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We present the model of a quantum dot (QD) consisting of a spherical core-bulk heterostructure made of
three-dimensional (3D) topological insulator (TI) materials, such as PbTe/Pb0.31Sn0.69Te, with bound massless
and helical Weyl states existing at the interface and being confined in all three dimensions. The number of bound
states can be controlled by tuning the size of the QD and the magnitude of the core and bulk energy gaps, which
determine the confining potential. We demonstrate that such bound Weyl states can be realized for QD sizes of
few nanometers. We identify the spin locking and the Kramers pairs, both hallmarks of 3D TIs. In contrast to
topologically trivial semiconductor QDs, the confined massless Weyl states in 3D TI QDs are localized at the
interface of the QD and exhibit a mirror symmetry in the energy spectrum. We find strict optical selection rules
satisfied by both interband and intraband transitions that depend on the polarization of electron-hole pairs and
therefore give rise to the Faraday effect due to the Pauli exclusion principle. We show that the semiclassical
Faraday effect can be used to read out spin quantum memory. When a 3D TI QD is embedded inside a cavity, the
single-photon Faraday rotation provides the possibility to implement optically mediated quantum teleportation
and quantum information processing with 3D TI QDs, where the qubit is defined by either an electron-hole
pair, a single electron spin, or a single hole spin in a 3D TI QD. Remarkably, the combination of interband
and intraband transition gives rise to a large dipole moment of up to 450 Debye. Therefore, the strong-coupling
regime can be reached for a cavity quality factor of Q ≈ 104 in the infrared wavelength regime of around
10 μm.
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I. INTRODUCTION

Three-dimensional (3D) topological insulators (TIs) are
narrow-bandgap materials with topologically protected gap-
less surface/interface states that are characterized by the linear
spectrum of massless Weyl fermions.1,2 In such materials, the
spins of the Kramers pairs are locked at a right angle to their
momenta on the Fermi surface due to spin-orbit coupling,3–9

which can be used for spin current generation.10–12 The surface
states are protected by time-reversal symmetry, leading to
suppression of backscattering from edges and nonmagnetic
impurities.1,2,6,13,14 Such states are of great importance in low-
power opto-spintronics.10,15 Decoherence can be circumvented
by highly polarized spin states with helical spin texture,3,16–18

leading to a phase coherence length of several hundred
nanometers in nanostructures.19,20

In 3D TI nanostructures the special properties of topologi-
cally protected surface states of TIs are amplified because of
the large surface-to-volume ratio. In addition, the chemical
potential can be electrically tuned using a gate voltage. For
example, the coherent propagation of the Weyl electrons
around the perimeter of a nanoribbon provides excellent
evidence of the topological nature of the surface states in TI
nanostructures.20 Experiments on both the physical and chem-
ical synthesis of TI nanostructures have been done recently
to understand their transport properties at the nanoscale.21–23

Recently, in a TI quantum dot (QD) with tunable barriers based
on ultrathin Bi2Se3 films, Coulomb blockade with around
5 meV charging energy was observed.24

So far, a theoretical study of electronic properties of 2D
helical states occurring at the nanoscale of 3D TIs, such
as in QDs, is still lacking. In this article, we present the

study of bound Weyl states that are confined at the interface
of a spherical core-bulk heterostructure QD made of 3D TI
materials such as Pb1−xSnxTe. We show that at the interface
massless Weyl fermions are confined in all three dimensions.
The directions of spin and momentum are tangent to the surface
of the QD. Remarkably, their inherent spin-momentum locking
property exists even in a QD. Because of the linear dispersion
there is a mirror symmetry in the energy spectrum between
positive and negative energy states, in contrast to topologically
trivial semiconductors. We demonstrate that this symmetry in
energy spectrum is preserved for the QD spectrum.

Several methods have been proposed to implement optically
controlled quantum memory and optically mediated quantum
computing with topologically trivial QDs. Quantum memories
have been recently reviewed in Ref. 25. A recent review on
optically controlled quantum computing with electron spins
can be found in Ref. 26. Optically controlled single-electron
spin memory has been experimentally demonstrated using
GaAs QDs27 and InGaAs QDs.28 Exciton memory has been
implemented experimentally in a semiconductor nanopost.29

For the purpose of using a hole spin as quantum memory or
qubit, high coherence of hole spins in InGaAs QDs has been
experimentally shown.30 Reference 31 demonstrates experi-
mentally that a single spin can be read out using Faraday ro-
tation. Schemes for optically controlled two-qubit interaction
have been proposed that are based on the exchange of virtual
photons inside a cavity,32 the optical RKKY interaction,33 and
dipole-dipole interaction.34 Substantial experimental progress
has been made to implement optically controlled electron spin-
state preparation,35 hole spin-state preparation,36 single-spin
readout,37 dephasing protection,38 two-qubit gate,39,40 two-QD
spin entanglement,41 and spin-photon entanglement.42
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In Refs. 43 and 44 we developed the method of the Faraday
rotation of a single photon due to the Pauli exclusion principle
occurring on a topologically trivial QD. Our proposed method
can be used for entangling remote excitons, electron spins,
and hole spins. We showed that this entanglement can be
used for the implementation of optically mediated quantum
teleportation and quantum computing. Our ideas and methods
have been plagiarized in Ref. 45.

Here we show that classical and single-photon Faraday
rotation due to the Pauli exclusion principle in a 3D TI
QD occur due to strict optical selection rules satisfied by
both interband and intraband transitions that depend on the
polarization of electron-hole (e-h) pairs. Based on this finding
we propose that 3D TI QDs can be used as quantum memory
and for the implementation of optically mediated quantum
teleportation and quantum computing. First, we propose that
a single e-h pair in a 3D TI QD can be used as a quantum
memory. The information is stored in form of the polarization
state of the e-h pair. In order to be able to read out this
information multiple times, we develop the method of Faraday
rotation of a classical electromagnetic field due to Pauli
exclusion principle in a 3D TI QD. Second, we propose that
the polarization of a single e-h pair, a single electron spin,
or a single hole spin can be used as a qubit in a 3D TI
QD for the implementation of optically mediated quantum
teleportation and quantum computing. We develop the method
of single-photon Faraday rotation in a 3D TI QD, which
creates the entanglement between a single photon and a qubit
on the 3D TI QD. This entanglement is the resource for
the implementation of quantum teleportation and quantum
computing.

In wide band gap semiconductor QDs optical interband and
intraband transitions are energetically separated because the
band gap is typically much larger than the QD level spacing.46

In contrast to that, we show that in 3D TI QDs interband and
intraband transitions combine because of the vanishing band
gap at band crossing. The resulting large dipole moment of
up to 450 Debye provides the possibility to reach the strong-
coupling regime for a cavity quality factor of Q ≈ 104 in the
infrared wavelength regime of around 10 μm.

The paper is organized as follows. In Sec. II we present the
analytical derivation of the Weyl solution of the radial Dirac
equation using Green’s function technique at the bulk-quantum
dot interface. The resulting eigenvalues and eigenfunctions
are analyzed in the Sec. III. The Sec. IV is devoted to the
evaluation of the optical transition matrix elements and
the discussion on them. We also discuss on the potential
applications of our results. In Sec. V we explain the Faraday
rotation effect achieve in the 3D TI QD. The application of
the 3D TI QD as a quantum memory is explained in the
Sec. VI. where we also explain the Stark energy shift that
can be used to achieve clean selection rules for the excitation
of a single e-h pair. Sections VII and VIII are devoted to the
detailed description of the single-photon Faraday effect, where
we show that a single e-h pair, a single electron, or a single
hole can be used as a qubit to implement optically mediated
quantum teleportation and quantum computing with 3D TI
QDs. In this section, different possible level configurations
of the Weyl states are shown to achieve the Faraday rotation
effect.

FIG. 1. (Color online) A heterostructure spherical core-bulk 3D
TI QD with a single interface. (a) The arrows indicate the infinite
size of the host. The core and bulk host can be chosen as PbTe
and Pb0.31Sn0.69Te or vice versa. (b) The potential �(r) binds Weyl
fermions at the interface. The energy of the bound interface states
depends on the size of the QD and the strength of the potential. As an
example, two bound states at the interface are shown with energies
+ε and −ε (short dashed lines) for a QD of size r0 = 2 nm.

II. MODEL BASED ON DIRAC EQUATION

In Fig. 1 we show the model of our spherically symmetric
3D TI QD of a core-bulk structure with a single interface at
radius r = r0. This core-bulk structure consists, for example,
of an inner core of PbTe and an outer bulk of Pb0.31Sn0.69Te
with band gaps of 0.187 and −0.187 eV, respectively, or vice
versa, so that Weyl fermions are generated at the interface.
Here we used the band gap formula provided in Ref. 24
for determining x. Note that the band crossing happens
in Pb1−xSnxTe at x = 0.35 at 4 K. The Weyl fermions
are subjected to the spherically symmetric potential �(r)
[Fig. 1(b)].

To understand the properties of a 3D TI QD, we start
with the Dirac Hamiltonian within the k · p approximation.47

Neglecting the far band terms, we have

H = v‖αzp̂z + v⊥α⊥ · p̂ + β�, (1)

where α = (w0 σ
σ 0) are the Dirac α matrices, σ are the Pauli

matrices, β = (1 0
0 −1) is the Dirac β matrix, and p̂ is the

momentum operator. The Fermi velocities v⊥and v‖ in angular
and radial direction are determined by the v⊥ = P⊥/m0 and
v‖ = P‖/m0 respectively, where P⊥ and P‖ are the interband
matrix elements. m0 = 9.10938188 × 10−31 kg is the free
electron mass. �(r) = εg (r) /2 is the gap energy parameter.

Assuming spherical symmetry for the 3D TI QD, �(r)
depends on the radial coordinate only, which breaks the crystal
symmetry in radial direction, and has the symmetry �(r −
r0) = −�(r0 − r), where r0 is the radius of the QD. Therefore,
the angular parts are separated from the radial part of the Dirac
Hamiltonian (1). Thus, we can follow the derivation of the
solution for the central-force problem of a hydrogen atom in
relativistic quantum mechanics.48 The eigenfunctions of H are

four-component spinors � = [φ−
φ+] = [

f−(r)Y
mj

jl−
if+(r)Y

mj

jl+
], where f− and

f+ are the radial functions and Y
mj

jl− and Y
mj

jl+ are the normalized
spin-angular functions corresponding to the L− and L+ band,
respectively, such as in Pb1−xSnxTe. After eliminating the
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angular parts, the radial part of the Dirac Hamiltonian (1)
takes the form

H =
(

� (r) −v‖h̄
(

d
dr

− κ
r

)
v‖h̄
(

d
dr

+ κ
r

) −� (r)

)
, (2)

where v‖ = 2.24 × 105 m/s for Pb1−xSnxTe and κ =
±(j + 1

2 ) is a nonzero positive or negative integer, j being
the total angular momentum quantum number. For given κ , it
is known from relativistic quantum mechanics that the angular
momenta l− and l+ for φ− and φ+ are determined by the
relations −κ = j (j + 1) − l−(l− + 1) + 1/4 and κ = j (j +
1) − l+(l+ + 1) + 1/4, respectively. By solving H 2� = ε2�,
we obtain

(
r2 d2

dr2
+ 2r

d

dr

)
F∓ − (λ2r2 + κ(κ ± 1))F∓ = βr2 d�

dr
F±,

(3)

where F± = rf±, β = 1/v‖h̄, and λ = β
√

(�2
0 − ε2). λ

behaves like a wave vector k whose allowed quantized values
determine the particle’s energy levels. In a flat geometry of
a thin layer of a 3D TI, �(z) can be chosen to be � (z) =
� (∞) tanh(z/l).49,50 We adopt a similar potential along the ra-
dial direction of the form �(r ′) = �osgn(r ′ − ro). Hence, the
source term in Eq. (3) is F±(r ′) = 2�oβF±(ro)r ′2δ(r ′ − ro).
Equations (3) can be solved by using the corresponding
differential equation for the Green’s function, i.e.,

[
d

dr

(
r2 d

dr

)
− (λ2r2 + κ(κ ± 1))

]
G∓ = δ(r − r ′). (4)

The solutions regular at r = 0 with outgoing wave behavior
at r → ∞ are the product of spherical modified Bessel
functions of the order κ for G− and of the order
κ − 1 for G+, i.e., G−(r, r ′, λ) = C−Iκ (λr<)Kκ (λr>),
G+(r, r ′, λ) = C+Iκ−1(λr<)Kκ−1(λr>), where r< (r>) is the
smaller (larger) of r and r ′. The functions I(λr) and K(λr)
are, respectively, the first and the second kind of modified
spherical Bessel functions, and C∓ are the normalization
constants. These constants are determined by the discontinuity
in slope implied by the δ function in Eq. (4). Integration
is performed at the interface of the QD along the radial
direction: [r2 dG∓

dr
]r

′+η

r ′−η = 1, where η is an infinitesimal
quantity with η > 0. For r = r ′ + η, r> = r , r< = r ′, and for
r = r ′ − η, r> = r ′, r< = r . Consequently, the normalization
constants are C− = 1/λr ′2

0 Wκ and C+ = 1/λr ′2
o Wκ−1,

where Wκ = [Iκ (λr ′)K′
κ (λr) − I ′

κ (λr)Kκ (λr ′)]r=r ′ and
Wκ−1 = [Iκ−1(λr ′)K′

κ−1(λr) − I ′
κ−1(λr)Kκ−1(λr ′)]r=r ′ are

the Wronskians of I(λr) and K(λr), respectively, for κ and
κ − 1 order, and I ′(λr) and K′(λr) are derivatives of the
Bessel functions. The Wronskian of two linearly independent
functions is proportional to 1/r2 for Sturm-Liouville-type
equations such as Eq. (4) (see the Appendix A). The
solutions of Eqs. (3) are F∓ = ∫ G∓(r, r ′, λ)F±(r ′)dr ′ =

2�oβ
∫

G∓(r, r ′, λ)F±(ro)r ′2δ(r ′ − ro)dr ′, i.e.,

F−(r) = 2�oβF+(ro)Iκ (λr<)Kκ (λr>)/λWκ (5)

F+ (r) = 2�oβF− (ro) Iκ−1 (λr<)Kκ−1 (λr>) /λWκ−1, (6)

where r< (r>) is now the smaller (larger) of r and r0. A
transcendental equation is obtained by solving Eqs. (5) and (6).
Evaluating at r = r0 we obtain

[zIκ (z)Kκ (z)] [zIκ−1 (z)Kκ−1 (z)] = 1/4�2
oβ

2r2
o , (7)

where z = λr0. In Fig. 2, we show the plot of Eq. (7)
where the function F (z) is defined as F (z) = [zIκ (z)Kκ (z)]
[zIκ−1 (z)Kκ−1 (z)].

III. BOUND STATES OF THE WEYL FERMIONS

Each term in the square bracket on the left-hand side of
Eq. (7) is a monotonically decreasing function of z (for z >

0), with maximum value of 1/(2κ + 1) for κth order term and
1/(2κ − 1) for (κ − 1)th order term occurring at z = 0 (see
the Appendix B). Therefore, their product has a maximum
value of 1/(4κ2 − 1) at z = 0 and is equal to 1/4�2

oβ
2r2

o .
Since F (z) is a monotonically decreasing function, for each
κ , there is at most a single solution given by the intersection
of F (z) with the constant 1/4�2

oβ
2r2

o (dashed line and solid
line in Fig. 2). The critical limit for having a single solution
is determined by the intersection at the maximum value of
F (z), which occurs at z = 0. This means that there exists a
single solution of Eq. (7) for each κ as long as the condition
1/4�2

oβ
2r2

o � 1/(4κ2 − 1) is satisfied. Figure 2 shows the plot
of the first three different values of κ , κ = 1 (red), 2 (blue),
and 3 (pink), each a monotonically decreasing line (solid line)

FIG. 2. (Color online) Plot of Eq. (7) showing the intersections
of the monotonically decreasing F (z) (solid lines) with the constants
(black dashed lines). Intersection at z = 0 gives the minimum
threshold of the size of a QD to have two bound states, one positive-
and one negative-energy state, for a given confining potential. For
a larger QD, multiple bound states exist, corresponding to multiple
intersection points. The intersection points A, B, and C are example
points where we evaluate the wave functions. The energy of the bound
states are determined by the relation z = λro.
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cut by a horizontal line (dashed line) at most one time. Since

λ = β

√
(�2

0 − ε2), each single solution gives rise to two bound
states with same magnitude but opposite sign of energy, giving
rise to the mirror symmetry in the energy spectrum. Indeed, this
makes sense since Weyl fermions are massless at zero band gap
with the linear dispersion relation. Note that there is no radial
quantum number because in general a Dirac potential allows
only for a single positive-energy and a single negative-energy
solution in radial direction.

As the size of the QD grows, it is filled with more and
more bound states (see Fig. 2), where for smaller value of
F (z) a horizontal dashed line makes multiple cuts at different
values of the energy (i.e., z) for different κ . For negative κ ,
the solutions diverge at the origin and are therefore physically
not valid. This result has profound implications because the
sign of κ determines whether j is parallel or antiparallel to the
spin s (see Ref. 48). Since κ is only allowed to be positive,
only one spin orientation with respect to j is permitted. This
corresponds to the spin locking effect, which is a hallmark of
3D TIs. This allows us to write down the more specific form
of the spin-angular functions, i.e.,

Y
mj

jl− = −
√

l− − mj + 1
2

2l− + 1
Y

mj − 1
2

l−

[
1
0

]

+
√

l− + mj + 1
2

2l− + 1
Y

mj + 1
2

l−

[
0
1

]
(8)

Y
mj

jl+ =
√

l+ + mj + 1
2

2l+ + 1
Y

mj − 1
2

l+

[
1
0

]

+
√

l+ − mj + 1
2

2l+ + 1
Y

mj + 1
2

l+

[
0
1

]
(9)

where l− = j + 1
2 and l+ = j − 1

2 .
The condition 1/4�2

oβ
2r2

o = 1/(4κ2 − 1) determines the
lower limit of the size of the QD to hold two bound interface
states, a positive- and a negative-energy state, for a given
value of the confining potential strength. The critical QD size
depends on the Fermi velocities and band gaps of the 3D TI
materials. In Pb1−xSnxTe, �o = 0.0935 eV, half of the band
gap of PbTe. Choosing v‖ = 2.24 × 105 m/s,50 results in a
critical QD size of r0 = 1.4 nm for κ = 1 at z = 0. Similarly
for κ = 2 at z = 0, the critical QD size for Pb1−xSnxTe is
r0 = 3 nm. The energies of the bound states are determined
from z = λro, which gives very shallow energy levels of
ε = ±�o for z = 0.

For a given value of κ , quantum numbers characterizing the
wave functions φ− and φ+ can be determined. For κ = 1, 2, 3,

and 4, the possible combinations of the quantum numbers
are shown in Table I for both spinors φ− and φ+. Here we
observe that the φ− component is characterized by the spin
being antiparallel to its angular momentum, whereas the φ+
component is characterized by the spin being parallel to its
angular momentum. We show now how to identify the Kramers
pairs. According to Kramers theorem, which applies to a time-
reversal invariant system, a spin 1/2 state is at least twofold

TABLE I. φ− and φ+ components.

φ− φ+

κ l− j κ l+ j

1 1 1/2 1 0 1/2
2 2 3/2 2 1 3/2
3 3 5/2 3 2 5/2
4 4 7/2 4 3 7/2

degenerate on the surface of a 3D TI. Hence, we obtain the
following examples of Kramers pairs. For κ = 1, the four-
spinor state with m 1

2
= 1

2 ,

�κ=1
1
2 , 1

2
=

⎡⎢⎣ f−(r)Y
1
2
1
2 1

if+(r)Y
1
2
1
2 0

⎤⎥⎦

=
⎡⎣f−(r)

(−√ 1
3Y 0

1

[ 1
0

]+√ 2
3Y 1

1

[ 0
1

])
if+(r)Y 0

0

[ 1
0

]
⎤⎦ (10)

has as Kramers partner the four-spinor state with m 1
2

= − 1
2 ,

�κ=1
1
2 ,− 1

2
=

⎡⎢⎣ f−(r)Y
− 1

2
1
2 1

if+(r)Y
− 1

2
1
2 0

⎤⎥⎦

=
⎡⎣f−(r)

(−√ 2
3Y−1

1

[ 1
0

]+√ 1
3Y 0

1

[ 0
1

])
if+(r)Y 0

0

[ 0
1

]
⎤⎦ . (11)

For κ = 2, the four-spinor state with m 3
2

= 3
2 ,

�κ=2
3
2 , 3

2
=

⎡⎢⎣ f−(r)Y
3
2
3
2 2

if+(r)Y
3
2
3
2 1

⎤⎥⎦

=
⎡⎣f−(r)

(−√ 1
5Y 1

2

[ 1
0

]+√ 4
5Y 2

2

[ 0
1

])
if+(r)Y 1

1

[ 1
0

]
⎤⎦ (12)

has as Kramers partner the four-spinor with m 3
2

= − 3
2 ,

�κ=2
3
2 ,− 3

2
=

⎡⎢⎣ f−(r)Y
− 3

2
3
2 2

if+(r)Y
− 3

2
3
2 1

⎤⎥⎦

=
⎡⎣f−(r)

(−√ 4
5Y−2

2

[ 1
0

]+√ 1
5Y−1

2

[ 0
1

])
if+(r)Y−1

1

[ 0
1

]
⎤⎦ . (13)

085316-4



THREE-DIMENSIONAL TOPOLOGICAL INSULATOR . . . PHYSICAL REVIEW B 88, 085316 (2013)

For κ = 2, the four-spinor state with m 3
2

= 1
2 ,

�κ=2
3
2 , 1

2
=

⎡⎢⎣ f−(r)Y
1
2
3
2 2

if+(r)Y
1
2
3
2 1

⎤⎥⎦
=
⎡⎣f−(r)

(−√ 2
5Y 0

2

[ 1
0

]+√ 3
5Y 1

2

[ 0
1

])
if+(r)
(√

2
3Y 0

1

[ 1
0

]+√ 1
3Y 1

1

[ 0
1

])
⎤⎦ (14)

has as Kramers partner the four-spinor with m 3
2

= − 1
2 ,

�κ=2
3
2 ,− 1

2
=

⎡⎢⎣ f−(r)Y
− 1

2
3
2 2

if+(r)Y
− 1

2
3
2 1

⎤⎥⎦
=
⎡⎣f−(r)

(−√ 3
5Y−1

2

[ 1
0

]+√ 2
5Y 0

2

[ 0
1

])
if+(r)
(√

1
3Y−1

1

[ 1
0

]+√ 2
3Y 0

1

[ 0
1

]) s

⎤⎦ . (15)

In general, the number of Kramers pairs is determined by the
spin multiplicity for each mj value.

In Figs. 3 and 4 we show the spatial wave functions of the
f− and f+ components inside and outside the QD made of the
core-bulk heterostructure PbTe/Pb0.31Sn0.69Te. Figure 3 shows
the example of the intersection point A and Fig. 4 shows the
example of the intersection points B and C (points A, B, and C
are shown in Fig. 2). Since the four-spinors must be continuous
at the boundary, also each of the two-spinor components
must be continuous, i.e., f in

− = f out
− and f in

+ = f out
+ at the

QD surface. The horizontal solid and short dashed lines in
the figures represent the energy eigenvalues, respectively, at
the intersection point A, corresponding to r0 = 2 nm, and at
the intersection point B and C, corresponding to r0 = 3.5 nm.
Eigenvalues are ε± = ±0.80�o at point A, ε± = ±0.91�o at
point B, and ε± = ±0.48�o at point C.

In order to show that the solutions correspond to Weyl
fermions, we perform an expansion of Eq. (7) for large z to
obtain the energy eigenvalues in the continuum limit. Using

FIG. 3. (Color online) Spatial dependence of f− and f+ inside
and outside the QD calculated for the intersection point A shown
in Fig. 2. The QD has size r0 = 2 nm. The horizontal solid lines
represent the energy eigenvalues ε± = ±0.8�o.

FIG. 4. (Color online) Spatial dependence of f− and f+ inside
and outside the QD calculated for the intersection points B and
C shown in Fig. 2. The QD has size r0 = 3.5 nm. The horizontal
solid lines represent the energy eigenvalues ε± = ±0.91�o at point
B and the horizontal dotted lines represent the energy eigenvalues
ε± = ±0.48�o at point C.

the second order in the expansion of the spherical modified
Bessel functions for z → ∞ (see Appendix B), we get

1

2z

[
1 − 2κ(κ + 1)

(2z)2

]
× 1

2z

[
1 − 2κ(κ − 1)

(2z)2

]
= 1/4�2

oβ
2r2

o .

(16)

This can be written as

ε4 − ε2�2
o + �2

oκ
2

β2r2
o

= 0, (17)

which results in the energy eigenvalues for the electron and
hole,

ε± = ±κv‖h̄/ro. (18)

This corresponds to the linear spectrum of free massless Dirac
fermions, i.e., free Weyl fermions on a sphere. This means
that the energy splittings between the trapped Weyl states
in the quantum dot result from the confinement of the Weyl
fermions on a sphere. The solution in Eq. (18) corresponds to
the eigenspectra found in Ref. 51 for zero magnetic field and
without quantum confinement effects.

In the continuum limit, the Nielsen-Ninomiya fermion
doubling theorem52 is satisfied by the pairs of Dirac cones
positioned at antipodal points of the sphere defined by the
surface of the QD (see Appendix C for details). However, for
a general finite QD radius ro the eigenstates are bound and
have a discrete energy spectrum. Since the Nielsen-Ninomiya
fermion doubling theorem is valid only for continuum states,
it does not apply to the bound Weyl fermions in a 3D TI QD
with finite radius ro.
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IV. OPTICAL EXCITATIONS

The k · p Hamiltonian contains also a quadratic term in the
momenta,47 namely

Hq =
⎛⎝ (pz+eAz)2

2m−
‖

+ (p⊥+eA⊥)2

2m−
⊥

0

0 (pz+eAz)2

2m+
‖

+ (p⊥+eA⊥)2

2m+
⊥

⎞⎠ , (19)

where m∓
‖ and m∓

⊥ are the longitudinal and transverse
effective masses of the L∓ bands, respectively. Through
minimal coupling the quadratic term leads to a linear
term in the momentum, which we need to take into ac-
count. Hence, in the presence of electromagnetic radia-
tion, the total Hamiltonian for the Dirac particle is given
by

Htot = v‖αz (p̂z + eAz) + v⊥α⊥ · (p̂ + eA⊥) + β� − er̂ · E

=
(

� − er̂ · E v‖σz (p̂z + eAz) + v⊥σ⊥ · (p̂ + eA⊥)
v‖σz (p̂z + eAz) + v⊥σ⊥ · (p̂ + eA⊥) −� − er̂ · E

)
, (20)

where A = (Az, A⊥) is the vector potential, E = ∂A/∂t in
the Coulomb gauge, and we made use of the equivalence
between (e/m)A · p and −er̂ · E.48 We identify the interaction
Hamiltonian as

Hint = ev‖αzAz + ev⊥α⊥ · A⊥ − er̂ · E

=
( −er̂ · E ev‖σzAz + ev⊥σ⊥ · A⊥

ev‖σzAz + ev⊥σ⊥ · A⊥ −er̂ · E

)
.

(21)

It will turn out that both interband and intraband transitions
contribute. It is important to note that v‖ = P‖/m0 and
v⊥ = P⊥/m0 include the Kane interband matrix elements
P = 〈u∓

kf
|P̂|u±

kI
〉, where u∓

k are the Bloch’s functions for the
L∓ bands. This means that the interband transitions are
governed by the interband Hamiltonian Hinter = ev‖αzAz +
ev⊥α⊥ · A⊥, where the Dirac α matrices couple the L− band
with the L+ band. The Hamiltonian Hintra = −er̂ · E accounts
for intraband transitions with r̂ operating on the envelope
wave functions only. Hintra is proportional to the identity in
four-spinor space and therefore couples the L− band to itself
and the L+ band to itself. Thus the interband Hamiltonian Hinter

and the intraband Hamiltonian Hintra are not equivalent in this
description. On the one hand, Hinter gives rise to interband

FIG. 5. (Color online) Optical transitions between the states
κ = 1 and κ = 2 in 3D TI QD. Transitions are vertical. The transitions
between |�κ=1

1
2 ,± 1

2
〉 and |�κ=2

3
2 ,± 1

2
〉 are coupled to the linear polarization

of the incoming photons, while the transitions between |�κ=1
1
2 ,± 1

2
〉 and

|�κ=2
3
2 ,∓ 1

2
〉 couple to σ∓ polarizations, and the transitions between

|�κ=1
1
2 ,± 1

2
〉 and |�κ=2

3
2 ,± 3

2
〉 couple to σ± polarizations of the light.

transitions because it contains the Kane interband matrix
elements P⊥ and P‖. On the other hand, Hintra gives rise to
intraband transitions because the electric dipole operator er̂
operates on the envelope wave functions. Remarkably, both
terms lead to the same strict optical selection rules and add
up to a combined optical matrix element, as shown below.
This enhancement of the optical matrix element is a feature of
the 3D TI QD. In contrast, in a wide-band-gap semiconductor
QD the interband and intraband transitions are energetically
separated, i.e., interband transitions occur typically around the
band-gap energy, whereas intraband transitions occur around
the energy level separation due to the confinement of the QD.46

Figure 5 shows the possible transitions between the states
κ = 1 and κ = 2. It is to be noted that there is a complete
symmetry in the solutions in the sense that a κ state can
be chosen from either the positive- or the negative-energy
solutions. The optical matrix elements are given by

〈φf |Hint|φI 〉 = ev‖〈φf |αz|φI 〉Az + ev⊥〈φf |α⊥|φI 〉 · A⊥

− e〈φf |r̂|φI 〉 · E. (22)

The incoming photon’s wavelength is much larger than the dot
size. Therefore, the transitions are vertical, which means A =
(Ax0,Ay0,Az0)eiq·r ≈ (Ax0,Ay0,Az0) can be used, yielding the
electric dipole approximation. The transition energies h̄ω0 =
εκ=2 − εκ=1 are large compared with the room temperature
kBT = 25 meV and the Coulomb charging energy of about
5 meV.24 For the control of the number of electrons and holes
in the 3D TI QD it is necessary to work at low temperatures
of around 1 K.

As an example, here we consider transitions between the
states κ = 1 (at point C) and κ = 2 (at point B). The matrix
elements of the Dirac-α matrix are given by

〈�f |α|�I 〉 = 〈φκ=2
− |σ |φκ=1

+ 〉 + 〈φκ=2
+ |σ |φκ=1

− 〉. (23)

The matrix elements of r̂ are given by

〈φf |r̂|φI 〉 = 〈φκ=2
− |r̂|φκ=1

− 〉 + 〈φκ=2
+ |r̂|φκ=1

+ 〉. (24)

The spherical harmonics can be determined using the Table I.
In order to obtain optical selection rules for circular po-
larizations, it is useful to express the scalar products of
the interband and the intraband Hamiltonian in the form
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e · α = ezαz + e−α+ + e+α− and e · r̂ = ezẑ + e−r̂+ + e+r̂−,
respectively, where e± = (ex ± iey)/

√
2 are the unit vectors

of circular polarizations, α± = (αx ± iαy)/
√

2, and r̂± = (x̂ ±
iŷ)/

√
2 = −
√

4π
3 rY±1

1 . Using our spinor states |φ∓〉 and radial
wave function functions |f∓〉 we obtain the following nonzero
matrix elements for α:〈

�κ=2
3
2 ,± 1

2

∣∣∣αz

∣∣∣�κ=1
1
2 ,± 1

2

〉
π=
〈
φκ=2

+, 3
2 ,± 1

2

∣∣σz

∣∣φκ=1
−, 1

2 ,± 1
2

〉
= 2

√
2

3
i 〈f+ | f−〉 , (25)〈

�κ=2
3
2 ,− 1

2

∣∣∣α−
∣∣∣�κ=1

1
2 ,+ 1

2

〉
σ−=
〈
φκ=2

+, 3
2 ,− 1

2

∣∣∣σ−
∣∣∣φκ=1

−, 1
2 ,+ 1

2

〉
= 2

3
i〈f+|f−〉,

(26)〈
�κ=2

+, 3
2 ,+ 1

2

∣∣∣α+
∣∣∣�κ=1

−, 1
2 ,− 1

2

〉
σ+=
〈
φκ=2

+, 3
2 ,+ 1

2

∣∣∣σ+
∣∣∣φκ=1

−, 1
2 ,− 1

2

〉
= −2

3
i〈f+|f−〉, (27)〈

�κ=2
3
2 ,+ 3

2

∣∣∣α+
∣∣∣�κ=1

1
2 ,+ 1

2

〉
σ+=
〈
φκ=2

+, 3
2 ,+ 3

2

∣∣∣σ+
∣∣∣φκ=1

−, 1
2 ,+ 1

2

〉
= − 2√

3
i〈f+|f−〉, (28)〈

�κ=2
+, 3

2 ,− 3
2

∣∣∣α−
∣∣∣�κ=1

−, 1
2 ,− 1

2

〉
σ−=
〈
φκ=2

+, 3
2 ,− 3

2

∣∣∣σ−
∣∣∣φκ=1

−, 1
2 ,− 1

2

〉
= 2√

3
i〈f+|f−〉. (29)

For r̂ we obtain the following nonzero matrix elements:〈
�κ=2

3
2 ,+ 1

2

∣∣∣ẑ∣∣∣�κ=1
1
2 ,+ 1

2

〉
π=
√

2

15

〈
f−Y 0

2

∣∣ ẑ ∣∣f−Y 0
1

〉
+
√

6

15

〈
f−Y 1

2

∣∣ ẑ ∣∣f−Y 1
1

〉
+
√

2

3

〈
f+Y 0

1

∣∣ ẑ ∣∣f+Y 0
0

〉
, (30)〈

�κ=2
3
2 ,− 1

2

∣∣∣ ẑ ∣∣∣�κ=1
1
2 ,− 1

2

〉
π=
√

6

15

〈
f−Y−1

2

∣∣ ẑ ∣∣f−Y−1
1

〉
+
√

2

15

〈
f−Y 0

2

∣∣ ẑ ∣∣f−Y 0
1

〉
+
√

2

3

〈
f+Y 0

1

∣∣ ẑ ∣∣f+Y 0
0

〉
, (31)〈

�κ=2
3
2 ,− 1

2

∣∣∣ r̂−
∣∣∣�κ=1

1
2 ,+ 1

2

〉
σ−=
√

3

15

〈
f−Y−1

2

∣∣ r̂−
∣∣f−Y 0

1

〉
+
√

4

15

〈
f−Y 0

2

∣∣ r̂−
∣∣f−Y 1

1

〉
+
√

1

3

〈
f+Y−1

1

∣∣ r̂−
∣∣f+Y 0

0

〉
, (32)〈

�κ=2
3
2 ,+ 1

2

∣∣∣ r̂+
∣∣∣�κ=1

1
2 ,− 1

2

〉
σ+=
√

4

15

〈
f−Y 0

2

∣∣ r̂+
∣∣f−Y−1

1

〉
+
√

3

15

〈
f−Y 1

2

∣∣ r̂+
∣∣f−Y 0

1

〉
+
√

1

3

〈
f+Y 1

1

∣∣ r̂+
∣∣f+Y 0

0

〉
, (33)

〈
�κ=2

3
2 ,+ 3

2

∣∣∣ r̂+
∣∣∣�κ=1

1
2 ,+ 1

2

〉
σ+=
√

1

15

〈
f−Y 1

2

∣∣ r̂+
∣∣f−Y 0

1

〉
+
√

8

15

〈
f−Y 2

2

∣∣ r̂+
∣∣f−Y 1

1

〉
+ 〈f+Y 1

1

∣∣ r̂+
∣∣f+Y 0

0

〉
, (34)〈

�κ=2
3
2 ,− 3

2

∣∣∣ r̂−
∣∣∣�κ=1

1
2 ,− 1

2

〉
σ−=
√

8

15

〈
f−Y−2

2

∣∣ r̂−
∣∣f−Y−1

1

〉
+
√

1

15

〈
f−Y−1

2

∣∣ r̂−
∣∣f−Y 0

1

〉
+ 〈f+Y−1

1

∣∣ r̂−
∣∣f+Y 0

0

〉
, (35)

where σ+ = (σx + iσy)/
√

2 = ( 0
√

2
0 0 ), σ− = (σx −iσy)/

√
2 =

( 0 0√
2 0 ), and the normalization and orthogonality condition∫

�
d�Y ∗m′,l′(�)Ym,l(�) = δl′lδm′m have been used. All other

matrix elements are zero.
The transition energy difference between the states κ = 1

(at point C) and κ = 2 (at point B) is 0.43�o and 1.39�o

within the same energy solution and between the negative- and
positive-energy solutions, respectively (see Fig. 4). For
�o = 93.5 meV (half of the band gap of PbTe), the cor-
responding wavelengths are 31 μm and 9.5 μm. Consider
the transitions as shown in Fig. 5. We find that the z

component of the matrix element gives rise to π transi-
tions with κ = 2, mj = 1/2 ←→ κ = 2,mj = 1/2 and with
κ = 2, mj = −1/2 ←→ κ = 1, mj = −1/2). Thus, these π

transitions are coupled to light polarized linearly in z di-
rection. The x − iy and x + iy components of the ma-
trix element give rise to the σ+ transition with κ = 2,

mj = +1/2 ←→ κ = 1, mj = −1/2 and with κ = 2, mj =
3/2 ←→ κ = 1, mj = 1/2 and to the σ− transition with
κ = 2, mj = −1/2 ←→ κ = 1, mj = +1/2 and with κ = 2,

mj = −3/2 ←→ κ = 1, mj = −1/2. Thus, σ+ transition
and σ− transition are coupled to the components of the
corresponding circular polarization of light. We can take
advantage of these strict optical selection rules to implement
the semiclassical and quantum Faraday effect shown below.
The overlap integrals 〈f+(κ = 2)|f−(κ = 1)〉 and 〈f−(κ =
2)|f+(κ = 1)〉 for the transitions between the points B and
C are evaluated to be 0.31 and 0.24, respectively. The Kane
energy, Ep = 2P 2

⊥/mo, is calculated to be 7.3 eV, which is
about three times smaller than the Kane energy value of
22.7 eV for GaAs.53,54 The smaller Kane energy here is due
to the fact that the Fermi velocity is an order of magnitude
smaller than the Fermi velocity in GaAs. The polarization
matrix elements of r̂∓ accounts for the strength of the in-plane
intraband transitions at the band crossing. We calculate the
magnitude of the matrix elements for σ∓ transitions and
find that e|〈�κ=2

3
2 ,− 1

2
|r̂−|�κ=1

1
2 ,+ 1

2
〉| = e|〈�κ=2

3
2 ,+ 1

2
|r̂+|�κ=1

1
2 ,− 1

2
〉| = 128

Debye and e|〈�κ=2
3
2 ,+ 3

2
|r̂+|�κ=1

1
2 ,+ 1

2
〉| = e|〈�κ=2

3
2 ,− 3

2
|r̂−|�κ=1

1
2 ,− 1

2
〉| =

221 Debye. For the π transitions we find the mag-
nitude of the matrix elements as, e|〈�κ=2

3
2 ,+ 1

2
|ẑ|�κ=1

1
2 ,+ 1

2
〉| =

e|〈�κ=2
3
2 ,− 1

2
|ẑ|�κ=1

1
2 ,− 1

2
〉| = 181 Debye.
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V. FARADAY EFFECT FOR 3D TI QDS

In Refs. 43,44, and 55–57 we showed that the single-
photon Faraday rotation cannot only be used for quantum
spin memory but also for quantum teleportation and quantum
computing with wide-band-gap semiconductor QDs. In Ref. 58
we showed that the conditional Faraday rotation can be used
for optical switching of classical information. In Ref. 59 we
proposed a single-photon Mach-Zehnder interferometer for
quantum networks based on the single-photon Faraday effect.
In Ref. 60 a single spin in a wide-band-gap semiconductor
QD was detected using the Faraday rotation. In order to
implement these applications with 3D TI QDs, we need
strict optical selection rules for the circular polarization of
the photons. Since, indeed, for 3D TI QDs we obtain strict
optical selection rules for circular polarization of photons, we
suggest that it is possible to implement quantum memory,
quantum teleportation, and quantum computing using the
single-photon Faraday rotation in 3D TI QDs. In order to prove
this conjecture, we derive the Faraday effect for 3D TI QDs.
For the derivation of the Faraday effect for a classical laser
beam due to Pauli exclusion principle we are going to follow
Ref. 61. In Sec. VII we are going to derive also the Faraday
effect for a single photon using quantum optical calculations,
where we use Ref. 62.

In order to simplify the notation, we write the light-matter
interaction Hamiltonian as Hint = evα · A − er̂ · E. Without
loss of generality, the anisotropy coming from the band
velocity can be introduced back into the solutions at a later
time. Since the incident light is a plane wave with wave
vector q and frequency ω and the electric field component
is E = −∂ A/∂t , the interaction Hamiltonian reads

Hint = ePE0

im0ω
(ei(q·r−ωt) − e−i(q·r−ωt))e · α

− eE0(ei(q·r−ωt) + e−i(q·r−ωt))e · r̂, (36)

where P = m0v is the Kane interband matrix element. The
transition rate for a single 3D TI QD can then be calculated
using Fermi’s golden rule,

Wf I = 2π

h̄
(eE0)2

∣∣∣∣〈�f | P

im0ω
e · α + e · r̂|�I 〉

∣∣∣∣2
× f (εI )[1 − f (εf )]δ(εf − εI ∓ h̄ω). (37)

where f (ε) = [exp( ε−εF

kBT
) + 1] is the Fermi-Dirac distribution

function, εF is the Fermi energy, |�I 〉 denotes the initial Weyl
state, |�f 〉 denotes the final Weyl state, and the minus (−)
sign in front of h̄ω corresponds to absorption and the plus (+)
sign to emission. Thus, the absorption of energy per spin state
is P = h̄ω

∑
I,f Wf I . Comparing with the total power P =

2σ1V E2
0 dissipated in the system of volume V , where σ =

σ1 + iσ2 is the complex conductivity, and including absorption
and emission, it follows that the real part of the conductivity is

σ1 = πe2ω

V

∑
I,f

∣∣∣∣〈�f | P

im0ω
e · α + e · r̂|�I 〉

∣∣∣∣2
× [f (εI ) − f (εf )]δ(εf − εI − h̄ω), (38)

which can be written in terms of the oscillator strengths ff I =
(2m0ωf I /h̄)|〈�f | P

im0ω
e · α + e · r̂|�I 〉|2,

σ1(ω) = πe2

2m0V

∑
f I

ff I [f (εI ) − f (εf )]δ(εf − εI − h̄ω).

(39)

Using the relation εr = 1 + i
ωε0

σ , where ε0 is the free-space
permittivity, between the complex conductivity and the com-
plex dielectric function εr = ε1 + iε2 and taking advantage of
the Kramers-Kronig relations the complex dielectric function
is given by

εr (ω) = 1 − e2

ε0m0V

∑
f I

ff I [f (εI ) − f (εf )](
ω2 − ω2

f I

)+ iγ ω
. (40)

In order to describe the Faraday rotation, we need to consider
only the states |�κ=1

1
2 ,± 1

2
〉, |�κ=2

3
2 ,± 1

2
〉, and |�κ=2

3
2 ,± 3

2
〉 coupled by

circularly polarized light (see Fig. 5). We denote their energy
difference by h̄ω0 = εκ=2 − εκ=1. Defining the the quantity

Mf ;I =
∣∣∣∣〈�κ=2

f

∣∣ P

im0ω
e · α + e · r̂

∣∣�κ=1
I

〉∣∣∣∣2 [f (εI ) − f (εf )]

(41)

we can rewrite the complex dielectric function as

εr (ω) = εQD(ω) − 2e2ρω

ε0h̄

{
M 3

2 ,+ 3
2 ; 1

2 ,+ 1
2
+ M 3

2 ,− 3
2 ; 1

2 ,− 1
2(

ω2 − ω2
0

)+ iγ ω

+
M 3

2 ,+ 1
2 ; 1

2 ,− 1
2
+ M 3

2 ,− 1
2 ; 1

2 ,+ 1
2

[ω2 − (ω0 + �S/h̄)2] + iγ ω

}
, (42)

where �S is the Stark energy shift (see below) and γ is the
line broadening. Summation over the other states is included
in εQD(ω), which is the dielectric function of Pb0.63Sn0.37Te,
corresponding to the material at the interface. ρ = 1/V is
the 3D TI QD density. This expression can be split into a
component of the dielectric function for the σ+ polarization,

ε+(ω) = εQD(ω) − 2e2ρω

ε0h̄

{
M 3

2 ,+ 3
2 ; 1

2 ,+ 1
2(

ω2 − ω2
0

)+ iγ ω

+
M 3

2 ,+ 1
2 ; 1

2 ,− 1
2

[ω2 − (ω0 + �S/h̄)2] + iγ ω

}
(43)

and a component of the dielectric function for the σ−
polarization,

ε−(ω) = εQD(ω) − 2e2ρω

ε0h̄

{
M 3

2 ,− 3
2 ; 1

2 ,− 1
2(

ω2 − ω2
0

)+ iγ ω

+
M 3

2 ,− 1
2 ; 1

2 ,+ 1
2

[ω2 − (ω0 + �S/h̄)2] + iγ ω

}
. (44)

Consequently, the indices of refraction for σ± polarization are
given by n± = √

ε±. Assuming that the length of the material is
L, the Faraday rotation can now be understood by considering
the electric component of the plane wave after passing through
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the material at position z = L,

E(z = L) = E0√
2

(eik−Le+ + eik+Le−)e−iωt

= E0

(
cos

�nωL

c
ex + sin

�nωL

c
ey

)
× ei(kL−ωt+(n−1) ωL

c
), (45)

where e± = (ex ± iey)/
√

2 are the circular polarization unit
vectors, n = (n+ + n−)/2 is the average index of refraction,
c is the speed of light in vacuum, and �n = n+ − n− is
the difference in index of refraction between σ+ and σ−
polarization. Thus, the Faraday rotation angle is given by

ϑ = �nωL

2c
. (46)

This formula shows that the Faraday rotation angle depends on
the populations of the states |�κ=1

1
2 ,± 1

2
〉, |�κ=2

3
2 ,± 1

2
〉, and |�κ=2

3
2 ,± 3

2
〉,

as determined by the Fermi functions, which can be used in
the quasiequilibrium, i.e., when the time is much smaller than
the electron-hole recombination time. A similar Faraday effect
has already been successfully used to experimentally detect a
single spin inside a GaAs QD.60

VI. QUANTUM MEMORY WITH 3D TI QDS

Let us first describe the quantum memory with 3D TI QDs.
In order to obtain the maximum Faraday effect, it is possible to
apply an oscillating electric field E(t) pointing in z direction,
which splits the |�κ=2

3
2 ,± 1

2
〉 states from the |�κ=2

3
2 ,± 3

2
〉 states due to

the optical Stark effect (see Fig. 6). The coupling to the electric
field is described by the relativistic Stark Hamiltonian

HS =
(−ezEze

iωS t ev‖σzAz

ev‖σzAz −ezEze
iωS t

)
, (47)

where Ez(t) = ES(eiωS t + e−iωS t ) and thus Az(t) =
iES

ωS
(eiωS t − e−iωS t ). In second-order perturbation theory

we obtain the quadratic Stark effect. The only nonzero
contributions come from the matrix element coupling the
|�κ=2

3
2 ,+ 1

2
〉 state to the |�κ=1

1
2 ,+ 1

2
〉 state, and from the matrix

element coupling the |�κ=2
3
2 ,− 1

2
〉 state to the |�κ=1

1
2 ,− 1

2
〉 state. This

FIG. 6. (Color online) This is one possible level configuration
that can be used for the implementation of the quantum memory.

yields the Stark energy shift

�S = e2E2
S

∣∣∣〈�κ=1
1
2 ,+ 1

2

∣∣∣ P
im0ωS

αz + z

∣∣∣�κ=2
3
2 ,+ 1

2

〉∣∣∣2
h̄(ω0 − ωS)

= e2E2
S

∣∣∣〈�κ=1
1
2 ,− 1

2

∣∣∣ P
im0ωS

αz + z

∣∣∣�κ=2
3
2 ,− 1

2

〉∣∣∣2
h̄(ω0 − ωS)

. (48)

The Stark energy shift can be determined by applying an
oscillating electric field whose amplitude is measured along z

direction. The amplitude of the electric field can be calculated
as |ES | = √

2Sn/Aεoc, where S is the power of the laser, n

is the index of refraction of the medium through which the
light propagates and A is the area of the aperture of the laser
source. A laser power of 50 mW with energy h̄ωS = 30 meV
and area of the aperture of 1 μm2 in a medium with n = 5.7
(for Pb0.68Sn0.32Te at room temperature) can produce an
electric field of 1.46 × 107 V/m. Using the Fermi velocity
of v‖ = 2.24 × 105 m/s to calculate P , our calculations show
that the matrix element in Eq. (48) is e|〈�κ=1

1
2 ,+ 1

2
| P
im0ωS

αz +
z|�κ=2

3
2 ,+ 1

2
〉| = 410 Debye. With the transition energy difference

of h̄ω0 = 130 meV we get a Stark energy shift of �S =
14 meV.

It has already been shown experimentally that single-
electron loading is possible in 3D TI QDs.24 We focus on
two possible level configurations due to the electron-hole
symmetry in 3D TI QDs:

(i) Figure 6 shows the first level configuration where the
electron states are given by the s-like states |�κ=1

1
2 ,± 1

2
〉 and the

hole states are given by the p-like states |�κ=2
3
2 ,± 1

2
〉 and |�κ=2

3
2 ,± 3

2
〉.

(ii) Figure 7 shows the second level configuration where
the electron states are given by the p-like states |�κ=2

3
2 ,± 1

2
〉 and

|�κ=2
3
2 ,± 3

2
〉 and the hole states are given by the s-like states

|�κ=1
1
2 ,± 1

2
〉.

Only due to the symmetry between positive- and negative-
energy solutions in a 3D TI QD it is possible to choose either
of these two level configurations.

Then, using the optical selection rules shown in Fig. 5,
we can use σ+ polarized light to create an e-h pair with
polarization +1, as shown in Fig. 6. This corresponds to
writing the information +1 on the 3D TI QD. Alternatively,

FIG. 7. (Color online) This is another possible level configuration
that can be used for the implementation of the quantum memory.
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FIG. 8. (Color online) (a) The incident photon can be either σ+ or
σ− polarized. The initial level configuration is the one shown in Fig. 6.
(b) If the photon is σ+ polarized, an e-h pair with +1 polarization
is created, which can be probed using off-resonant linearly polarized
light that acquires a negative Faraday rotation angle through virtual
excitation of an e-h pair and virtual recombinations of the present e-h
pair. (c) If the photon is σ− polarized, an e-h pair with −1 polarization
is created, which can be probed using off-resonant linearly polarized
light that acquires a positive Faraday rotation angle through virtual
excitation of an e-h pair and virtual recombinations of the present e-h
pair. (d) After the probing, the e-h pair relaxes into the ground-state
configuration.

we can use σ− polarized light to create an e-h pair with
polarization −1, as shown in Fig. 6. This corresponds to
writing the information −1 on the 3D TI QD.

If we want to read out the information several times before
the electron-hole recombination, we can take advantage of
the Faraday effect due to the Pauli exclusion principle. For
this method, we apply a π pulse of circularly polarized light,
thereby writing the information +1 or −1, respectively, as
shown in Fig. 8. For +1 polarization, the Fermi functions, cor-
responding to populations in quasiequilibrium, are f (ε 1

2 ,+ 1
2
) =

0, f (ε 1
2 ,− 1

2
) = 1, f (ε 3

2 ,+ 3
2
) = 1, f (ε 3

2 ,+ 1
2
) = 1, f (ε 3

2 ,− 1
2
) = 1,

and f (ε 3
2 ,− 3

2
) = 0. For −1 polarization, the Fermi func-

tions, corresponding to populations in quasiequilibrium,
are f (ε 1

2 ,+ 1
2
) = 1, f (ε 1

2 ,− 1
2
) = 0, f (ε 3

2 ,+ 3
2
) = 0, f (ε 3

2 ,+ 1
2
) =

1 f (ε 3
2 ,− 1

2
) = 1, and f (ε 3

2 ,− 3
2
) = 1. Since the off-resonant

interaction does not destroy the quantum state on the 3D
TI QD, the information can be read out several times before
recombination. These results are in complete agreement with
the quantum-optical calculations shown below.

Let us assume a σ+ polarized pump pulse of energy
h̄ω0 excites an e-h pair with polarization +1 due to the σ+
transition from the state |�κ=2

3
2 ,− 3

2
〉 to the state |�κ=1

1
2 ,− 1

2
〉 in the

level configuration shown in Fig. 6. Then a linearly polarized
probe pulse of energy h̄ω with certain detuning energy is
applied to read it out. There are three virtual transitions that
can occur while probing, one σ− transition: |�κ=2

3
2 , 3

2
〉 ←→

|�κ=1
1
2 ,+ 1

2
〉 and two σ+ transitions: |�κ=1

3
2 ,− 3

2
〉 ←→ |�κ=2

1
2 ,− 1

2
〉 and

|�κ=2
3
2 ,− 1

2
〉 ←→ |�κ=1

1
2 ,+ 1

2
〉. The matrix elements are evaluated

to be M 3
2 ,± 3

2 ; 1
2 ,± 1

2
= ∓8.07 × 10−18 m2 and M 3

2 ,− 1
2 ; 1

2 ,+ 1
2

=
−2.67 × 10−18 m2. The sign of the matrix elements Mf,I is
determined by the Fermi functions. The corresponding dipole
moments are 454 Debye and 261 Debye. For a quantitative
estimate, we choose a transition energy gap between the
negative- and positive-energy solution of h̄ωo = 130 meV,
a linearly polarized probe pulse with detuning energy of
h̄δ = 1 meV and a cavity photon with a bandwidth of h̄γ =
100 μeV.60,63 We further assume that there is a single QD in a
slab material of length L = 0.1 μm. With these values for our
3D TI QD of size 3.5 nm we obtain the real part of the Faraday
rotation angle of ϑ+1 = −624 μrad. This Faraday rotation
angle is well above the angle value that has been measured
for the experimental detection of a single spin in GaAs QDs.60

A similar calculation can be done for a σ− polarized pump
pulse that excites an e-h pair with polarization −1 from the
state |�κ=2

3
2 ,+ 3

2
〉 to the state |�κ=1

1
2 ,+ 1

2
〉. Due to the symmetry of

the positive- and negative-energy solutions in 3D TI QDs,
a large variety of level configurations can be considered to
achieve the Faraday effect.

The largest dipole moment of 452 Debye is one order of
magnitude larger than the typical value of 75 Debye for GaAs
QDs,64 and two orders of magnitude larger than the typical
value of a few Debye for atoms.65 This large strength of
the coupling of infrared light to 3D TI QDs can partially
compensate the weak overlap of the photon with the 3D TI
QD, which is due to the wavelength of the infrared light being
so much larger than the size of the 3D TI QD.

VII. SINGLE-PHOTON FARADAY EFFECT FOR 3D TI QDs

Let us consider a 3D TI QD in the level configuration
shown in Fig. 6 inside a cavity. We define c1±, c2± and c3± as
the annihilation operators of the states |�κ=2

3
2 ,± 1

2
〉, |�κ=2

3
2 ,± 3

2
〉, and

|�κ=1
1
2 ,± 1

2
〉, respectively. Then the Jaynes-Cummings model62

gives rise to the Hamiltonian H = Hp + HQD + Hp−QD,
where

Hp = h̄ωc(a†
+a+ + a

†
−a−), (49)

HQD =
3∑

j=1

h̄ωj (c†j+cj+ + c
†
j−cj−), (50)

Hp−QD = h̄g1(a+c
†
3+c1− + a−c

†
3−c1+) + H.c.

+h̄g2(a+c
†
3−c2− + a−c

†
3+c2+) + H.c., (51)

are the cavity photon Hamiltonian, the QD Hamilto-
nian describing the Weyl states, and the interaction
Hamiltonian describing the photon-QD interaction, respec-
tively. We can safely neglect the vacuum energy h̄ωc/2
per mode. The photon-QD coupling constants are given
by h̄g1 = √

h̄ω/2ε0V0e〈�κ=2
3
2 ,± 1

2
| P
im0ω

e · α + e · r̂|�κ=1
1
2 ,∓ 1

2
〉 and

h̄g2 = √
h̄ω/2ε0V0e〈�κ=2

3
2 ,± 3

2
| P
im0ω

e · α + e · r̂|�κ=1
1
2 ,± 1

2
〉, where

V0 is the modal volume. After switching to the electron-hole
picture using the new electron and hole operators c± = c3±
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and v
†
j∓ = cj± for j = 1,2, we obtain

Hp = h̄ωc(a†
+a+ + a

†
−a−), (52)

HQD = h̄ω3(c†+c+ + c
†
−c−) +

2∑
j=1

h̄ωj (v†
j+vj+ + v

†
j−vj−),

(53)

Hint = h̄g1(a+c
†
+v

†
1+ + a−c

†
−v

†
1−) + H.c.

+ h̄g2(a+c
†
−v

†
2+ + a−c

†
+v

†
2−) + H.c. (54)

where h̄ω3 − h̄ω2 = h̄ωc + h̄δ and h̄ω2 − h̄ω1 = �S . Since
the interaction between the EM fields and the QDs is off-
resonant, we can apply an adiabatic approximation. For that,
let us calculate the time evolution of the polarization operators
pjσσ ′(t) = vjσ cσ ′ (coherences) by means of the Heisenberg
equation of motion, i.e.,

∂pjσσ ′(t)

∂t
= 1

ih̄
[pjσσ ′(t),H ] = 1

ih̄
[pjσσ ′(t),HQD + Hint].

(55)

Since

[pjσσ ′,p
†
λj ′λ′] = vjσ v

†
j ′λ′δσ ′λ − c

†
λcσ ′δjj ′δσλ′

= (1 − v
†
j ′λ′vjσ )δσ ′λ − c

†
λcσ ′δjj ′δσλ′ (56)

and

[pjσσ ′,c
†
λcλ] = pjσλδσ ′λ

(57)
[pjσσ ′,v

†
j ′λvj ′λ] = pj ′λσ ′δjj ′δσλ

we obtain

i
∂p1±±

∂t
=
(

ωc + δ + �S

h̄

)
p1±± + g1a±(1 − c

†
±c± − v

†
1±v1±)

+ g2a∓(1 − v
†
2∓v1±), (58)

i
∂p2±∓

∂t
= (ωc + δ) p2±∓ + g1a∓(1 − v

†
1∓v2±)

+ g2a±(1 − c
†
∓c∓ − v

†
2±v2±), (59)

where the +(−) sign denotes the circular polarization. Since
the states |�κ=2

3
2 ,± 1

2
〉 and |�κ=2

3
2 ,± 3

2
〉 are not resonantly coupled,

no coherences v2±v
†
1∓ and v2±v

†
1∓ are created. Therefore they

are zero. It is possible to transform to the rotating frame by
means of p̃1±± = p1±±e−iωct , p̃2±∓ = p2±±e−iωct and ã± =
a±e−iωct , resulting in

i
∂p1±±

∂t
=
(

δ + �S

h̄

)
p1±± + g1a±(1 − c

†
±c± − v

†
1±v1±),

(60)

i
∂p2±∓

∂t
= δp2±∓ + g2a±(1 − c

†
∓c∓ − v

†
2±v2±), (61)

where we omitted the tildes. The Heisenberg equations for
the polarization operators p

†
1±± and p

†
2±∓ can be obtained

by taking the Hermitian conjugate. Since in the case of the
Faraday effect the photon is off resonant with the energy
difference h̄ω21 = h̄ω2 − h̄ω1, we can apply the adiabatic ap-
proximation, which corresponds to setting the time derivatives

in the Heisenberg equations to zero, i.e., taking the stationary
limit. Then we obtain

p1±± = −g1a±(1 − c
†
±c± − v

†
1±v1±)(

δ + �S

h̄

) , (62)

p2±∓ = −g2a±(1 − c
†
∓c∓ − v

†
2±v2±)

δ
. (63)

Inserting this result into the interaction Hamiltonian leads to
an effective interaction Hamiltonian of the form

H eff
int = − h̄g2

1(
δ + �S

h̄

) ∑
σ

(2a†
σ aσ + 1)(1 − c†σ cσ − v

†
1σ v1σ )

− h̄g2
2

δ

∑
σ

(2a†
σ aσ + 1)(1 − c

†
σ̄ cσ̄ − v

†
1σ v1σ ), (64)

where σ̄ has the opposite sign of σ . It becomes obvious that if
electrons or holes are present, the effective interaction can be
suppressed. Most importantly, this suppression of interaction
depends on the spin of the present electrons or holes. This
is exactly the mechanism for the Faraday effect due to Pauli
exclusion principle. Let us now calculate the time evolution of
the photon operator in the rotating frame under the effective
interaction Hamiltonian, i.e.,

ih̄
∂a±
∂t

= [a±,H eff
int

]
= −2a±

[(
h̄g2

1

δ + �S

h̄

)
(1 − c

†
±c± − v

†
1±v1±)

+
(

h̄g2
2

δ

)
(1 − c

†
∓c∓ − v

†
2±v2±)

]
, (65)

resulting in the solution

a±(t) = a±(0) exp

{
−i

[
2g2

1

δ + �S

h̄

(1 − c
†
±c± − v

†
1±v1±)

+ 2g2
2

δ
(1 − c

†
∓c∓ − v

†
2±v2±)

]
t

}
. (66)

This formula is the main result of this section. It shows that
the Faraday rotation of the linearly polarized light depends
strongly on the presence of electrons and holes due to the
Pauli exclusion principle.

VIII. QUANTUM TELEPORTATION AND QUANTUM
COMPUTING WITH 3D TI QDs

Here we show that the single-photon Faraday rotation can
be used to entangle a single photon with either a single e-h pair,
a single electron, or a single hole. This entanglement can be
used as a resource to implement optically mediated quantum
teleportation and quantum computing 3D TI QDs based on the
Faraday effect due to the Pauli exclusion principle, where the
qubit is defined as either the polarization of a single e-h pair,
the spin of a single electron, or the spin of a single hole. The
quantum-informational methods for the implementation of
quantum teleportation and quantum computing are described
in Refs. 43 and 44. We describe here the physical methods for
creating the entanglement.
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A. Photon polarization: e-h pair polarization entanglement

Let us consider now the Faraday effect due to an e-h pair on
the QD for the level configuration shown in Fig. 6. The initial
state before the photon-QD interaction reads

|ψ∓1(0)〉 = 1√
2

(e−iϑ0a
†
+ + eiϑ0a

†
−)c†±v

†
2∓|0〉, (67)

where the photon is linearly polarized at an angle ϑ0 from the
x axis. If the initial e-h pair is −1 polarized, then the state after
time t is given by

|ψ−1(t)〉 = 1√
2

(
e−i(ϑ0+ϑ+)a

†
+(0) + ei(ϑ0+ϑ−)a

†
−(0)
)
c
†
+v

†
2− |0〉

(68)

= e−i( ϑ+−ϑ−
2 )

√
2

(
e−i(ϑ0+ ϑ++ϑ−

2 )a
†
+(0)

+ ei(ϑ0+ ϑ++ϑ−
2 )a

†
−(0)
)
c
†
+v

†
2−|0〉 (69)

with ϑ+(t) = − 2g2
2

δ
t and ϑ−(t) = ( 2g2

1

δ+ �S
h̄

− 2g2
2

δ
)t , resulting in

a Faraday rotation angle of ϑ−1(t) = [ϑ+(t) + ϑ−(t)]/2 =
−( 2g2

2
δ

− g2
1

δ+ �S
h̄

)t . If the initial e-h pair is +1 polarized, then

the state after time t is given by

|ψ+1(t)〉 = 1√
2

(
e−i(ϑ0+ϑ+(t))a

†
+(0)

+ ei(ϑ0+ϑ−(t))a
†
−(0)
)
c
†
−v

†
2+|0〉 (70)

= e−i( ϑ+−ϑ−
2 )

√
2

(
e−i(ϑ0+ ϑ++ϑ−

2 )a
†
+(0)

+ei(ϑ0+ ϑ++ϑ−
2 )a

†
−(0)
)
c
†
−v

†
2+|0〉 (71)

with ϑ+(t) = −( 2g2
1

δ+ �S
h̄

− 2g2
2

δ
)t and ϑ−(t) = 2g2

2
δ

t , resulting in

a Faraday rotation angle of ϑ+1(t) = [ϑ+(t) + ϑ−(t)]/2 =
+( 2g2

2
δ

− g2
1

δ+ �S
h̄

)t . These results are in complete agreement with

the result using Fermi’s golden rule above.
In addition, the quantum-optical calculation lets us entangle

the photon with the electron-hole state on the 3D TI QD. In
particular, if we choose the initial state to be

|ψ(0)〉 = 1√
2

(a†
+ + a

†
−)(c†+v

†
2− + c

†
−v

†
2+)|0〉 (72)

the photon and the e-h pair get fully entangled for ϑ∓1(τ ) =
±π

4 , i.e., after a time τ = π/4( 2g2
2

δ
− g2

1

δ+ �S
h̄

), yielding

|ψ(τ )〉 = 1√
2

(
e−i π

4 a
†
+(0) + ei π

4 a
†
−(0)
)
c
†
+v

†
2−

+ 1√
2

(
e−i(− π

4 )a
†
+(0) + ei(− π

4 )a
†
−(0)
)
c
†
−v

†
2+ |0〉 .

(73)

This state consists of a photon entangled to the e-h pair on the
3D TI QD.

FIG. 9. (Color online) This is one possible level configuration that
can be used for the implementation of the quantum Faraday rotation,
where the quantum information is stored in form of an electron (a) in
the spin-up state or (b) in the spin-down state. (a) A single spin-up
electron is probed by using off-resonant linearly polarized photon that
acquires a positive Faraday rotation angle through virtual excitation
of e-h pairs. (b) A single spin-down electron is probed by using off-
resonant linearly polarized photon that acquires a negative Faraday
rotation angle through virtual excitation of e-h pairs.

We consider two possible level configurations due to the
electron-hole symmetry in 3D TI QDs:

(i) Figure 9 shows the first level configuration, in which
only one of the states |�κ=1

1
2 ,± 1

2
〉 is populated with an electron.

(ii) Figure 10 shows the second level configuration, in
which only one of the states |�κ=1

1
2 ,± 1

2
〉 is populated with a hole.

B. Photon polarization: electron spin entanglement

Now let us consider the Faraday effect due to a single
electron for the level configuration shown in Fig. 9. Here the
electron is in an s-like state. If the initial state is

|ψ(0)〉 = 1√
2

(e−iϑ0a
†
+ + eiϑ0a

†
−)c†+|0〉 (74)

then state after the interaction is given by

|ψ(t)〉 = 1√
2

(
e−i(ϑ0− 2g2

2
δ

t)a
†
+(0) + e

i(ϑ0+ 2g2
1

δ+�S
t)
a
†
−(0)
)
c
†
+|0〉

(75)
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FIG. 10. (Color online) This is another possible level configura-
tion that can be used for the implementation of the quantum Faraday
rotation, where the quantum information is stored in form of a hole (a)
in the spin-up state or (b) in the spin-down state. (a) A single spin-up
hole is probed by using off-resonant linearly polarized photon that
acquires a positive Faraday rotation angle through virtual excitation of
e-h pairs. (b) A single spin-down hole is probed by using off-resonant
linearly polarized photon that acquires a negative Faraday rotation
angle through virtual excitation of e-h pairs.

resulting in ϑ+1(t) = ( g2
1

δ+ �S
h̄

− g2
2
δ

)t . Conversely, if the initial

state is [see Fig. 10(b)]

|ψ(0)〉 = 1√
2

(e−iϑ0a
†
+ + eiϑ0a

†
−)c†− |0〉 (76)

then state after the interaction is given by

|ψ(t)〉 = 1√
2

(
e
−i(ϑ0− 2g2

1

δ+ �S
h̄

t)
a
†
+(0) + ei(ϑ0+ 2g2

2
δ

t)a
†
−(0)
)
c
†
− |0〉

(77)

resulting in ϑ−1(t) = −( g2
1

δ+ �S
h̄

− g2
2
δ

)t . This result is also in

complete agreement with the Faraday effect obtained above.
Again, the quantum-optical calculation allows us to entan-

gle the photon with the single electron on the 3D TI QD. In
particular, if we choose the initial state

|ψ(0)〉 = 1√
2

(a†
+ + a

†
−)(c†+ + c

†
−)|0〉 (78)

then the state after the interaction is fully entangled after a

time τ = π/[4( g2
1

δ+ �S
h̄

− g2
2
δ

)], i.e.,

|ψ(τ )〉 = 1√
2

(
e−i π

4 a
†
+(0) + ei π

4 a
†
−(0)
)
c
†
+

+ 1√
2

(
e−i(− π

4 )a
†
+(0) + ei(− π

4 )a
†
−(0)
)
c
†
−|0〉. (79)

This state is a fully entangled electron-photon state.
The Faraday effect due to a single hole for the level

configuration shown in Fig. 10 can be calculated in a similar
way. Here the hole is in an s-like state. Other possible
configurations include a single electron in a p-like state or
a single hole in a p-like state.

Due to the symmetry between positive- and negative-energy
solutions, in a 3D TI QD it is possible to define an electron spin
qubit in terms of an s-like or a p-like state. At the same time
it is possible to define a hole spin qubit in terms of an s-like
or a p-like state. This cannot be done in a conventional wide-
band-gap semiconductor QD, where the electron is associated
with an s-like state and the hole is associated with a p-like
state.46

For a quantitative description, we can assume a sin-
gle 3D TI QD embedded in a semiconductor microcavity.
The strong and weak interaction can occur between the
QD e-h pair and discretized cavity modes at resonance,
ω21 = ωc. The e-h-photon coupling parameter g is given by
g = (πe2f )1/2/(4πεrεomoVm)1/2, where εr is the dielectric
constants for the cavity material,63 mo is the free electron
mass, and Vm is the mode volume. The mode volume for
a mode of wavelength λ is Vm ≈ (λ/2n)3, where n = √

εr

(for a GaAs microcavity, n = 3.31). Using h̄ω21 = 130 meV,
the oscillator strengths for the transition �κ=2

3
2 ,+ 1

2
←→ �κ=1

1
2 ,− 1

2

and �κ=2
3
2 ,− 3

2
←→ �κ=1

1
2 ,− 1

2
are obtained, respectively, f1 ≈ 9

and f2 ≈ 27. This gives us an estimate of h̄g1 ≈ 10 μeV
and h̄g2 ≈ 17 μeV. For a detuning energy of h̄δ = 100 μeV
the time it takes to fully entangle the electron spin and
the photon polarization is calculated to be of the order of
180 ps. The necessary condition to be in the strong coupling
regime is that g must be large compared to both spontaneous
emission rate and cavity decay loss rate.66 Thus, for Q �
ω/g1 ≈ 1.3 × 104 the 3D TI QD is in the strong coupling
regime. For Q = 105, the photon decay rate is given by
κ = ω

2πQ
= 3.1 × 109 s−1. This gives a cavity photon life time

of 3 ns.

IX. CONCLUSION

We have shown that Weyl fermions can be confined
in all three dimensions at the spherically shaped interface
between two narrow-band-gap semiconductor alloys, such as
the core-bulk heterostructure made of PbTe/Pb0.31Sn0.69Te.
This configuration provides us with the model of a spherical
3D TI QD with tunable size r0 and potential �0, which allows
for complete control over the number of bound interface states.
The most important features of 3D TI have been identified in
a 3D TI QD, namely the spin locking effect and the Kramers
degeneracy. We found that the Weyl states are confined on the
surface of the QD, in contrast to the electrons and holes in
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topologically trivial semiconductor QDs. We showed that due
to the large dipole moment of 450 Debye it is possible to reach
the strong-coupling regime inside a cavity with a quality factor
of Q ≈ 104 in the infrared wavelength regime around 10 μm.
Because of the strict optical selection rules, the 3D TI QD gives
rise to interesting applications based on the semiclassical and
quantum Faraday effect. We found that the 3D TI QD is a
good candidate for quantum memory, quantum teleportation,
and quantum computing with single spins in 3D TI QDs using
infrared light. In particular, a single e-h pair, a single electron,
or a single hole can be used as a qubit for the implementation
of optically mediated quantum computing with 3D TI QDs.
Interestingly, we found that due to the symmetry between
positive- and negative-energy solutions, in a 3D TI QD it is
possible to define an electron spin qubit in terms of an s-like
or a p-like state. At the same time it is possible to define a hole
spin qubit in terms of an s-like or a p-like state. This cannot
be done in a zincblende wide direct-band-gap semiconductor
QD, where the electron is associated with an s-like state and
the hole is associated with a p-like state.
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APPENDIX A: CALCULATION OF THE WRONSKIAN

The Wronskian of the functions Iκ (z) and Kκ (z) is defined
as67

Wκ [Iκ (z),Kκ (z)] = Iκ (z)K′
κ (z) − I ′

κ (z)Kκ (z) , (A1)

where the prime denotes the derivative of the function. For
independent solutions, it is to be noted that Wronskian is
proportional to 1/p(x) in a Sturm-Liouville-type equation
d
dx

[p(x) dy

dx
] + g(x)y = 0. Therefore, Wronskians in the text

are calculated to be

Wκ [Iκ (z) ,Kκ (z)] = − 1

z2
, (A2)

Wκ−1 [Iκ−1 (z) ,Kκ−1 (z)] = − 1

z2
. (A3)

APPENDIX B: LIMITING FORM OF BESSEL FUNCTIONS

The limiting forms of modified Bessel functions for z → 0
are given by

Iκ (z) = 1
�(κ+1)

(
z
2

)κ
Kκ (z) = �(κ)

2

(
2
z

)κ
}

as z → 0. (B1)

The modified spherical Bessel functions can be written in terms
of modified Bessel functions as

Iκ (z) =
(√

π

2z

)
Iκ+ 1

2
(z), Kκ (z) =

(√
2

πz

)
Kκ+ 1

2
(z) .

(B2)

Therefore, the function

F (z) = [zIκ (z)Kκ (z)][zIκ−1(z)Kκ−1(z)] (B3)

has the limiting form F (z) = 1
4κ2−1 as z → 0.

The asymptotic expansion (z → ∞) of the modified Bessel
functions are given by

Iκ (z) = ez

√
2πz

×
{

1 − 4κ2 − 1

8z
+ (4κ2 − 1)(4κ2 − 9)

2!(8z2)
− · · ·
}

Kκ (z) =
√

π

2z
e−z

×
{

1 + 4κ2 − 1

8z
+ (4κ2 − 1)(4κ2 − 9)

2!(8z2)
− · · ·
}

.

(B4)

APPENDIX C: FERMION DOUBLING THEOREM

Nielsen and Ninomiya investigated Weyl fermions on a
crystal.52 They formulated a no-go theorem, called the fermion
doubling theorem, requiring that Weyl nodes in a crystal
always exist in pairs of opposite chirality. The reason for
this theorem is that the number of Weyl fermions in the first
Brillouin zone must be conserved. This conservation law can
be checked by calculating the Berry flux in the first Brillouin
zone.

It is important to note that the fermion doubling theorem is
only valid for continuum states. Therefore it does not apply to
the bound eigenstates of the 3D TI QD, which have a discrete
eigenspectrum. Below we give arguments for the validity of
the fermion doubling theorem in the continuum limit, which
corresponds to the asymptotic limit when the 3D TI QD radius
ro becomes infinite.

A typical calculation of the Berry curvature Bn(k) =
∇k × An(k) considers a single band Bloch state unk(r)eik·r,
which gives rise to the Berry connection An(k) =
i
∫
�

d3r u∗
nk(r)∇kunk(r).68 As long as the nth band does

not touch or cross any other band, the Berry flux is zero,
i.e., ∇k · Bn(k) = 0. However, if there is a band crossing,
this situation changes drastically due to the monopole at
the crossing point. Using k · p approximation, around the
crossing point in the first Brillouin zone the Berry connection
becomes A±(k) = i 〈χ±| ∇k |χ±〉, where χ± is the four-spinor
of the solution �± = χ±F (r) of Eq. (1).49 Assuming a very
large QD, where quantum confinement can be neglected, the
four-spinor reads

χ± =

⎛⎜⎜⎜⎜⎝
±e−i

(ϕ±π/2)
2

±ei
(ϕ±π/2)

2

e−i
(ϕ∓π/2)

2

ei
(ϕ∓π/2)

2

⎞⎟⎟⎟⎟⎠ , (C1)

where e∓iϕ = kx∓iky

k⊥
and the position-dependent function

is given by F (r) = Ce
− 1

h̄v‖
∫ z

0 �(z′)dz′+ik⊥·r
, where C is the
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normalization constant. In order to capture the Berry curvature
apart from the azimuthal angle ϕ we need to add the
dependence on the polar angle θ . At the same time, we perform
the gauge transformations e±iϕ to shift the singularity of the
Berry curvature to the south pole. This means we calculate the
Berry curvature with respect to the normalized four-spinors

χC,+ = 1√
2

⎛⎜⎜⎜⎜⎝
e−i π

4 cos θ
2

ei(ϕ+ π
4 ) sin θ

2

ei π
4 cos θ

2

ei(ϕ− π
4 ) sin θ

2

⎞⎟⎟⎟⎟⎠ ,

(C2)

χC,− = 1√
2

⎛⎜⎜⎜⎜⎝
−e−i(ϕ− π

4 ) sin θ
2

e−i π
4 cos θ

2

e−i(ϕ+ π
4 ) sin θ

2

−ei π
4 cos θ

2

⎞⎟⎟⎟⎟⎠ .

The Berry connection is then given by

A±(k) = i〈χC,±|∇k|χC,±〉 = ∓ (1 − cos θ )

2k sin θ
eϕ (C3)

where eϕ is the unit vector pointing in ϕ direction. Thus, we
obtain the Berry phase

γ± =
∮

A±(k) · dk = ∓π (1 − cos θ ) (C4)

and the Berry curvature

B±(k) = ∓ 1

2k2
ek. (C5)

Note that the Berry curvature for the four-spinor is the same
as the Berry curvature of a two-spinor.69 For a loop on the
2D surface where θ = π/2, we get γ± = ∓π , which gives
rise to the topological phase shift seen in Shubnikov-de Haas
oscillations for the surface of 3D topological insulators.70

From �(1/k) = ∓4πδ(3)(k) and ∇(1/k) = ∓ 1
k2 ek it follows

that the Berry curvature is the solution of the equation

∇k · B±(k) = ∓4πgδ(3)(k), (C6)

where g = ∓1/2 is the strength of the Dirac monopole for
positive and negative helicity of the four-spinor, which is
identical to the result for two-spinors (see Refs. 69 and 71).

In order to understand the helicity of the Weyl fermions
at the interface, we have shown in Ref. 49 that the helicity
operator is given by

ĥTI = (1/|p⊥|)
(

(σ⊥ × p⊥) · ẑ 0
0 −(σ⊥ × p⊥) · ẑ

)
, (C7)

which commutes with the Hamiltonian in Eq. (1) and yields
ĥTI�± = (±1/2) �±, where the + sign denotes the positive
helicity of positive-energy solutions and the − sign denotes the
negative helicity of negative-energy solutions. This provides
the possibility to write an effective 2D Hamiltonian for the
Weyl fermions on the surface of 3D topological insulators,
i.e.,

H2D = h̄v

(
(σ⊥ × k⊥) · ẑ 0

0 − (σ⊥ × k⊥) · ẑ

)
. (C8)

This effective 2D Hamiltonian can be reduced to two Weyl
Hamiltonians of the form H 2x2

2D = ±h̄v(σ⊥ × k⊥) · ẑ. It is
important to note that both two-spinors of χ±, the two-spinor
χL−

± of the L− band and the two-spinor χL+
± of the L+ band

have the same helicity, in contrast to the commonly used
Weyl Hamiltonians HW (k) = ±h̄vσ ·k. The reason for this
is that the two two-spinors are coupled through the mass
term �(z) in z direction, as given in the 3D Hamiltonian in
Eq. (1).72–75

In order to satisfy the fermion doubling theorem,52 usually
the Dirac cones on the opposite side of the slab of a 3D
topological insulator are identified as the fermion doublers. In
the case of the 3D IT QD, for ro → ∞, i.e., in the continuum
limit, the Berry curvature in k space for a 2D interface, given
by Eq. (C5), determines the Weyl nodes that need to satisfy
the fermion doubling theorem. Hence, according to Ref. 51,
we can adopt the mapping of the two opposite surfaces of
a 3D slab of TI onto the northern and southern hemispheres
of a sphere. We then identify the pairs of Dirac cones with
opposite helicity as the ones located on the antipodal points
on the surface of the sphere defined by the QD, as shown
in Fig. 11. Note that in both cases, the slab and the QD, the
pairs of Dirac cones map into each other through the parity
transformation, which in general reverses the helicity. We
can identify a current on the surface of the sphere flowing
along a latitude. The parity transformation then maps one
latitude on the northern hemisphere with one type of helicity
to its partner latitude on the southern hemisphere with the
opposite helicity. These arguments show that the fermion
doubling theorem is satisfied for a 3D TI QD in the continuum
limit.

FIG. 11. (Color online) Two antipodal points on the surface of
the sphere defined by the QD are identified as the Dirac cones of
opposite helicity. One point lies on the northern hemisphere, while its
antipodal point lies on the southern hemisphere. The currents flowing
along the latitudes can be imagined as angular momentum states of a
3D TI QD in the continuum limit. At the antipodal points momenta
(red arrows) point in opposite ϕ̂ direction to each other while spins
(blue arrows) point in the same θ̂ direction, where θ̂ and ϕ̂ are the
spherical angular unit vectors. Hence, they have opposite chirality.
This satisfies the fermion doubling theorem.
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198 (2009).

43M. N. Leuenberger, M. E. Flatté, and D. D. Awschalom, Phys. Rev.
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