therefore a BEC of M identical
quasiparticles. Excitations above this BEC are created by
taking quasiparticles out of the condensate to excited states
at finite energies. This fact remains true independently of
the coupling constants Aj and therefore independently of
the dot geometry. This structure of the exact eigenstates is a
manifestation of BEC-like physics which echoes the behavior
of other integrable Gaudin models such as Dicke model’s
superradiance26 or Richardson model’s superconductivity.27

When looking at the dynamics of the coherence factor
[Eq. (9)], we immediately see that the only contributions which
can produce an energy difference ωn − ωm ∝ B and therefore
contribute to the low-frequency scalable structure comes from
pairs of eigenstates whose finite energy quasiparticle content
is identical, i.e. they can only differ by adding one diverging
rapidity |n〉 = S+

tot|m〉. For most states |m〉 there is such a
partner eigenstate |n〉 so that in fact there are a large number
of potential pairs of states able to contribute to the nondecaying
fraction. In other words, any pair of eigenstates only differing
by the number of particles in the BEC will have identical
energies and thus contribute to the nondecaying fraction at
arbitrary times [which stays constant up to the trivial energy
difference associated with the last term in Eq. (6) which drops

out of the time evolution in the rotated frame]. The explicit
evaluation of the total weight carried by these states still
requires numerical work because of the involved form factors,
but it makes it possible for fairly generic initial conditions to
lead to a large population of the zero-energy mode.

Moreover, as shown in Fig. 5, apart from the limit of very
small systems, the discretization of a spin bath, containing
N = N0 spins with couplings distributed between 1 and 1/e,
seems to be fairly unimportant for the value of the nondecaying
fraction obtained in the B → 0 limit. We will, however, discuss
the effect of additional weakly coupled nuclear spins on the
long-time dynamics in Sec. VI.

B. Comparison to the narrowed case

In this section, we compare the decoherence of the initial
infinite-temperature bath and the narrowed case studied11

Re S+
0

Im S+
0

S+
0 ≡

lim
T→∞

1

T

T

0
dt S+

0 (t) (ω)

S+
0 (0)

S
+ 0

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 5  10  15  20  25  30  35  40  45  50
Ntot (=N)N (=Nl)N (=N0)

FIG. 5. (Color online) Nondecaying fraction calculated from the
long-time average, at B/A = 1.04168 × 10−6, for a variety of bath
discretizations. In every case, we limit ourselves to an inner shell of

couplings 1/e � Aj � 1 (in units of A/N ) defined by Aj ∝ e− (j−1)
N−1 .

Error bars indicate the size of the fluctuations around the long-time
average and are mainly due to finite-size effects with a small
contribution coming from the Monte Carlo sampling.
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FIG. 6. (Color online) Comparison of the real-time dynamics for
the narrowed (Ref. 28) (dotted red lines) and fluctuating (T = ∞)
nuclear baths (full blue lines) in the three distinct magnetic field
regimes. Panel (d) shows the short-time decay for magnetic fields for
the nine values (B/A ∈ [1.3889 × 10−6,0.05556]) shown in Fig. 4.
The initial decay is independent of the magnetic field in both cases.
All plots are for N = N0 = 36 nuclear spins.

previously. In Fig. 6, we present the real-time dynamics for the
three distinct magnetic field regimes as well as the short-time
decay.

The most pronounced difference occurs at strong magnetic
fields where the thermal fluctuations have a very profound
effect on the behavior of the system. Indeed, the narrowed
initial bath state is an eigenstate of the Overhauser operator.
Therefore, only the weak quantum fluctuations, limited by the
large Zeeman gap, contribute to the broadening of the Larmor
peak leading to very slow decoherence. In contrast, in the
thermal case the Larmor peak is strongly broadened giving rise
to fast decay at the time of a few oscillations [see Fig. 6(a)].
The low-frequency structure mentioned previously leads to
additional slow envelope modulations, which were visible11

in the narrowed case and also obtained in a perturbative study
by Coish et al.6 In the thermal case, the spectrum shown in
the upper left panel of Fig. 4 still possesses a low-frequency
feature, however, in the real-time dynamics the corresponding
envelope modulations are completely smeared out.

As one lowers the magnetic field, quantum fluctuations
grow more important. In both cases, they lead to a (further)
broadening of the Larmor peak so that there is, in both
cases, a rapid initial decay of the coherence factor. While the
low-frequency structure gains importance in both scenarios,
one can clearly see in Fig. 6(b) that the establishment of
weak, slowly decaying low-frequency oscillations, which was
characteristic of the intermediate-field regime in the narrowed
case, is hindered in the fluctuating case.

When reaching low enough magnetic fields, one sees the
emergence of a 1/B scaling of the low-frequency features
leading, as B → 0, to a nondecaying coherent fraction. By
including thermal fluctuations in the initial state, this fraction
is reduced to roughly 1

3 of the initial coherence factor,
while nearly 1

2 of it is maintained in the narrowed case
[see Fig. 6(c)]. Although this reduction is important, it still
shows the robustness of this feature even to maximal thermal

fluctuations. We note that in both cases the imaginary part of
the coherence factor vanishes (as explicitly shown in Fig. 5) so
that the coherent steady state remains pinned along the x̂ axis,
i.e. along the initial orientation of the central spin. Through
symmetry at B = 0, we know that this is true for an arbitrary
initial orientation of the central spin on the Bloch sphere.
This particular steady state therefore allows one to maintain,
in principle for arbitrarily long times, the information on the
prepared state of the qubit albeit not in a way which would
make it accessible through a single measurement but only as
a quantum mechanical average orientation.

In Fig. 6(d), we finally present the short-time dynamics for
both initial conditions and a wide range of weak external fields.
It is clear that a magnetic-field-independent initial decay rate
is found in both cases, but it is to be noted that the combination
of thermal and quantum fluctuations makes this initial decay
roughly twice as fast as in the narrowed case. The precise
value of the decay rate will be shown, in the next section, to
be obtainable from a simple semiclassical description.

C. Comparison to semiclassics

It is very interesting to compare our numerical results with
the zero-field analytic expression obtained by Merkulov et al.7

using a semiclassical treatment supplemented by the drastic (at
least at long times) approximation of a static nuclear bath. By
averaging the semiclassical equation of motion over a frozen
Gaussian distribution of the Overhauser field, they found at
B = 0 going to initial conditions similar to the one used here
the time dependence

Re〈S+
0 (t)〉

〈S+
0 (0)〉 = 1

3

{
1 + 2

[
1 − 2

(
t

T


)2]
e
−( t

T

)2
}

(17)

with, for nuclear spins 1
2 , a decay time given by

T
 = 1√
1
8

∑N
j=1(Aj )2

. (18)

We compare this expression with our result from the full
quantum treatment in Fig. 7. Somehow surprisingly, both agree
quite well on every time scale. The initial decay is indeed
perfectly captured by the semiclassical result and the saturation
value of 1

3 is remarkably close to our finding. It is natural that
the static bath approximation works well for the initial decay
since for times shorter than the precession time of the nuclear
spins in the field induced by the central spin the nuclear bath
has indeed not had time to restructure itself.

Moreover, from a similar statistical treatment7 of the long-
time behavior, which includes the variations in the nuclear
Overhauser field, it was also noticed that the 1

3 fraction
found in the static bath approximation can only be obtained
when the nuclear spin couplings have no dispersion, i.e.,
Aj = const. Any inhomogeneity should manifest itself by
reducing the nondecaying fraction in a fashion controlled by
N

∑
j A2

j /(
∑

j Aj )2. The slight reduction observed in the full
quantum treatment presented here is therefore consistent with
these semiclassical findings.

While both the statistical approach of Merkulov et al. 7 and
the explicit solving of the semiclassical equations of motion
due to Erlingsson and Nazarov 8 find a nondecaying coherent
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FIG. 7. (Color online) Comparison of the quantum calculation
(B = 1.3889 × 10−6A) and the semiclassical static bath approxima-
tion (17) for B = 0 at short and long (inset) times for N = N0 = 36.
The vertical dashed line indicates the decay time (18) for Ij = 1

2 .

fraction for a finite spin bath, this work demonstrates that in a
full quantum treatment of the problem, even for a small number
of nuclear spins (and therefore far from the thermodynamic
limit which could justify a semiclassical approach9), neither
quantum nor thermal fluctuations are able to induce complete
decoherence. In addition, the comparison shown in Fig. 7 can
be seen as a confirmation of the validity of a semiclassical
treatment of the decoherence induced by a fluctuating spin
bath even for relatively small system sizes.

VI. WEAKLY COUPLED SPINS

So far, we have restricted our considerations to the effect
of the N0 nuclear spins within the first Bohr radius of the
central spin, which represent the most strongly coupled ones.
These spins should, at least at short times, dominate the deco-
herence processes by allowing faster energy exchange between
the central spin and the nuclear spin bath. However, as we have
shown above, this ensemble of spins can not, by themselves,
lead to full decoherence of the central spin, which was also
observed in the semiclassical analyses of Refs. 7 and 8. Thus,
one may argue that more weakly coupled spins, which will
be present in any experimental quantum dot, could become
important at late times and lead to further decoherence. Indeed,
to paraphrase the argument given in Refs. 7 and 9: there always
exist, on any time scale, weakly coupled nuclear spins, such
that 1/t ∼ Aj , which have not yet precessed around the central
spin and therefore have not yet contributed to its decoherence.

This argument has to be contrasted with our spectral
point of view in the quantum treatment, which explains the
nondecaying coherent fraction as resulting from the population
of the zero-energy mode whose presence is associated to the
BEC-like structure of the eigenstates. From this perspective, as
B → 0, the diverging rapidities will always be such that λ �
1/Aj even for arbitrarily weakly coupled spins. Even the most
weakly coupled spins therefore take part in the construction of
the delocalized condensed quasiparticles, which are initially
excited when projecting the initial state onto the true eigenba-
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FIG. 8. (Color online) Comparison of the weak field (BN/A =
5 × 10−5) dynamics. Upper panel: N = 36,48 with N0 = 36. Lower
panel: N = 24,48 with N0 = 24. In both cases, the set of couplings
Aj for different values of N are the same within the first Bohr radius.
As N increases, weakly coupled spins are added as sketched in Fig. 1.
All curves used � = 107 sampled pairs of eigenstates.

sis. These excitations lead to the zero-energy mode in which
the system as a whole is acting as a single completely coherent
system independently of the details of the “internal” couplings.
This argument tends to indicate that, in a quantum mechanical
picture, these weakly coupled spins might not play a different
role and therefore might not lead to further decoherence.

In order to clarify this point, we present in Figs. 8 and 9
two calculations related to these questions. First, in Fig. 8,
we compare the long-time dynamics of the system for a fixed
number N0 of nuclear spins within the first Bohr radius as
a function of the total number of spins N . In other words,
we add weakly coupled spins while keeping the couplings Aj

of the closest N0 spins fixed (see also Fig. 1). As expected,
we observe that the short-time behavior shown in the insets
is essentially unchanged when increasing N . The long-time
limit, however, clearly depends on N and the nondecaying
fraction decreases as more weakly coupled spins are added.

In contrast, in Fig. 9 we keep the total number of spins
N fixed but change their distribution by varying the number
of strongly coupled spins N0 within the first Bohr radius
effectively spreading the N spins over a wide range of
couplings. Doing so, we change the strongly coupled spins,
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FIG. 9. (Color online) Comparison of the weak-field dynamics
for N = 36 and N0 = 36,30,24,18,12 at B = 1.3889 × 10−6A. All
curves used � = 107 sampled pairs of eigenstates.

which obviously affects the short-time behavior. Of course,
with a suitable rescaling determined by Eq. (17), the short-time
behavior for the different setups can be brought on top of
each other. In addition, we observe that the nondecaying
fraction decreases when decreasing N0, which in fact shifts
the distribution to include more weakly coupled spins.

In both cases, we systematically find that the total nonde-
caying fraction is reduced when the weakest coupling AN

decreases although, in units of A1 = A/N ≡ 1, the total
coupling

∑
j Aj increases in the first case (Fig. 8) but decreases

in the second (Fig. 9). Moreover, we note that while not
presented here, similar results are found for the narrowed
case when adding weakly coupled spins. These findings are
consistent with the semiclassical studies of Merkulov et al.7

and Erlingsson and Nazarov,8 where it was also observed that
the actual value of the nondecaying fraction depends on the
spread of the couplings to individual nuclear spins.

Due exclusively to computation time, the quantum treat-
ment presented here remains limited to finite-size system.
Since the algorithm can be trivially parallelized, given suf-
ficient resources, larger systems containing up to 100 spins
could, in principle, be treated in a reasonable amount of time.
This remains, however, much smaller than what is treatable
using the semiclassical equations of motion as in Ref. 8
where system sizes were pushed to 512 in order to delay the
appearance of this nondecaying fraction, which they associated
to finite-size effects due to discretization of the system, and
evidence a slow logarithmic decay.

It should be understood that the work presented here
actually supports the fact that this nondecaying fraction is
present even in a full quantum treatment and is not linked to
discretization per say, as evidenced in Fig. 5 where the level
of discretization of the first Bohr radius left this fraction unaf-
fected. Since in every case studied here we systematically find
a nondecaying fraction, it appears that complete decoherence
requires processes able to transfer arbitrarily small amounts of
energy from the central spin to the spin bath. At B = 0, such

processes do not exist for any coupling distribution for which
a minimal energy transfer is imposed by the finiteness of the
weakest available coupling AN . However, any discretization
of the spin system, even when couplings are in fact spread
between 0 and 1 (as in Ref. 8), will lead to such a finite
weakest coupling and therefore to a nondecaying fraction.

On the other hand, any nonzero magnetic field leads to
a finite-energy spread of the BEC structure which allows
modes with arbitrarily small energies and results in complete
decoherence, albeit on a remarkably long-time scale. The
systematic decrease in the nondecaying fraction indicates that
the inclusion of arbitrarily weakly coupled spins would play a
similar role by allowing low-energy exchange processes even
at zero field. Thus, we expect that, even in the quantum system
studied here, the existence of arbitrarily weakly coupled spins
in an unprepared T = ∞ nuclear spin bath should eventually
lead to complete decoherence in the free induction decay. This
is certainly expected in any realistic setup since the involved
wave functions will decay to zero smoothly. Interestingly, we
note that, in the strong-field regime, full decoherence can be
achieved even when a minimal exchange energy is set by a
minimal inverse coupling.

However, a clear numerical observation of the B = 0
complete decay and the approach to it would require a very
large total number of spins N in order to fully cover the [0,1]
range of couplings. The discretization of any Bohr radius N0

would not have such drastic consequences but should still be
kept large enough (see Fig. 9) in order to also properly describe
the short-time dynamics which are mostly controlled by the
ensemble of most strongly coupled spins.

Finally, we note that the real-time classical dynamics
and quantum spectral argument presented at the beginning
of the section are not completely contradictory. In fact,
the quantum spectrum does have a large number of zero-
frequency contributions even with weakly coupled spins.
However, their relative contribution is controlled through
the precise value of the relevant form factors 〈n|S+

0 |m〉. It
therefore appears that, with arbitrarily weakly coupled spins
present, the initial conditions we studied here are not able to
massively populate this particular mode. However, it is still
present and, in principle, could be populated with a suitably
prepared initial condition. A trivial example would be an
initially fully x̂-polarized state, which can be decomposed
as ∝ ∑N

j=1
1
j ! (S

+
tot)

j |⇓; ↓ . . . ↓〉. This state exclusively over-
laps with fully condensed eigenstates, i.e., states containing
M = 1,2, . . . ,N + 1 quasiparticles described by M diverging
rapidities. At B = 0, its time evolution involves a single
frequency and shows no decoherence. It is then thinkable
that by managing to induce coherence within the nuclear spin
bath, using for example protocols inspired by Eto et al.,29

one could build up nuclear spin entanglement and maximize
the overlap of the initial state with states containing a large
fraction of condensed quasiparticles. In doing so, one could
hope to obtain a large contribution from the zero-frequency
mode (even with weakly coupled spins), creating an important
nondecaying coherent steady state. Although further numerical
calculations would be required to confirm this picture, the
understanding of the nature of the system’s eigenstates can
provide guidelines into ways to achieve such long coherence
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times even at weak fields, when the Zeeman gap no longer
provides energetic protection against the flip-flop processes
induced by the hyperfine coupling to a spin bath.

VII. CONCLUSION

Using a method based on a Monte Carlo sampling of exact
eigenstates obtained through the algebraic Bethe ansatz, we
have studied the time evolution of the coherence factor in
the central spin model starting from an initial nuclear bath at
infinite temperature.

We first showed that thermal fluctuations, just like quantum
fluctuations,11 are unable to lead to complete decoherence of
the central spin when the external magnetic field is zero. On
the other hand, any finite magnetic field results in a complete
loss of the coherence, albeit at very long-time scales controlled
by the ω/B scaling of the spectrum at weak fields. We have
performed a detailed comparison to previous semiclassical
results7 and found surprisingly good agreement with our full
quantum treatment of the problem.

Furthermore, a systematic study of the impact of additional
weakly coupled nuclear spins indicates that the nondecaying
coherent fraction vanishes when such spins are present, which
will generically be the case in a realistic quantum dot.
However, the understanding of the condensatelike structure of
the eigenspectrum shows that one might, at least in principle,
be able to create an arbitrarily long-lived coherent steady state
provided the nuclear spin bath is appropriately initialized. This
hints towards ways to prepare nuclear spins in order to be able
to exploit the full quantum coherent behavior for the realization
of a qubit.
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