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A theoretical study of the single-electron coherence properties of Lorentzian and rectangular pulses is presented.
By combining bosonization and the Floquet scattering approach, the effect of interactions on a periodic source
of voltage pulses is computed exactly. When such excitations are injected into one of the channels of a system of
two copropagating quantum Hall edge channels, they fractionalize into pulses whose charge and shape reflect the
properties of interactions. We show that the dependence of fractionalization-induced electron/hole pair production
in the pulses’ amplitude contains clear signatures of the fractionalization of the individual excitations. We propose
an experimental setup combining a source of Lorentzian pulses and a Hanbury Brown–Twiss interferometer to
measure interaction-induced electron/hole pair production and more generally to reconstruct single-electron
coherence of these excitations before and after their fractionalization.
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I. INTRODUCTION

Coherence of electrons propagating along the edge channels
of a two-dimensional electron gas (2DEG) has been demon-
strated a few years ago in the electronic Mach-Zehnder inter-
ferometry experiment.1 This breakthrough has triggered a re-
markable thread of experimental2–6 and theoretical studies.7–11

Recently, the successive partitioning of single-electron and
single-hole excitations emitted by a mesoscopic capacitor12,13

using an electronic Hanbury Brown–Twiss setup14,15 has been
demonstrated.16 This opens the way to quantitative studies of
decoherence and relaxation of single-electron excitations in
electronic systems.17

For example, on-demand single-electron sources12,18,19 in
quantum Hall edge channels or in other nonchiral systems20–24

could be used to study the problem of quasiparticle relaxation
originally considered by Landau in the Fermi-liquid theory25,26

and recently solved nonperturbatively in integer quantum Hall
edge channels.27 However, considering other types of coherent
single-electron excitations less sensitive to decoherence and
simpler to generate is certainly of great interest for the field.

Levitov, Ivanov, Lee, and Lesovik28,29 have proposed a
way to generate clean current pulses carrying single- to few-
coherent-electron excitations. Elaborating over these pioneer-
ing works, Keeling, Klich, and Levitov30 have extended this
to the case of fractional excitations in fractional quantum Hall
effect (FQHE) and Tomonaga-Luttinger liquids. Contrary to
the excitations generated by the mesoscopic capacitor,12 these
few-electron pulses are time resolved instead of being energy
resolved. Moreover, pulses that carry more than an elementary
charge inject a coherent wave packet of n electrons. Such
excitations, called “levitons,” have recently been generated
in a 2DEG at zero magnetic field.31,32 This opens the way
to entangle several electrons and to probe the full counting
statistics28 with a finite number of particles.33

In this paper, we show that these electron pulses are
very convenient probes of fractionalization34 induced by elec-
tron/electron interactions in quantum Hall edge channels. To
reach this conclusion, we have studied their decoherence and
relaxation in a system of copropagating edge channels at filling
fraction ν = 2 recently used to study energy relaxation.35–37

In this system, neutral/charged mode separation38 leads to the
fractionalization of a Lorentzian pulse propagating within one
of the edge channel into two components. As in the case of
nonchiral one-dimensional (1D) systems,39–43 each of the two
resulting pulses carries a fraction of the charge directly related
to the interaction strength.

In chiral quantum Hall edge channels, Berg et al. have
proposed to detect the charge of fractionalized excitations by
measuring their shot noise directly.44 In a recent work,45 Neder
has proposed to detect a signature of fractionalization of a
continuous flow of electrons in the shot noise which is known to
count the number of all excitations (electrons and holes) when
pulses are partitioned at an electronic beam splitter.28,46,47

In this paper, we propose to study the phenomenon of
fractionalization at the single excitation level using Lorentzian
pulses and we discuss the conditions of its observability as
well as the information that could be extracted from noise
measurements.

The experimental setup we propose combines a Lorentzian
pulse source with an electronic Hanbury Brown–Twiss (HBT)
interferometer. With our design, current noise and high-
frequency admittance measurements could then be combined
into quantitative tests of the description of fractionalization in
terms of edge magnetoplasmon scattering. Recently directly
measured in a ν = 2 edge channel system,38 edge magneto-
plasmon scattering plays an important role in describing elec-
tronic relaxation in quantum Hall edge channels27,48,49 as well
as decoherence in Mach-Zehnder interferometers (MZI).8,9,50
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In this perspective, we present predictions for
the interaction-induced electron/hole pair production for
Lorentzian and rectangular pulses. In the case of (screened)
short-range interactions, we predict stroboscopic decoherence
and revivals of Lorentzian and rectangular pulses as a function
of copropagation length. We identify clear signatures of
fractionalization in the behavior of electron/hole production
as a function of the amplitude of the pulses and of the co-
propagation distance. Taking into account finite temperature,
we show that these signatures could be observed in realistic
experiments. However, in the case of long-range interactions,
we show that the signature of fractionalization disappears due
to the dispersion of the edge magnetoplasmon eigenmodes.

This paper is structured as follows: In Sec. II, we briefly
discuss the single-electron coherence generated by a periodic
source of voltage pulses. Then, in Sec. III, we show how to
describe the effect of electron/electron interactions on these
pulses by combining bosonization with the Floquet scattering
theory. This leads us to quantitative predictions for interaction-
induced electron/hole pair production in Sec. IV.

II. GENERATING AND CHARACTERIZING
SINGLE-ELECTRON PULSES

A. Voltage pulse generated states

Pure electronic excitations can be created into a chiral edge
channel without exciting any electron/hole pair by applying
suitable voltage pulses to an Ohmic contact.28,30 Since the
average current 〈i(t)〉 injected into a single chiral edge channel
by a time-dependent drive V (t) applied to an Ohmic contact
is 〈i(t)〉 = (e2/h)V (t), the voltage drive must satisfy the
quantization condition such that e

∫
V (t) dt be a multiple of

h. The average emitted charge
∫ 〈i(t)〉 dt is then a multiple of

the elementary charge −e.
But, this quantization condition is not sufficient: an impor-

tant result by Levitov, Lee, and Lesovik28 states that in order
to generate a state involving pure electronic excitations, the
voltage drive V (t) must be a sum of elementary Lorentzian
pulses carrying exactly one electron.

1. Integer charge Lorentzian pulse as a Slater determinant

Let us start by considering a single Lorentzian voltage pulse
centered at time t = 0 such that −e

∫
V (t)dt = αh where in

this paragraph, α is a positive integer n:

V (t) = −2αh̄

e

τ0

t2 + τ 2
0

, (1)

where τ0 is the duration of the pulse.
The appropriate way to characterize single-electron coher-

ence in a many-body system is to consider the two-particle
Green’s function at a given position:17,46

G(e)(t,t ′) = 〈ψ†(x,t ′)ψ(x,t)〉, (2)

where the brackets denote a quantum average in the presence
of the electronic sources. This function plays the same
role as the first-order coherence in quantum optics.51 This
single-electron coherence characterizes the electronic quan-
tum coherence at the single-particle level: in the absence
of interactions, the outcoming current from an electronic

MZI can indeed be expressed in terms of the incoming
single-electron coherence.52,53 Exactly as in quantum optics,54

Hanbury Brown–Twiss interferometry provides a way to
reconstruct the single-electron coherence from current noise
measurements46 or, at least, to compare excitations of quantum
states emitted by two different sources55 via a Hong-Ou-
Mandel–type experiment.56

Being submitted to this voltage drive within the Ohmic
contact, each electron accumulates an electric phase which
then appears in the temporal coherence properties of electrons
emitted by the Ohmic contact. In the presence of a general
time-dependent external drive V (t), the single-electron coher-
ence of electrons G(e)(t,t ′) is given by

G(e)(t,t ′) = exp

(
ie

h̄

∫ t

t ′
V (τ ) dτ

)
G(e)

μ (t,t ′), (3)

where G(e)
μ denotes the single-electron coherence for the edge

channel at chemical potential μ. For the Lorentzian pulse
carrying n electrons, Eq. (3) becomes

G(e)(t,t ′) =
(

t + iτ0

t − iτ0

t ′ − iτ0

t ′ + iτ0

)n

G(e)
μ (t,t ′). (4)

At zero temperature, the contribution �μG(e) = G(e) − G(e)
μ

of the pulse to single-electron coherence, expressed in the
frequency domain, is given by

vF �μG(e)(ω+,ω−) = 4πτ0 	(ω+)	(ω−) e−(ω++ω−)τ0

×
n−1∑
k=0

Lk(2ω+τ0)Lk(2ω−τ0), (5)

where ω± are, respectively, conjugate to t and t ′ and Lk denotes
the kth Laguerre polynomial. The vanishing of �μG(e)(ω+,ω−)
when either ω+ or ω− is negative signals the absence of hole
excitations in this n-electron Lorentzian pulse.

In fact, expression (5) is nothing but the single-electron
coherence for a many-body state obtained by n electrons in
a Slater determinant built from an orthonormal family or n

positive energy states on top of the Fermi sea |Fμ〉 at chemical
potential μ. More precisely, denoting by (ϕk)k these n wave
functions, Wick’s theorem directly implies that the single-
electron coherence of the many-body state

|�μ[(ϕk)k]〉 =
n∏

k=1

ψ†[ϕk] |Fμ〉 (6)

obtained by adding n electrons in the n single-particle states
ϕ1, . . . ,ϕn is given in the space domain by

G(e)(x,y) = G(e)
μ (x,y) +

n∑
k=1

ϕk(x)ϕk(y)∗. (7)

Since, for a many-body state generated from |Fμ〉 by the ap-
plication of an external time-dependent voltage drive, single-
electron coherence determines all the electronic correlation
functions, this shows that the many-body state generated by
the n-electron pulse (1) is obtained by adding on top of the
Fermi sea the n normed and mutually orthogonal wave packets
which are (1 � k � n):

ϕ
(τ0)
k (ω) =

√
2τ0 	(ω)e−ωτ0Lk−1(2ωτ0). (8)
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Consequently, the n-particle wave function describing the
added electrons is a Slater determinant built from the wave
functions ϕ

(τ0)
k (1 � k � n). Let us mention that this result

can also be reached by considering the algebra of operators
associated with the creation of a single α = 1 Lorentzian pulse
along the lines followed by Keeling, Klich, and Levitov.30

2. Floquet approach to periodic trains of pulses

Because single-shot detection of single-electron excitations
is not available today, we have to resort on statistical measure-
ments to characterize these excitations. Therefore, in practice,
we shall consider a periodic source delivering an infinite train
of periodically spaced pulses:

V (t) =
+∞∑

m=−∞
Vp(t − mT ), (9)

where Vp(t) denotes a single pulse. As discussed in Ref. 47,
a periodic source can be used to generate a train of pulses
carrying a noninteger charge since the amplitude of the voltage
drive can be varied continuously. In this case, each pulse can
no longer be viewed as obtained from the Fermi sea by adding
only electron or hole excitations. On the contrary, it should be
understood as a collective excitation of the electronic fluid that
contains both electron and hole excitations.

Since the voltage drive (9) is T periodic, the single-particle
coherence (3) is also T periodic. Considering Vac(t) = V (t) −
αhf/e the ac part of the voltage drive, the associated phase
accumulated in the time interval [0,t] is periodic and can thus
be decomposed in a Fourier series:

exp

(
ie

h̄

∫ t

0
Vac(τ ) dτ

)
=

+∞∑
l=−∞

Cl[Vac] e−2πif lt . (10)

As discussed in our previous work,47 the Fourier coefficients
Cl[Vac] are the Floquet scattering amplitudes57,58 for electrons:
for l > 0, Cl[Vac] is the amplitude for a free electron to
absorb l photons of energy hf whereas for l < 0 it is the
amplitude for a free electron to emit |l| photons. Finally,
C0[Vac] is the amplitude for the electron not to absorb nor
emit any photon. Note that the probabilities for photon-assisted
transitions Pl[Vac] = |Cl[Vac]|2 sum to unity:

∑
l Pl[Vac] = 1.

Using these Floquet amplitudes, the single-electron coher-
ence can then be decomposed as46

G(e)(t,t ′) =
+∞∑

n=−∞
e−2πinf t̄

∫
G(e)

n (ω) e−iω(t−t ′) dω

2π
, (11)

where t̄ = (t + t ′)/2. Equations (3) and (10) then lead to47

vFG(e)
n (ω) =

+∞∑
l=−∞

Cn+l[Vac] Cl[Vac]∗ fμ̄,Tel [ω − (n + 2l)πf ],

(12)

where fμ̄,Tel denotes the Fermi distribution at chemical
potential μ̄ = μ + αhf and electronic temperature Tel. This
shift arises from the dc component of the voltage V (t). Equa-
tion (12) expresses that the single-electron coherence is built
by summing the photogenerated single-particle coherence over
all independent electrons belonging to the shifted Fermi sea.

The nature of single-particle excitations contained within
the pulse train can be read from the G(e) in the frequency
domain where it is a function of the two angular frequencies
ω+ and ω−, respectively, conjugated to t and t ′. For a periodic
source, G(e)

n (ω) defined by (11) describes the single-electron
coherence for ω± = ω ± πnf : the contribution of electronic
excitations (with respect to μ = 0) comes from ω � πf |n|
whereas the contribution from hole excitations comes from
ω � −πf |n|. Contributions to G(e) in the two quadrants |ω| <

πf |n| corresponding to ω+ω− < 0 stem from electron/hole
coherences46 and can be shown to be responsible for a positive
peak in current correlations in a Hong-Ou-Mandel collision
experiment.59

In the frequency domain, the diagonal part G(e)
0 (ω) of

the single-electron coherence is nothing but the electron
distribution function. For a periodic train of voltage pulses,
it can be expressed in terms of the photon-assisted transition
probabilities47

fe(ω) = vFG(e)
0 (ω) =

+∞∑
l=−∞

Pl[Vac] fμ̄,Tel (ω − 2πlf ). (13)

As we will see in Sec. III, Eqs. (12) and (13) can also be used
to compute this quantity in the presence of electron-electron
interactions. But, before discussing interaction effects, lets us
introduce the voltage drives considered in this paper.

3. Lorentzian and rectangular pulse trains

These expressions are valid for any periodic voltage drive
and, as in our recent paper,47 three examples will be considered
here: the sine periodic drive and periodic trains of Lorentzian
and rectangular pulses. These voltage drives are always
decomposed into a dc part Vdc and an ac component. The
amplitude of the ac component is directly related to the
amplitude of the dc part which determines the average charge
injected per period −αe.

For the sine voltage, V (t) = Vdc[1 − cos (2πf t)] where
Vdc = −αhf/e. The photon-assisted transition amplitudes
have the well-known expression60 Cn = Jn(α) where Jn

denotes the Bessel function of order n. The resulting excess
single-electron coherence �G(e) in the frequency domain
is depicted on Fig. 1(a). As expected, it is located close
to the Fermi surface and includes both electron and hole
contributions as well as electron/hole coherences. Note that
the photoemission and photoabsorption probabilities are equal
since the sine drive is symmetric with respect to its average
V (t + T/2) + V (t) = Vdc. This is clearly not the case for the
two other families of pulses considered here.

For each of these two families, the physics depends on
two parameters: the injected charge α in units of −e and f τ0

which characterizes the compacity of the pulse train, i.e., the
size of each pulse compared to their spacing. The physics of
well-individualized pulses is best probed at low compacity47

f τ0 � 1, whereas at high compacity, a shifted Fermi sea is
recovered due to the Pauli exclusion principle. To illustrate this
regime, many numerical results will be presented for f τ0 =
0.01 to shed light on the physics at the level of a single pulse.

In realistic experiments, typical values of τ0 are of the order
of 40 ps and the drive frequency is typically f = 5 GHz, thus
leading to f τ0 � 0.2. Then, a 50-mK electronic temperature

085302-3



CH. GRENIER et al. PHYSICAL REVIEW B 88, 085302 (2013)

FIG. 1. (Color online) Modulus of the excess single-electron
coherence in the frequency domain for various pulses at zero
temperature and α = 1: (a) sinusoidal drive, (b) Lorentzian drive
f τ0 = 0.01, (c) rectangular drive with f τ0 = 0.01. Electronic (resp.
hole) excitations are located in the ω � π |n|f (resp. ω � −πf |n|)
quadrant whereas the off-diagonal |ω| � πf |n| quadrants correspond
to electron/hole coherences.

corresponds to kBTel/hf � 0.2. Reaching lower values of
τ0 and higher-frequency drives so that kBTel/hf would be
more favorable at fixed f τ0 would require the use of optical
techniques.61 Consequently, when discussing the observability
of fractionalization, we will choose f τ0 = 0.1, a value within
reach of current technologies.

As discussed in our recent paper,47 in the low-f τ0 regime
and at zero temperature, both Lorentzian and square pulses
exhibit a minimal number of electron/hole pairs for all integer
values of the charge α carried by each pulse. This seems to
be the case for arbitrary waveforms as noticed by several
authors.62,63 But, in the case of the Lorentzian pulses, as
predicted by Levitov, Lee, and Lesovik,28 the number of
hole (resp. electron) excitations vanishes for positive (resp.
negative) integer values of α, whereas for all other waveforms,
it presents a nonzero minimum.

The difference in these behaviors reflects the presence of
hole excitations for non-Lorentzian pulses for positive integer
α. Figure 1 clearly shows the difference between a Lorentzian
pulse with α = 1 [Fig. 1(b)] and a rectangular pulse with the
same α and f τ0 [Fig. 1(c)]: the single-electron coherence for
the Lorentzian pulse is localized within the electron quadrant
ω � πf |n|, whereas, for rectangular pulses, hole excitations
as well as electron-hole coherences are present.

As can be seen from (13), this can be traced back to the
properties of the Floquet amplitudes Cl[Vac] for l + α < 0
whose analytical expressions for a periodic train of Lorentzian
and rectangular pulses are given in Appendix A. These ampli-
tudes vanish for Lorentzian pulses for positive integer α. As
expected, the expression for the single-electron coherence (12)
shows that when the Floquet amplitudes Cl[Vac] for l + α < 0
vanish, the excess single-electron coherence due to the source
has nonzero contributions only in the electron quadrant46:
this reflects the purely electronic nature of the wave packets
generated by the source in this case. For negative α, the
discussion goes along the same line with holes replacing the
electrons.

B. Counting electron/hole pairs

1. Proposed experimental setup

Let us now describe the experimental setup that we propose
to study interaction-induced electron/hole pair production

using shot-noise measurements in a Hanbury Brown–Twiss
interferometer.16,46,47 The setup depicted on Fig. 2 consists
of two quantum point contacts (QPC) located at both ends
of a region where two chiral edge channels interact during
their copropagation. Excitations are generated by driving the
Ohmic contact (1) and noise and current measurement at leads
(1′) and (2′) can be performed. In a previous work, we have
proposed this setup to study interchannel frequency-dependent
energy transfer using finite-frequency noise measurements.48

The effect of interchannel coherent and incoherent electron
scattering had been analyzed using the same setup by Texier
and Büttiker.64 In this paper, we neglect these processes and
focus on the effects of interchannel Coulomb interactions
having in mind recent experiments on energy relaxation in
quantum Hall edge channels.36 As we shall now explain,
playing with the polarizations of both QPCs enables us to
compare electron/hole production for different propagation
distances and thus to study the effects of interactions on this
quantity. This idea has also been recently used to measure
edge magnetoplasmon scattering in a ν = 2 edge channel
system.38

To begin with, let us assume that the first QPC is polarized so
that the inner edge channel is totally reflected and the outer one
partially transmitted, whereas the second QPC is unpolarized
so that both channels are transmitted. This performs a HBT
experiment at the first QPC in order to characterize electronic
excitations propagating in the outer edge channel right for a
small copropagation distance l.

Next, the first quantum point contact can also be polarized
to inject a periodic train of single-electron pulses into the
outer edge channel and an equilibrium state into the inner
edge channel. When the second QPC is polarized to totally
reflect the inner edge channel and to partition the outer one,
a HBT experiment is performed on the outer edge channel
after copropagation along the inner edge channel over a large
distance.

Note that in the setup proposed here, there are two easily
accessible experimental controls. The first one is the amplitude
of the pulse which determines the injected charge. The second
one is the driving frequency of the source. In principle, one
could also design a sample that allows copropagation over
different distances l as in the recent experiment by Pierre and
his collaborators.36,37 Combining the use of an appropriate
geometry with the variation of the drive frequency keeping the
compacity f τ0 of the source constant within the limitations of
the pulse generator, one could thus explore the (α,l) plane and
study how electron/hole pair production depends on these two
parameters.

But, before presenting our predictions concerning the effect
of interactions, we shall now review how low-frequency
current noise in the HBT geometry is related to electron/hole
pair production.

2. Electron/hole pair production

Let us assume now that the measurement of electron/hole
pair production is performed by the second QPC of Fig. 2
polarized so that the inner edge channels are totally reflected
and the outer edge channels are partially transmitted.

085302-4



FRACTIONALIZATION OF MINIMAL EXCITATIONS IN . . . PHYSICAL REVIEW B 88, 085302 (2013)

X=0 X=

V1

(1)

(2)

(1)

(2)
1 1’

(1)

(2)

I1’

0 5 10
0.0

0.5

1.0

I(
t)

a.
u

 (1)

0 5 10
-0.5

0.0

0.5

t

 (2) 0 5 10
0.0

0.5

1.0

I(
t)

a.
u

 (1)

0 5 10
-0.5

0.0

0.5

t

 (2)

2

FIG. 2. (Color online) Hanbury-Brown–Twiss setup for the ν = 2 system: edge channels (1) and (2) interact between x = 0 and l. The
Ohmic contact 1 is driven by a T -periodic voltage whereas the Ohmic contact 2 is at a fixed chemical potential. One then measures the average
and the low-frequency noise of the current I1′ at contact 1′. Depending on the polarizations of the two QPCs, this setup performs a HBT
experiment right after the source (1′) or after excitations within the outer channel have copropagated along the inner edge channel over a
distance l.

The current noise in the outcoming channel 1′ of this
quantum point contact is measured at low frequency:

S
exp
1′,1′ =

∫
〈I1′ (t̄ + τ/2) I1′ (t̄ − τ/2)〉c t̄

dτ, (14)

where an average over t̄ = (t + t ′)/2 has been taken. The
outcoming current noise S

exp
1′,1′ contains contributions of the

incoming current noise from the two incoming channels
and a contribution associated with two-particle interference
effects. The latter can be expressed in terms of the single-
electron coherences of the two incoming channels.46 At zero
temperature, when the ac drive is switched off, S

exp
1′,1′ is still

nonzero because of the partition noise of electrons due to the
dc bias Vdc = −αhf/e. It is thus convenient to consider the
excess noise �S

exp
1′,1′ = (Sexp

1′,1′ )ac+dc − (Sexp
1′,1′ )dc due to the ac

part of the voltage drive: this excess noise solely arises from
the partitioning of electron and hole excitations associated
with the ac voltage drive. As discussed in the framework of
photon-assisted noise47,65–69 and as we shall now briefly recall
in the electron quantum optics language, this excess noise
counts the electron/hole pair production. This procedure has
originally been proposed by Vanević, Nazarov, and Belzig62

and discussed extensively in our previous work.47

Since an Ohmic contact driven by an ac voltage has the
same current fluctuations as in the absence of ac drive (even at
nonzero temperature), the excess current noise �S

exp
1′,1′ due to

the ac component of the drive voltage is given by the excess
contribution arising from two particle interferences. Assuming
that the QPC behaves as an energy-independent electronic
beam splitter with reflexion and transmission probabilities R

and T , �S
exp
1′,1′/RT is the overlap of the single-electron and

single-hole excess coherences �G(e/h)
1 (t,t ′) = G(e/h)

1 (t,t ′) −
G(e/h)

μ̄,Tel
(t,t ′) in the incoming outer edge channel 1 at x = l with

the electron and hole coherences G(e/h)
μ1′ (t,t ′) arriving at the

second QPC from the other incoming outer edge channel (see
Fig. 2):46

�S
exp
1′,1′

RT = (evF )2
∫ (

�G(e)
1 G(h)

μ1′ + �G(h)
1 G(e)

μ1′
)
(t,t ′)

t̄

d(t − t ′).

(15)

As shown in Appendix B, at vanishing temperature and for
μ1′ = μ1, this quantity is nothing but the average excess
number of excitations (electrons and holes) produced per
period when the ac part of the drive is switched on. At
nonzero temperature, thermal electron and hole excitations in
the second incoming channel antibunch with the electrons and
hole excitations emitted by the source of pulses, thus leading
to a reduction of the noise:16

�S
exp
1′,1′

RT = e2

2π

∫ +∞

−∞
tanh

(
h̄ω

2kBTel

)
vF �G(e)

1,0(ω) dω, (16)

where one recognizes the excess occupation number generated
by the ac drive: vF �G(e)

1,0(ω) = fac+dc(ω) − fdc(ω). Note that
the excess noise reduction due to the tanh (h̄ω/kBTel) factor
concerns electron and hole excitations emitted close to the
chemical potential μ1.

The same discussion can be adapted to the case where
the first QPC is used to perform HBT interferometry on the
outer edge channel and the second one is transmitting both
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edge channels. In this case, we access to the properties of the
electron flow emitted by the source (x = 0). Combining (16)
with the electron distribution function (13) leads to the
following expression for the excess noise in terms of the
photon-assisted transition probabilities:47

�S
(exp)
1′,1′

RT e2f
=

+∞∑
l=−∞

Pl[Vac] (l + α) coth

(
(l + α)hf

2kBTel

)

−α coth

(
αhf

2kBTel

)
. (17)

In the limit of vanishing temperature, the excess noise �S
(exp)
1′,1′

is given in terms of the average number of electron and hole
excitations N̄e and N̄h emitted per period by the source:

�S
exp
1′,1′

RT = e2f

+∞∑
l=−∞

Pl[Vac] (|l + α| − |α|)

= e2f [(N̄e + N̄h)Tel=0 − |α|]. (18)

Our previous work47 presents a detailed study of this quantity
at zero temperature for various pulse shapes and in realistic
temperature conditions. In the case of Lorenztian pulses,
the zero-temperature excess noise vanishes when α is a
positive (resp. negative) integer since the source then emits
α electrons and no hole (resp. −α holes and no electron). For
noninteger values of α, we observe a nonzero electron/hole
pair production as expected from the physics of orthogonality
catastrophe unraveled by Levitov et al.28,70

In the next section, we will consider the effect of inter-
actions on voltage pulses and see to what extent shot noise
provides a way to study charge fractionalization. As we
shall see now, expression (17) can still be used in presence
of interactions (e.g., at x = l) provided the photon-assisted
probabilities are computed from the appropriate ac voltage.

III. DECOHERENCE AND RELAXATION

A. Floquet approach to decoherence for a periodic
train of pulses

1. Edge magnetoplasmon scattering

To deal with interactions, it is convenient to use the
bosonization framework which describes all excitations of the
1D chiral electronic fluid in terms of edge magnetoplasmon
modes b(ω) and b†(ω) (ω > 0) which are directly related to
the finite-frequency electrical current: i(ω > 0) = e

√
ω b(ω).

We consider an interacting region where electrons within
the edge channel experience electron/electron interactions or
Coulomb interactions with other conductors described as a
linear environment. Due to linearity, interaction effects in
this region lead to an elastic scattering between the edge
magnetoplasmon modes and the environmental modes. These
environmental modes possibly include the edge magnetoplas-
mon modes of another edge channel in the case of a coupled
ν = 2 edge channel system48 as well as the electromagnetic
modes of another mesoscopic conductor.27 Denoting by a(ω)
and a†(ω) where ω > 0 the destruction and creation operators
of these modes, the effect of interactions is described by a

scattering matrix S(ω) such that(
aout(ω)
bout(ω)

)
= S(ω)

(
ain(ω)
bin(ω)

)
. (19)

As in quantum wires,71,72 the magnetoplasmon scattering
matrix is directly related to finite-frequency admittance:27,48

Gee(ω) = (e2/h)[1 − Sbb(ω)] where Sbb(ω) connects bin(ω)
to bout(ω).

As a consequence, it is possible to access the edge mag-
netoplasmon scattering amplitudes through a finite frequency
admittance measurement. In the case of the setup depicted on
Fig. 2, such measurements can be performed by polarizing the
first QPC so that it reflects both edge channels or only the inner
one, thus giving access to finite frequency admittance ratios.
Such a measurement has recently been performed38 and has
led to direct information on edge magnetoplasmon scattering
which is used to discuss electronic decoherence and relaxation
in the ν = 2 edge channel system.8,9,48 Knowing the finite-
frequency admittance, we can determine how interactions alter
a periodic train of pulses.

2. Floquet approach and interactions

At zero temperature, a classical time-dependent voltage
drive V (t) generates a coherent state for all magnetoplasmon
modes above the shifted Fermi sea |Fμ+αhf 〉. Introducing
the notation |[�(ω)]〉 for coherent state characterized by the
complex eigenvalues �(ω) for each b(ω) for ω > 0, and using
the expression of the electric current in terms of b(ω) and b†(ω)
as well as the current/voltage relation 〈i(t)〉 = (e2/h)V (t),
these parameters are related to the voltage drive by

�(ω) = −eṼ (ω)

h
√

ω
, (20)

where Ṽ (ω) = ∫
V (t)eiωtdt . Thus, for a periodic train of

pulses, only the modes at harmonic frequencies of the driving
frequency f are excited. At zero temperature, the incoming
state for the environmental modes is the vacuum state with
respect to the environmental modes which we denote by |[0ω]〉.

Therefore, the incoming factorized state |[�(ω)]〉 ⊗ |[0ω]〉
comes out from the interaction region as a factorized coherent
state because the interaction region acts as a frequency-
dependent beam splitter for the edge magnetoplasmon and
environmental modes.85 Consequently, tracing out the envi-
ronmental degrees of freedom leads to a coherent state for the
edge magnetoplasmon modes. This reduced state for the edge
channel under consideration is of the form |[Sbb(ω)�(ω)]〉.

Therefore, the outcoming state is a pure (many-body)
state generated by a distorted voltage pulse: Vout(ω) =
Sbb(ω)Vin(ω). As a consequence, the effect of interactions on
a pulse generated state can always be corrected by applying an
appropriate correction to the voltage pulse.73 In the case of a
periodic train of pulses, it also implies that the outcoming
single-electron coherence G(e)

out can be computed using the
Floquet approach presented in Sec. II A2.

This result does indeed extend to nonzero electronic
temperature Tel since then the state generated by a classical
time-dependent voltage drive is a displaced thermal state
at temperature Tel and the environmental incoming state
is the thermal equilibrium state at the temperature of the
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environment. As discussed in Appendix C, when both tem-
peratures are equal, the resulting outcoming state is factorized
into two displaced thermal states at the common temperature.
Moreover, their displacements are given by the classical
scattering, exactly as in the zero-temperature situation. Conse-
quently, the outcoming single-electron coherence can still be
computed within the framework of Floquet scattering theory,58

taking into account the nonzero temperature of the electronic
reservoirs.

To summarize, we have shown that the effect of interactions
on a periodic train of voltage pulses can be computed exactly
by combining the bosonization treatment of interactions and
the Floquet formalism. We shall now apply this method to
discuss the case of the system of two coupled copropagating
edge channels realized at filling fraction ν = 2.

First, we shall consider the simplest model for this system
which assumes short-range interchannel Coulomb interactions
and leads to perfect spin/charge separation which in turn
induces an interesting stroboscopic revival of single-electron
coherence. However, in a real sample, screening may not be
so efficient and therefore, we shall also consider the opposite
limit of long-range interactions over a distance l using the
discrete element model originally introduced by Büttiker and
his collaborators.74–76 Of course, the method could be adapted
to other models, phenomenological38 or more microscopic,77

that include dissipation of edge magnetoplasmon modes but
for simplicity we will focus on the two aforementioned models.

Finally, let us point out that the same approach could be used
to discuss the effect of interactions in a system at filling fraction
ν = 1. However, in such a system, interaction within the edge
channel leads to electronic relaxation and decoherence if and
only if they induce a frequency-dependent time delay.10,50 This
is the case as soon as we consider finite-range interactions.
This means that the edge magnetoplasmons of the ν = 1 edge
channel system are dispersive and consequently that the shape
of voltage pulses is altered. In fact, ν = 2 is the first integer
filling fraction which can lead to nontrivial interaction effects
without edge magnetoplasmon dispersion.

B. Stroboscopic coherence revivals

In the case of a ν = 2 edge channel system with short-
range screened Coulomb interactions, the plasmon scattering
matrix associated with an interaction region of length l reflects
the existence of two dispersionless magnetoplasmon modes
delocalized on both edges within the interaction region. It has
the following form:48

S(ω,l) = eiωl/v0 e−iω(l/v)[cos (θ)σ z+sin (θ)σx ], (21)

where v0 and v are two velocities and θ is an angle encoding the
interaction strentgh. Uncoupled channels correspond to θ = 0
whereas strongly coupled channels correspond to θ = π/2.
In the latter case, the eigenmodes are the symmetric and
antisymmetric linear combinations of the two-channel magne-
toplasmon modes, respectively, called the charge and dipolar
modes.8,49 The magnetoplasmon eigenmodes velocities are
v± = v0v/(v0 ± v) and the charge mode is faster than the
dipolar mode. Due to the absence of dispersion of these
eigenmodes, each current pulse generated by the source splits
into two pulses of the same shape and of respective weights

FIG. 3. (Color online) Modulus of the single-electron coherence
function in the frequency domain emitted by a periodic source of
single-electron pulses (α = 1) with τ0f = 0.01 as a function of ωτ0

and nf τ0 in the presence of interactions at strong coupling (θ = π/2)
and for various propagation lengths: (a) l/ lr = 0, (b) l/ lr = 0.2, (c)
l/ lr = 0.5, (d) l/ lr = 1, (e) l/ lr = 1.2, and (f) l/ lr = 1.5.

[1 ± cos (θ )]/2:

V1,out(t) = 1 + cos(θ )

2
V (t − l/v+)

+ 1 − cos(θ )

2
V (t − l/v−). (22)

This is the fractionalization of a charge −αe pulse. In
particular, at strong coupling (θ = π/2), we expect a single-
electron pulse to fractionalize into two Lorentzian pulses with
α = 1

2 , which can only be described in terms of collective
electron/hole pair excitations.

Note that, in the case of a periodic train of pulses, an
interesting phenomenon occurs when the two pulses issued
from consecutive pulses recombine. When l is an integer
multiple of lr = vT /2, the original current pulse is restored
with a half period shift. This phenomenon can be viewed as a
stroboscopic revival of the original train of excitations.

Figure 3 depicts the single-electron coherence in the
frequency domain at strong coupling (θ = π/2) and for
increasing propagation lengths when a periodic train of single-
electron pulses is injected within one edge channel. The
stroboscopic revival is clearly visible as well as the appear-
ance of hole excitations and of electron/hole coherences for
propagation lengths between two revivals. Note the periodicity
of the single-electron coherence in l → l + lr which arises
from the dispersionless character of the edge magnetoplasmon
eigenmodes within the interaction region, as can be seen from
the explicit form of the scattering matrix (21).

In Sec. IV, we will present predictions for the excess noise
and electron/hole pair production in the ν = 2 edge channel
system and discuss the signature of this fractionalization
phenomenon both in the case of short- and long-range
interactions.

C. Discrete element model

To investigate the effect of long-range interactions, we
have used a discrete element approach to the two-channel
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system. In this approach, pioneered by Büttiker and his
collaborators,74–76 each copropagating edge channel j within
the interacting region 0 � x � l experiences a uniform time-
dependent potential Uj (t). These potentials are related to the
charges stored on each edge channel within the interacting
region by a 2 × 2 capacitance matrix. This model is expected
to describe the physics of the two-channel system when
interactions are unscreened and at low enough energy so that
excitations sent into the interaction region do not feel the
inhomogeneities of the electrostatic potential.

As shown in Appendix D, the scattering matrix for the edge
magnetoplasmons can be computed analytically by solving the
equations of motions for the corresponding bosonic fields. As
in the short-range case, the scattering reflects the existence of
eigenmodes which are linear combinations of the two edge
magnetoplasmon modes. In the present case, their mixing
angle θ is given by

exp(iθ ) = �C/2 + i C√
C2 + �C2

4

, (23)

where �C = C1 − C2 denotes the difference of the diagonal
terms of the capacitance matrix and C is the off-diagonal term
representing the interchannel capacitance. Strong coupling
is realized as soon as C � |�C|. Long-range interactions
lead to dispersive propagation of these eigenmodes along a
distance l. This has an important consequence for all voltage
pulses: after some copropagation, their shape is not preserved.
This has important consequences on the observability of the
fractionalization phenomenon in the ν = 2 quantum Hall edge
channel.

IV. PROBING FRACTIONALIZATION THROUGH
HANBURY BROWN–TWISS INTERFEROMETRY

To study fractionalization in the ν = 2 edge channel system,
we consider the electron/hole pair production as a function of
α and of the copropagation distance l which can be accessed
via low-frequency current noise measurements in the Hanbury
Brown–Twiss geometry as explained in Sec. II B2. As we
shall see now, the dependence of electron/hole production in
(α,l) contains clear signatures of fractionalization and also
qualitative features enabling us to distinguish between short-
and long-range interactions.

A. Fractionalization in the ν = 2 edge channel system

1. Short-range interactions

For short-range interactions, a Lorentzian pulse of charge
−αe splits into two Lorentzian pulses of respective charges
−αe cos2 (θ/2) and −αe sin2(θ/2). When the charges of these
pulses are noninteger such as for α = 1 (single-electron
pulses), a nonvanishing electron/hole pair production is ex-
pected at a generic distance (i.e., not a multiple of the revival
distance lr ).

Nevertheless, electron/hole pair production does vanish
when fractionalization leads to purely electronic pulses. For
short-range interactions, this is the case when α cos2 (θ/2) and
α sin2 (θ/2) are both integers. This first implies that α is an
integer and, consequently, that cos2 (θ/2) is a rational number.

FIG. 4. (Color online) Density plot representing the excess noise
at zero temperature in the (α,l/ lr ) plane for Lorentzian pulses with
f τ0 = 0.01 in the presence of short-range interactions in the strong
coupling regime (θ = π/2). The integer fractionalization lines at α =
2 and 4 are clearly visible as white vertical zones. Note also the excess
noise minima (white spots) around (α,l/ lr ) = (1,n), (3,n) for n = 0,
1, and 2.

Assuming that cos2 (θ/2) = p/p′ where p and p′ are two
mutually prime numbers, as soon as α is a multiple of p′, elec-
tron/hole pair production will vanish for any copropagation
length. These lines of vanishing electron/hole pair production
in the (α,l/ lr ) plane correspond to the fractionalization of the
charge −αe in two integer charges and therefore we shall call
them integer fractionalization lines.

The density plot of Fig. 4 presents the excess noise for
Lorentzian pulses at zero temperature in the (α,l/ lr ) plane
at strong coupling (θ = π/2) and for f τ0 = 0.01. It clearly
shows that the α = 2 and 4 Lorentzian pulses are always
fractionalized into purely electronic pulses for any l/ lr . We
also see that when l/ lr is close to an integer, the excess noise
also decreases for α = 1 and 3. At a higher value of f τ0, the
same qualitative picture can still be observed, but the peak
values for the excess noise in units of e2f are lower, thus
making it more difficult to observe. This decrease, specific to
Lorentzian pulses,47 is indeed related to the Pauli exclusion
principle and reflects the fact that when α increases from a
positive integer n to n + 1

2 , the “half-electronic” excitation
is added on top of a many-body state obtained by adding
on top of the Fermi sea the n-particle state discussed in
Sec. II A1. Single-particle states just above the Fermi energy
being more and more occupied with increasing n, the number
of hole excitations generated decreases with n. Nevertheless,
observing this pattern of minima for the excess noise in the
(α,l/ lr ) plane would be a clear signature of fractionalization
in the ν = 2 edge channel system. Before analyzing in more
detail the effect of the pulse shape and temperature which are
relevant for the experiments, let us discuss the position of these
fractionalization lines.

Integer fractionalization lines are determined by the in-
teraction strength and therefore by the angle θ . Figure 5
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FIG. 5. (Color online) Electron/hole pair production in the pres-
ence of short-range interactions, observed at l = lr/2 as a function
of θ for α = 1 to 4 Lorentzian pulses with f τ0 = 0.1. The vanishing
of excess noise for these various curves occurs at the angles listed in
Table I. Note that excess noise decreases with increasing α.

represents the hole production computed at l = lr/2 as a
function of θ for α = 1 to 4 Lorentzian pulses. As expected,
the α = 1 pulse never leads to a vanishing electron/hole pair
production as soon as θ = 0. The α = 2 Lorentzian pulses lead
to vanishing electron/hole production when it is split into two
pulses of equal amplitudes: this occurs at θ = π/2. For α = 3
Lorentzian pulse, splitting into charge 2 and 1 pulses occurs
when cos(θ ) = ± 1

3 . The α = 4 case leads to a vanishing of
electron/hole pair production for θ = π/3 corresponding to a
splitting 4 = 3 + 1 of the charge, and θ = π/2 corresponding
to 4 = 2 + 2. These integer fractionalization lines are listed
in Table I for 2 � α � 4. Finding these lines gives a rough
estimation of θ as shown on Fig. 5. However, let us stress that
finite-frequency admittance measurements38 give an indepen-
dent and more precise determination of the angle θ . Combining
these measurements would thus provide a consistency check

TABLE I. Integer fractionalization lines for 2 � α � 4
Lorentzian pulses. For each value of α, the values of θ for which
integer fractionalization of α pulses takes place and the corresponding
fractions are given.

α θ cos2 (θ/2) sin2 (θ/2)

1 0 1 0

2 π/2 1
2

1
2

3 arccos ( 1
3 ) 2

3
1
3

arccos (− 1
3 ) 1

3
2
3

4 π/3 3
4

1
4

π/2 2
4

2
4

2π/3 1
4

3
4

of our edge magnetoplasmon scattering approach to relaxation
and decoherence of pulse excitations.

As can be seen from Fig. 4, increasing α does not improve
the observability of fractionalization as could be expected from
our previous work:47 since local interactions split pulses into
pulses of the same shape, we expect the effect of interaction-
induced fractionalization to be lower at higher α for Lorentzian
pulses.

2. Finite-range interactions

Finite-range interactions lead to the distortion of the
injected pulses and therefore will affect the electron/hole pair
production. A natural question is therefore to understand how
finite-range interactions will affect the simple physical picture
discussed in the previous paragraph. Although the answer to
this question is model dependent, the discrete element model
provides an answer in the case of long-range interactions
between the two edge channels.

Figure 6 presents the zero-temperature excess noise �S
(out)
1,1

for Lorentzian pulses in the noninteracting case compared to
the predictions for the short-range interaction model and for the
discrete element model. As expected, we observe vanishings of
the zero-temperature excess noise for short-range interactions,
whereas long-range interactions lead to nonvanishing minima.
However, this strong quantitative difference is specific to the
zero-temperature case where the excess noise exactly reflects
the intrinsic electron/hole pair production of the excitations
present within the system. But, at finite temperature, this
signature of long-range interactions may not be so clear.

For this reason, it is important to consider more realistic
situations taking into account the finite electronic temperature
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FIG. 6. (Color online) Electron/hole pair production in the
presence of long- and short-range interactions at strong coupling,
observed at l = lr/2 as a function of α for Lorentzian pulses with
f τ0 = 0.01. The dashed curve corresponds to long-range interactions
and shows to minima at integer values of α with nonvanishing
electron/hole pair production. The full line corresponds to the
noninteracting case obtained for l/ lr = 0.
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as well as the nonideality of the pulses. In the forthcoming
section, we will present numerical results for the excess
noise taking into account finite temperature for Lorentzian
and rectangular pulses with realistic parameters. First, we
will discuss the observability of fractionalization induced by
short-range interactions and next we will consider the case of
long-range interactions.

B. Numerical results

In this section, we present numerical results for the excess
noise �S

(out)
1,1 in units of e2f obtained by applying the Floquet

approach described in Sec. III A2 in the short-range interaction
model as well as in the discrete element model. Both are
considered at strong coupling (θ = π/2), as expected from
recent experiments.36,38,48

We consider Lorentzian pulses with τ0 = 120 ps pulses
at a 1.2-Ghz drive frequency which could be generated by
state-of-the-art arbitrary waveform generators (AWG). For
rectangular pulses, we consider τ0 = 40 ps pulses since these
can be generated with a single step by the AWG and therefore
have the shortest available time step. In this case, e2f �
3 × 10−29 A2/Hz. Our numerical results show that a sensitivity
of the order of a percent of e2f is requested corresponding to
a few 10−31 A2/Hz. Note that a 10−30 A2/Hz sensitivity has
been reached in recent experiments.16,78

Electronic temperatures Tel = 5, 10, 20, and 40 mK have
been considered to analyze the effect of a temperature,
keeping in mind that only the last one corresponds to realistic
experimental conditions. Note also that for f = 1.2 GHz and
Tel = 40 mK, we are not far from the transition to a classical
behavior for the excess noise since kBTel/hf = 0.67. As
shown before,47 the oscillations of the excess noise with α

reflecting the electron/hole content of the pulses can only be
observed for kBTel � h̄f which puts a rather strong constraint
on the electronic temperature.

1. Finite temperature

The effect of a finite temperature on a periodic train of
Lorentzian pulses in the presence of short-range interactions
is depicted on Fig. 7 where the excess noise is plotted
as a function of α for the parameters given just above.
It immediately shows that observing fractionalization with
Lorentzian pulses might be very difficult.

For 120-ps pulses repeated at 1.2 GHz, observing the
signature of fractionalization given by the position of excess
noise minima requires that Tel � 5 mK or, in dimensionless
terms, kBTel/hf � 1

12 at f τ0 = 0.144. Reaching f τ0 = 0.1
and kBTel/hf � 0.1 for an electronic temperature of 40 mK
requires generating 10-ps Lorentzian pulses at a repetition rate
of 10 GHz. In these conditions, the fractionalization signature
on the positions of excess noise minima would appear very
clearly. This could be achieved in the near future using optical
methods.61

2. Changing the waveform

However, as can be noticed from Fig. 7, part of the difficulty
arises from the fact that the difference between the minimal and
maximal values of excess noise for Lorentzian pulses at zero
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FIG. 7. (Color online) Excess noise for Lorentzian pulses of

width τ0 = 120 ps at 1.2 GHz (f τ0 = 0.144) in the presence of
short-range interactions in the strong coupling regime, observed
at l/ lr integer (red dashed curves) and l/ lr half-integer (red full
curves) as a function of α for various temperatures: (a) Tel = 5 mK,
(b) Tel = 10 mK, (c) Tel = 20 mK, and (d) Tel = 40 mK. For
comparison, we have replotted the zero-temperature results on each
panel as dotted and dotted-dashed black curves.

temperature is not very large and decays with α thus making
the effect very fragile against thermal fluctuations. Since this
is not the case for rectangular pulses,47 a strategy for observing
fractionalization might be to consider a rectangular waveform.

We have thus considered rectangular pulses for which, as
mentioned before, shorter pulses could then be generated by
an AWG. Figure 8 corresponds τ0 = 40 ps pulses at the same
1.2-GHz driving frequency and for the same temperatures
as in Fig. 7. Interactions are assumed to be short range.
As expected, the signal is stronger and more robust to the
onset of the temperature. Even at 20 mK, the position of
the minima for the excess noise exhibits a clear signature
of the fractionalization of each α pulse into two α/2 pulses.
Therefore, although rectangular pulses with integer α are
not purely electronic excitations, they indeed appear as good
candidates to demonstrate fractionalization at the single-pulse
level with today’s technology.

3. Long-range interactions

We now consider the case of long-range interactions
modeled using the discrete element model introduced in
Sec. IV A2. Figure 9 presents the case of Lorentzian pulses
in the presence of long-range interactions with the same
parameters as in Fig. 7. Interaction parameters have been
chosen as described in Appendix D: we have considered the
strong coupling regime θ = π/2 and at low frequencies, have
estimated the charge velocity as v− � 7.8 × 106 ms−1 and
the spin velocity as v+ � 4 × 105 ms−1 which are compatible
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FIG. 8. (Color online) Excess noise for rectangular pulses of
width τ0 = 40 ps at 1.2 GHz (f τ0 = 0.048) in the presence of
short-range interactions in the strong coupling regime, observed
at l/ lr integer (red dashed curves) and l/ lr half-integer (red full
curves) as a function of α for various temperatures: (a) Tel = 5 mK,
(b) Tel = 10 mK, (c) Tel = 20 mK, and (d) Tel = 40 mK. For
comparison, we have replotted the zero-temperature results on each
panel as dotted and dotted-dashed black curves.

with known expected values from time-of-flight79,80 and finite-
frequency admittance16 measurements.

At the lowest temperature [Fig. 9(a)], the excess noise does
not exhibit for a generic length a pronounced minimum at
α = 2 but instead starts decaying with very smooth local
minima slightly above each integer value of α. Therefore,
the signature of fractionalization discussed previously is
absent as expected since dispersion strongly alters the shape
of the pulses. This induces a much slower decay of the
excess noise as a function of α for l = lr/2 than in the case
of short-range interactions. This could be used as a clear
signature of the long-range character of interactions at very low
temperatures. Note that at higher temperature [Fig. 9(d): Tel =
40 mK], only a quantitative comparison between experimental
data and theory would enable discriminating between various
interaction models.

Considering rectangular waveforms does not radically
change the picture: At very low temperature, the difference
between short- and long-range interactions is very clear, this
time even more qualitative since for short-range interactions,
minima of the excess noise in function of α occur for the three
lowest temperatures considered [Figs. 8(a)–8(c)] whereas, in
the case of long-range interactions the excess noise increases
rapidly with α [Figs. 10(a)–10(d)]. This is qualitatively and
quantitatively different from predictions obtained from the
short-range model.
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FIG. 9. (Color online) Excess noise for Lorentzian pulses of
width τ0 = 120 ps at 1.2 GHz (f τ0 = 0.144) in the presence of
long-range interactions in the strong coupling regime, observed
at l/ lr integer (red dashed curves) and l/ lr half-integer (red full
curves) as a function of α for various temperatures: (a) Tel = 5 mK,
(b) Tel = 10 mK, (c) Tel = 20 mK, and (d) Tel = 40 mK. For
comparison, we have replotted the zero-temperature results on each
panel as dotted and dotted-dashed black curves.

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4

S
11

/(
R

T
e2 f

)

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4

S
11

/(
R

T
e2 f

)

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4

S
11

/(
R

T
e2 f

)

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4

S
11

/(
R

T
e2 f

)

(d)

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4

S
11

/(
R

T
e2 f

)

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4

S
11

/(
R

T
e2 f

)

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4

S
11

/(
R

T
e2 f

)

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4

S
11

/(
R

T
e2 f

)

(d)

FIG. 10. (Color online) Excess noise for rectangular pulses of
width τ0 = 40 ps at 1.2 GHz (f τ0 = 0.048) in the presence of long-
range interactions in the strong coupling regime, observed at l/ lr
integer (red dashed curves) and l/ lr half-integer (red full curves)
as a function of α for various temperatures: (a) Tel = 5 mK, (b)
Tel = 10 mK, (c) Tel = 20 mK, and (d) Tel = 40 mK. For comparison,
we have replotted the zero-temperature results on each panel as dotted
and dotted-dashed black curves.
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V. CONCLUSION

In a system of two copropagating edge channels, interac-
tions lead to charge fractionalization. We propose to detect this
phenomenon at the single excitation level by monitoring the
electron/hole pair production of voltage pulses as a function
of their charge. More precisely, electron/hole pair production
presents a minima each time an integer charge pulse is
fractionalized into two pulses of integer charges.

To discuss the observability of this phenomenon in real-
istic experiments, we have studied the excess noise coming
out of a HBT interferometer fed by a periodic train or
Lorentzian or rectangular pulses. Although experimentally
challenging, our study suggests that Lorentzian pulses of short
enough durations could also be used to probe in detail the
physics of fractionalization: beyond the characterization of
electron/hole pair production, current noise measurement in
the Hanbury Brown–Twiss setup can be used to perform at
least a spectroscopy47 and, ultimately, a full tomography46 of
fractional charge collective excitations. We have also shown
that fractionalization of rectangular pulses could be observed
with state-of-the-art microwave waveform generators and
that, for Lorentzian pulses, it might be within reach in the
near future using optical techniques to generate a periodic
train of a few picosecond-wide pulses at high repetition
rates.

We have also shown that fractionalization is very sensitive
to the range of interaction which governs the dispersion
of edge magnetoplasmon eigenmodes: long-range interac-
tions might prevent observing fractionalization. Nevertheless,
the dependence of the excess noise signal in the charge
of the pulses and in the propagation length gives information on
the interaction range. Since our experimental setup could also
be used to perform high-frequency admittance measurements
in the ν = 2 edge channel system,38 it opens the way to
“on chip” consistency checks of the edge magnetoplasmon
scattering approach never realized before.

These results argue for the development of experiments
aimed at studying interaction-induced electron/hole pair gen-
eration in the ν = 2 quantum Hall edge channel system. In
particular, performing such experiments on samples with side-
gated copropagating edge channels as in recent experiments
by Pierre et al.36 as well as on samples without gating might
be a good way to access various interaction ranges.

An important issue of great interest is the influence of
edge smoothness on the electronic transport properties of
the edge channels. Several authors81–83 have predicted the
appearance of several branches of neutral excitations at the
edge of a 2DEG in the integer quantum Hall regime as
well as dissipation for all these gapless edge modes. But,
their existence has not been directly demonstrated so far.
Studying electron/hole pair production along propagation of
voltage pulses and performing high-frequency admittance
measurements could help clarifying this issue and understand
the dynamics of all the gapless modes living at the edge
of the 2DEG in the integer quantum Hall regime. The
bosonization approach of Han and Thouless77 could be a
good starting point for discussing finite-frequency transport
properties of edge channels taking into account their internal
structure.
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APPENDIX A: PHOTON-ASSISTED TRANSITION
AMPLITUDES

Here, we compute the photon-assisted transition amplitudes
in presence of the periodic ac voltage Vac(t) for the Lorentzian
and square pulses.

1. Rectangular pulses

Let us consider square pulses of width τ0 � T , defined for
|t | � T/2 by V (t) = −αh/eτ0 for |t | � τ0/2, V (t) = 0 for
|t | > τ0/2. For a T -periodic train of such pulses, the Floquet
amplitudes Cl(α,f τ0) are given by

Cl(α,f τ0) = (−1)l
sin[π (l + α)(1 − f τ0)]

π (l + α)

+ f τ0
sin[πα − π (l + α)f τ0]

πα − π (l + α)f τ0
. (A1)

In the limit f τ0 → 1, these amplitudes vanish reflecting the
fact that the ac part of the voltage drive vanishes at f τ0 = 1.
These amplitudes are also obtained as Cl = C[2πf (l + α)]
where

C(ω) = 2

ωT

[
πα sinc

(
ωτ0

2
− πα

)
+ sin

(
ωT

2
− πα

)]
,

(A2)

where sinc(x) = sin (x)/x. In the limit f τ0 � 1, the main
contribution to the partition noise arises from the squared
modulus of the first term in the right-hand side of (A2). At zero
temperature, the discrete sum (17) is a regularized expression
for the integral expression for the noise

�S
(out)
1,1 � RT (αe)2f

∫
sinc2

(
ωτ0 − 2πα

2

)
dω

|ω| (A3)

originally considered by Lee and Levitov.70 As expected,
this expression exhibits an IR logarithmic divergence when
α is not an integer, which is a signature of the orthogonality
catastrophe associated with the fractional charge pulses.70 For
a periodic train of pulses,47 this divergence is regularized by the
period but manifests itself as a logarithmic divergence of the
outcoming excess noise �S

(out)
1,1 in the limit f τ0 → 0. When α

is an integer, the logarithmic divergence at ω = 0 is replaced
by a peak. Note that the integrand in (A3) always has a peak
for ωτ0 = 2πα and an |ω|−3 behavior at large |ω|.

2. Lorentzian pulses

The amplitude Cl(α,q) to absorb n photons can be com-
puted as a contour integral (q = e−2πf τ0 ):

Cl(α,q) =
∮

|z|=1
zl+α−1

(
1 − qz

z − q

)α
dz

2πi
. (A4)
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When α is a positive integer, the integrand has a pole of order α

for z = q and when l + α � 0 another pole of order 1 − (l +
α) at z = 0. Since for l < −α the integral can be computed
by closing the contour at infinity, this immediately shows that
Cl(α,q) = 0 for l < −α. In the general situation where α > 0
is not an integer, the integrand presents a branch cut singularity
connecting z = 0 to z = q along the real axis and another one
connecting z = 1/q to z = ∞.

For 0 < α < 1, deforming the unit circle around the appro-
priate branch cut leads to expressions for the photon-assisted
amplitudes in terms of hypergeometric functions. Expanding
these functions in series of q2 and using the complement
formula for the � function leads to new series expansions
of Cl(α,q) in q in which the cancellation of Cl for l + α < 0
and α integer is manifest. For l + α � 0,

Cl(α,q) = α

+∞∑
k=0

�(k + l + α) ql+k

�(l + k + 1)

(−q)k

k! �(1 + α − k)
, (A5)

whereas for l + α � 0,

Cl(α,q) = α

+∞∑
k=0

�(l + k + α) (−q)l+k

�(l + k + 1)

qk

k! �(1 + α − k)
.

(A6)

When α is a positive integer, due to the �(1 + α − k) at the
denominator, the sum over k is truncated to k � α. For the
same reason, terms with k � −1 − l vanish when l � −1.
Consequently, Cl(α,q) is a polynomial in q for l + α � 0 and
Cl(α,q) = 0 for l + α � 0. Note that for noninteger α > 0,
the vanishing of terms with k � α + 1 does not happen: both
expressions are full series in q and therefore do not vanish. In
the case of a high-compacity source f τ0 � 1 or equivalently
q → 0 and, consequently, all Cl(α,q) vanish for l = 0 and
C0(α,q) → 1 as expected since in this limit the ac voltage
vanishes.

APPENDIX B: ELECTRON AND HOLE EXCITATIONS

The operators counting the number of electrons and hole
excitations with respect to the Fermi level are defined by

Ne =
∫ +∞

0
c†(ω) c(ω) dω, (B1)

Nh =
∫ 0

−∞
c(ω) c†(ω) dω. (B2)

Their averages can then be obtained in terms of the single-
electron and single-hole coherences

〈Ne〉 = ivF

2π

∫ G(e)(t,t ′)
t − t ′ + i0+ dt dt ′, (B3)

〈Nh〉 = − ivF

2π

∫ G(h)(t ′,t)
t − t ′ − i0+ dt dt ′. (B4)

In a Hanbury Brown–Twiss experiment, the current noise in the
outcoming arms contains a contribution of the current noises
within each of the two incoming channels denoted here by 1
and 2 and a contribution Q due to two-particle interferences:46

S
(out)
1,1 = R2S

(in)
1,1 + T 2S

(in)
2,2 + RT Q, (B5)

where R and T , respectively, denote the energy-independent
reflexion and transmission probabilities of the QPC used to
partition the incident electron beams. The Hanbury Brown–
Twiss contribution Q can be expressed in terms of the
overlap of single-electron coherences within the two incoming
channels:46

Q = (evF )2
∫ (

G(e)
1 G(h)

2 + G(h)
1 G(e)

2

)
(t,t ′) dt dt ′. (B6)

Using the electron and hole coherences of the Fermi sea at zero
temperature for G(e/h)

2 (t,t ′) shows that Q = e2 (〈Ne〉 + 〈Nh〉),
thus showing that low-frequency noise measurements lead to
the measurement of the total number of excitations at zero
temperature.

In the case of a voltage pulse, the single-electron coherence
is given by (3) and in a similar way

G(h)
1 (t ′,t) = i

2πvF

ei[φV (t)−φV (t ′)]

t − t ′ − i0+ , (B7)

where φV (t) = e
h̄

∫ t

0 V (τ ) dτ . Substituting (3) and (B7)
into (B6) leads to the following expression for the total number
of excitations:

〈Ne + Nh〉 =
∫

κ(t − t ′)ei[φV (t)−φV (t ′)] dt dt ′, (B8)

where the kernel κ(t − t ′) is given by

κ(τ ) = 1

(2π )2

(
1

(τ + i0+)2
+ 1

(τ − i0+)2

)
. (B9)

Minimizing this quantity is precisely the problem solved by
Levitov, Lee, and Lesovik.28

In the case of a T -periodic source, this discussion must be
adapted by considering a time average over a single period.
Since experiments are performed at nonzero temperature, the
HBT contribution to the noise is altered by the antibunching
of electron and hole excitations emitted by the source and
the thermal electron and hole excitations emitted from the
second incoming channel. Here, we are interested by the excess
contribution due to the ac part Vac(t) of the drive voltage.
Denoting the chemical potential of the second incoming
channel by μ2 and its electronic temperature by Tel, the
excess HBT contribution is given in terms of the excess
single-electron coherence generated by the ac drive:

�Q = e2
∫ +∞

−∞
tanh

(
h̄ω − μ2

2kBTel

)
vF

2π
�G(e)

1,0(ω) dω. (B10)

When μ2 = μ1 (here conveniently set to zero), Eq. (16) can
then be expressed in terms of the excess spectral density of
electron and hole excitations �N̄e(ω) and �N̄h(ω) emitted
per period by the source at energy h̄ω > 0:

�Q
e2f

=
∫ +∞

0
tanh

(
h̄ω

2kBTel

)
�(N̄e + N̄h)(ω) dω (B11)

since these excess electron and hole per period spectral
densities are related to the single-electron coherence by46

�N̄e(ω) = vF

2πf
�G(e)

1,0(ω), (B12)

�N̄h(ω) = − vF

2πf
�G(e)

1,0(−ω). (B13)
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APPENDIX C: FINITE TEMPERATURES
AND INTERACTIONS

At nonzero temperature Tel, an Ohmic contact emits an
equilibrium state which can equivalently be described both
in terms of electrons and in terms of edge magnetoplasmon
excitations. In the latter description, this state is the thermal
state at temperature Tel of the bosonic excitations above the
Fermi vacuum |Fμ+αhf 〉 which is a vacuum state for the edge
magnetoplasmon modes.

This thermal state can also be understood as a Gaus-
sian statistical mixture of edge magnetoplasmon coherent
states |[δ�(ω)]〉. This Gaussian distribution is centered
around the vacuum �(ω) = 0 for all ω > 0. Its fluctuations
δ�(ω)δ�∗(ω′) are then equal to the thermal average of the
edge magnetoplasmon number 〈b†(ω)b(ω′)〉 in the thermal
equilibrium state at temperature Tel:

δ�(ω)δ�∗(ω′)Tel
= δ(ω − ω′)n̄(ω,Tel), (C1)

where n̄(ω,Tel) denotes the Bose-Einstein occupation number
1/(eh̄ω/kBTel − 1).

As in quantum optics, applying a time-dependent drive
voltage to the Ohmic contact corresponds to applying a
displacement operator to this thermal state. The resulting
displaced thermal state can then be described as a Gaussian
statistical mixture of edge magnetoplasmon coherent states
around �V given by Eq. (20) and with fluctuations given
by (C1).

To understand the action of the interaction region onto two
such displaced thermal states, let us first consider two incoming
coherent states from the statistical ensembles defining the
two displaced thermal states. They are characterized by their
infinite-dimensional complex parameters �(in)

a with a = 1 or 2.
The outcoming states are then a tensor product of two coherent
states characterized by(

�
(out)
1

�
(out)
2

)
= S ·

(
�

(in)
1

�
(in)
2

)
(C2)

Decomposing the incoming coherent state parameters into
their averages and their Gaussian fluctuations �(in)

a = �a +
δ�a (a = 1,2) shows that, for each outcoming channel, we
have a Gaussian statistical mixture of coherent states. The cor-
responding Gaussian distribution of the complex parameters is
centered around the classical outcoming parameters obtained
by applying the edge magnetoplasmon scattering matrix onto
the vector of incoming parameters (�a)a=1,2: this is nothing but
the scattering for wave amplitudes by a frequency-dependent
beam splitter in optics. The outcoming fluctuations in each
channel are Gaussian but nevertheless do not correspond to any
thermal equilibrium as noticed by Kovrizhin and Chalker.84

The outcoming fluctuations are given by

〈b†a(ω)ba′(ω′)〉(out)
c = δa,a′δ(ω − ω′) n̄out(ω), (C3)

n̄out(ω) =
∑

b

|Sa,b(ω)|2 n̄(ω,Tb), (C4)

where the c subscript stands for “connected” and Tb denotes the
temperature of the incoming channel b. When all the incoming
channels have the same temperature Tel, a thermal distribution

is recovered due to the unitarity of the edge magnetoplasmon
scattering matrix

∑
b |Sa,b(ω)|2 = 1.

APPENDIX D: MAGNETOPLASMON SCATTERING
FOR LONG-RANGE INTERACTIONS

Let us denote by Qj (t) the charge stored within the
interacting region of edge channel j . These charges are
determined from the electrostatic potential Uj (t) seen by
electrons propagating in edge channel j within the interacting
region through a capacitance matrix(

Q1(t)
Q2(t)

)
=

(
C1 −C

−C C2

)
·
(

U1(t)

U2(t)

)
. (D1)

Assuming both edge channels have the same Fermi velocity
vF , the dynamics of channel j is determined by the equation
of motion

(∂t + vF ∂x)φj (x,t) = e
√

π

h
f (x)Uj (t), (D2)

where f (x) = 1 for 0 � x � l and zero otherwise. The strat-
egy is then to go to the frequency domain and rewrite Eqs. (D1)
and (D2) in terms of the incoming and outcoming bosonic
field amplitudes and to eliminate the potentials Uj (ω). More
precisely, in order to rewrite (D1) in terms of the incoming
and outcoming bosonic fields, one has to use the relation
between the electronic density within each edge channel and
the corresponding bosonic field: : ψ

†
j ψj (x) := (∂xφj )(x)/

√
π .

Because (D1) involves the capacitance matrix, eliminating the
potentials Uj (ω) is most conveniently performed after diag-
onalizing C with a rotation Rθ = cos(θ/2)1 − i sin(θ/2)σy .
This finally leads to the scattering matrix

S(ω,l) = R−1
θ

(
T+(ω,l) 0

0 T−(ω,l)

)
Rθ, (D3)

where the angle θ is given by (�C = C1 − C2)

exp(iθ ) = �C/2 + i C√
C2 + �C2

4

(D4)

and the phases T±(ω,l) have a nonlinear (dispersive) ω

dependence given by

T±(ω,l) = eiωl/vF
iωRKC± + 1 − e−iωl/vF

iωRKC± − 1 + eiωl/vF
, (D5)

where RK = h/e2 denotes the quantum of resistance and the
eigenvalues of the capacitance matrix are

C± = C1 + C2

2
±

√
C2 + �C2

4
. (D6)

The exponential eiωl/vF in the right-hand side of (D5) repre-
sents the effect of free propagation and the other part contains
the effect of the capacitances. Note that the free propaga-
tion limit is obtained for infinite capacitances C±. At low
frequencies, the plasmon eigenmodes become dispersionless:
T±(ω,l) � eiωl/v± where the velocities v± are given by

v± = vF + l

RKC±
. (D7)
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Capacitances being proportional to l, the velocities v± are
independent from l: v± = vF + (RK∂lC±)−1. Therefore, in
the infrared regime, the plasmon scattering matrix is of the
form (21). An explicit check shows that the admittance matrix
satisfies charge conservation and gauge invariance if and only
if the capacitance matrix satisfies the same condition. In such
a case, each edge channel is totally screened by the other one
within the interaction region.

It is interesting to evaluate the order of magnitudes of the
various capacitances. We consider each edge channel as a
quasi-1D conductor of length l very large compared to its
transverse dimensions w as well as to the distance d between
the two conductors. Then, the capacitances are of the form

Ci,j = εrε0

l
Fi,j (w,d), (D8)

where εr denotes the relative permittivity of the material and
Fi,j (w,d) is a dimensionless function of w and d that depends
on the geometry. The dimensionless ratios of the RC times to
the time of flight l/vF are then given by

vF RKCi,j

l
= εr

4παqed

vF

c
Fi,j (w,d), (D9)

where αqed denotes the fine-structure constant. Using vF �
3 × 105 ms−1 and εr � 10 for AsGa, one gets a numerical
prefactor vF εr/4πcαqed � 0.4.

Let us now consider the case where C1 = C2 so that
θ = π/2. The model then only depends on the diagonal

capacitances Cd and the mutual capacitance between the two
channels C. If we furthermore assume that perfect screening is
closed to be achieved, Cd and C are close together. Introducing
C± = Cd ± C, we see that C− � C+ and therefore the two
velocities (D7) satisfy v+ � v−. Note that here v− is the
velocity of the symmetric (charge) mode whereas v+ is
the velocity of the antisymmetric (dipolar) mode which,
as in the case of short-range interactions, is the slowest
one. For example, using (D9) and F11 = F22 = 1, we find
vF RKC+/l � 0.8 leading to v+/vF � 1.25. Consequently,
the slowest velocity is of the order of v+ � 4 × 105 ms−1.
Assuming Cd − C � 0.05 × (Cd + C), we have v−/vF � 26
thus leading to v− � 7.8 × 106 ms−1, a value of the same
order of magnitude than the experimentally measured edge
magnetoplasmon velocities in ungated samples at filling
fraction ν = 2.80

The numerical computations in Sec. IV B are performed
using the following expression for the scattering phase in terms
of the dimensionless parameter x = ωl/vF :

T±(ω,l) = eix − 1 + iα±x eix

eix − 1 + iα±x
, (D10)

where α± = RKC±vF /l = vF RK∂lC±. Note that this expres-
sion is clearly not periodic in x → x + 1, whereas it is equal
to one whenever x is an integer. Under the hypothesis C1 = C2

and very good screening, α− � α+. Using the above numerical
estimations, α+ � 0.8 and α− � 0.04.
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12G. Fève, A. Mahé, J. Berroir, T. Kontos, B. Plaçais, D. C. Glattli,
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