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We study the injection n of electrons in a quantum conductor using voltage pulses applied on a contact. We
particularly consider the case of Lorentzian voltage pulses. When carrying integer charge, they are known to
provide electronic states with a minimal number of excitations, while any other type of pulses are accompanied
with a neutral cloud of electron and hole excitations. We focus on the low-frequency shot noise arising when
the excitations are partitioned by a single scatterer. Using periodic pulses, the physics can be discussed in the
framework of the photon-assisted shot noise. Pulses of arbitrary shape and arbitrary charge are shown to give
a marked minimum in the noise when the charge is an integer. The energy-domain characterization of the
charge pulse excitations is also given using the shot-noise spectroscopy which reveals the asymmetrical energy
spectrum of Lorentzian pulses. Finally, time-domain information is obtained from Hong-Ou-Mandel–type noise
correlations when two trains of pulses generated on opposite contacts collide on the scatterer. For integer
Lorentzian, the noise versus the time delay between pulse trains is shown to give a measure of the electron
wave-packet autocorrelation function. In order to make contact with recent experiments, all the calculations are
made at zero and finite temperatures.
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This paper addresses the on-demand injection of a small
finite number of electrons in a quantum conductor for applica-
tions in quantum information or in the study of the electron full
counting statistics. We consider the n-electron source based
on the application of periodic voltage pulses on the contact
of a conductor.1,2 The purity of the source, the spectroscopy,
and the time extension of electron pulses are analyzed by
calculating the shot noise resulting from electron scattering in
the framework of the photon-assisted shot-noise theory.

Controlling few degrees of freedom makes quantum effects
more accessible and opens the way to perform simple
quantum information processing. During the last 30 years,
most advances have been obtained in quantum optics with
the manipulation of single photons emitted by atoms or
semiconductor quantum dots, and in atomic physics with
optical arrays of trapped cold atoms or ions. The successful
manipulation of quantum states in condensed matter is more
recent and has been done with superconducting circuits
and semiconductor quantum dots. A different approach in
condensed matter is the time-controlled injection of one to
few undistinguishable electrons in a ballistic conductor. This
opens the possibility to entangle several quasiparticles but
also to probe the full counting statistics3 (FCS) with a finite
number of electrons4 or to realize electron flying qubits.5–7

For these applications, the source must be clean, i.e., not
creating more excitations than the number of charges injected.
Here, we follow the proposal by Levitov et al. in Refs. 1
and 2 where voltage pulses V (t) are applied to a contact.
For a quantized action e

∫ ∞
−∞ V (t)dt = nh, n integer, and h

the Planck constant, n charges are injected. As the current Ĩ (t)
emitted by the contact toward the conductor is at all times equal
to Ĩ (t) = e2

h
V (t), this is equivalent to write

∫ ∞
−∞ Ĩ (t)dt = ne

[note that the current I (t) flowing through the conductor differs

from Ĩ (t)dt by a transmission factor]. On the experimental
level, the approach is appealing as it does not require the
implementation of a quantum dot nor the combination of tunnel
barriers or of several quantum point contacts. For quantum
bit applications, this improves the reliability as the delicate
circuitry simplifies and reduces only to that necessary for
quantum logic gate implementation. On the conceptual level,
this apparently naive approach involves a nontrivial physics.
In general, the injection of the n charges is accompanied
by a neutral cloud of electrons and holes. The beautiful
theoretical observation of Ref. 1 is that a Lorentzian voltage
pulse carrying one electron provides a minimal excitation state
free of neutral excitations. More generally, a superposition of
n Lorentzian voltage pulses of arbitrary width and position
in time but all carrying a unit charge of same sign remains
a minimal excitation state.1,2 These results have triggered
several relevant theoretical contributions4,8–12 in which the
property and potential use of the Lorentzian voltage pulses
are discussed. An experimental implementation has been
demonstrated.13 This paper aims at presenting a theoretical
toolbox to characterize these clean excitations and therefore to
interpret recent and forthcoming experiments performed with
Lorentzian voltage pulses.

I. BACKGROUND AND OVERVIEW

Here, we briefly review the past approaches of time-
controlled charge injection in a conductor. Then, we will
present a summary of physics discussed and of the results
presented in this paper.

Up to now, the present approaches and realizations
have considered only single-charge injection. Single-electron
pumps based on the Coulomb blockade of tunneling have been
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first realized using ordinary metallic systems.14,15 They have
potential application in quantum metrology but are not suitable
for our purpose. First, the conductor is usually not ballistic.
This prevents the use of electrons for flying qubits. Second, the
electrons are sequentially injected. The lack of quantum co-
herence between electron tunneling events makes the injection
of trains of few undistinguishable electrons impossible while
this property is necessary for FCS studies. Another approach
is based on itinerant quantum dots obtained using surface
acoustic waves.16 The transport of single to two electrons along
a depleted electron channel17,18 has been demonstrated. This
approach may also have application in metrology. Because of
the long coherence time of the spin, the injected electrons can
be used for spin-based qubit operation and to carry the spin
quantum information between distant dots.17,18 However, the
orbital part of the wave function is not enough well control for
an application as flying qubits in a ballistic channel. Finally,
we consider the on-demand injection single-electron source
realized with a quantum dot whose last occupied energy level is
suddenly risen above the Fermi energy of the leads. It has been
realized using a quantum mesoscopic capacitor19 operated in
the nonlinear regime.20 The source is energy resolved, exactly
as frequency-resolved single-photon sources. It enables new
types of quantum experiments where single electrons are
injected at tunable energy above the Fermi energy. Time-
controlled single-charge sources using this approach have
been reported in Refs. 17, 18, 20, 21, and 67 and considered
theoretically in Refs. 8 and 22–28. This single-electron
source can not generate a coherent train of undistinguishable
electrons. Injecting more than one electron requires a different
approach such as the one proposed by Refs. 1 and 2 and
discussed here. This source based on voltage pulses fulfills the
condition for application in flying qubits and in full counting
statistics.

Therefore, this paper explores the properties of the on-
demand injection of few indistinguishable electrons using
periodic voltage pulses at frequency ν applied on a contact with
a range of parameters relevant to experiments.13 The conductor
considered is a two-terminal ballistic one-dimensional conduc-
tor. In the middle of it is a localized scatterer characterized
by a tunable transmission, for example, a quantum point
contact (QPC). We assume that the transmission is energy
independent. In quantum optics language, the scatterer can
thus be viewed as an electron beam splitter. The transmission
is assumed energy independent. As remarked in the pioneering
works or Refs. 1, 2, and 45, the few-electron source can
be analyzed using the low-frequency shot noise expected
when the injected electrons pass through a beam splitter.
Indeed, all excitations are partitioned irrespective to their
charge, and the shot noise SI counts the sum of electron
Ne and hole Nh excitations while the dc current counts
their difference n = Ne − Nh. As the source is periodic, a
natural framework is provided by the photon-assisted shot
noise (PASN) theory,29–33 and the Floquet scattering theory34

can be used to efficiently compute physical quantities. The
PASN has been experimentally investigated in Refs. 35 and 36.
In this paper, we will consider the difference between the
noise SI ∝ (Ne + Nh) measured with the voltage pulse V (t) =
Vdc + Vac(t) minus the transport shot noise Str.

I ∝ n with only
Vdc = 〈V (t)〉 applied on the conductor.37–44 The resulting

excess noise �SI is proportional to the excess particle number
�Neh = Ne + Nh − n. The noise minimization (�Neh = 0) at
given current I = eν(Ne − Nh) = neν leads to Nh = Ne = 0.
We will see that this minimization implies that the voltage
pulse must be a sum of Lorentzian with quantized charge. It is
important to understand that the shot noise is a tool to analyze
the excitation content of the source and requires a transmission
D < 1. As shown in the following, it is proportional to
the binomial partitioning factor D(1 − D) where D is the
transmission. A perfect wire D = 1 gives no noise even for
finite excitation content. The definition of �Neh provides the
number of excitations and does not depend on transmission.

In this paper, we will concentrate on the calculation of
the excess shot noise for different examples of pulse shape.
Lorentzian shape pulses with n charges per period correspond
to exactly n excitations.1,2 Pulses of arbitrary shape are shown
to contain more excitations10 whose number is calculated for
sine, square, and rectangular wave shapes. We also address
the case of noninteger charge pulses which was shown in
Refs. 1 and 45 to be the dynamical analog of the Anderson
orthogonality catastrophe problem.46 The Anderson physics
manifests in a marked minimum of neutral excitations for
integer charge per period as theoretically observed in Ref. 10.
These results are known and revisited here in the framework
of PASN. The last parts of the paper contain results providing
an analysis of the excitations in the energy and time domains.
We consider, respectively, the shot-noise spectroscopy and the
Hong-Ou-Mandel shot-noise correlations for colliding trains
of electron pulses on a beam splitter.

The paper is organized as follows. In Sec. II, we introduce
the basic physics of the photon-assisted effects in a quantum
conductor with a contact driven by a periodic voltage source in
the Floquet scattering approach. We then consider the PASN
and the competition between PASN and the transport shot noise
(TSN) when both a dc bias and an ac voltage are applied. We
also give the expression of the photon-assisted current.

In Sec. III, we address the comparison between several
types of integer charge pulses: the square, the sine, the rectan-
gular, and the Lorentzian. Using the PASN results of Sec. I, we
calculate the number of electron-hole pair excitations via the
excess noise. For comparison with experiments, the computa-
tion is done for both zero and finite temperatures. The hierarchy
of charge pulses regarding noise production is compared with
the hierarchy based on photocurrent production.

Section IV addresses the case of noninteger charge pulses.
We show that for all type of pulses, the number of electron-hole
pairs rises for noninteger charges, but is always minimal for
integer charges.

Section V provides an energy-domain characterization of
the charge pulses using shot-noise spectroscopy. We compute
the PASN as a function of an arbitrary dc voltage bias
which provides a direct measure of the photoabsorption
probabilities.10,29,35,36,47 In particular, the Lorentzian pulses
show an asymmetric PASN versus dc bias characteristic of the
absence of hole-type excitations, while sine and square waves
lead to symmetric PASN.

Finally, Sec. VI gives a time-domain characterization of
the pulses by looking at the shot noise generated by trains
of electrons colliding on the scatterer, in close analogy with
optical Hong-Ou-Mandel (HOM) experiments.60
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FIG. 1. (Color online) Under the effect of an ac voltage, electrons
emitted far inside the contact acquire a time-dependent phase on their
way to the scattering region (the quantum conductor). For periodic
voltage, frequency ν, the incoming electrons can be described by a
quantum superposition of states at different energies ε + lhν.

II. FLOQUET SCATTERING DESCRIPTION OF PERIODIC
VOLTAGE PULSES APPLIED ON A CONTACT

We consider a quantum conductor with one contact, say the
left (L), periodically driven by a voltage Vac(t) of frequency
ν = 1/T (see Fig. 1). Here, without loss of generality, we
choose the approach of Refs. 30 and 48 where the periodic
potential is assumed to be screened in all other regions of
the quantum conductor. The voltage drop is assumed sharper
than the electron wave-packet extension but smooth on the
Fermi wavelength. The quantum conductor has a small width
compared to that of the leads and a small length L compared
with the electron phase coherence length lϕ such that electrons
can propagate coherently over a length lϕ � L on the leads.
Here, lϕ has to be estimated for the highest relevant energy
of the problem, i.e., Max(eVdc,lMaxhν), where lMaxhν is the
largest relevant energy entering in a photon-assisted process.
The region where electron loose coherence is called the
reservoir or contact, following the standard description of
the scattering theory of quantum transport. We assume that
the electron transit time through the scattering region is short
compared with the pulse width (and thus to the pulse period)
such that energy-dependent phase terms can be neglected.33

We consider an electron emitted by the left reservoir at
energy ε in a state ∼ exp[ik(ε)x] exp(−iεt/h̄) with occupation
probability fL(ε) = 1/[exp(ε/kBTe) + 1] where Te is the
electronic temperature and the Fermi energy is the zero-energy
reference. From the left reservoir to the left entrance of the
conductor, the electron experiences the potential Vac(t) and
its amplitude probability acquires an extra term exp [−iφ(t)].
The time-dependent phase is given by

φ(t) = 2π
e

h

∫ t

−∞
Vac(t ′)dt ′. (1)

The Fourier transform of

exp[−iφ(t)] =
+∞∑

l=−∞
pl exp(−i2πlνt) (2)

gives the probability amplitude pl for an electron to absorb
(l > 0) or emit (l < 0) l photons. Equation (2) expresses
that an electron emitted at energy ε enters the conductor
in a superposition of quantum states at different energies
ε + lhν. The knowledge of the pl completely defines the
states of the incoming electrons. The magnitude of the pl

depends on the reduced quantity α = eVac/hν where Vac is
the characteristic amplitude of the ac voltage. Combined with
the scattering properties of the conductor, all photon-assisted
effects resulting from the absorption or emission of energy
quanta hν such as the ac current, the photocurrent or the
photon-assisted shot noise can be calculated.

The properties of the pl are best expressed in the framework
of the Floquet scattering theory34 in which the continuous
energy variable describing states in the reservoir is sliced
into energy windows of width hν, i.e., ε → ε + l′hν with
ε now restricted to [−hν,0]. We can view the photon-assisted
processes as the coherent scattering of electrons between the
different energy windows. The scattering matrix S(ε) = {Sll′ }
relates the set of annihilation operators â0

L(ε) = {̂a0
L(ε + l′hν)}

operating on the states far inside the left contact to the
set of annihilation operators âL(ε) = {̂aL(ε + lhν)} acting on
electronic states at the input of the conductor:

âL(ε) = S(ε) × â0
L(ε) (3)

with {Sl′l} = pl−l′ . To satisfy the unitarity relations S†S =
SS† = I, the amplitude probabilities show the useful relations

+∞∑
l=−∞

p∗
l pl+k = δk,0. (4)

In particular, the sum of the probabilities Pl = |pl|2 to
absorb or emit photons or to do nothing is equal to unity.
As shown in Sec. IV, the probabilities Pl can be inferred from
shot-noise spectroscopy, when in addition to the ac voltage
a tunable dc voltage is applied between the contacts of the
conductor. Note that the set of Pl does not contain all the
information on the system. Indeed, the products p∗

l pl+k , k �= 0,
i.e., the nondiagonal part of the matrix density, enters in the
calculation of the coherence47 as discussed in Ref. 49.

A. Photon-assisted shot noise

In the following, we compute the photon-assisted shot
noise which occurs when the conductor elastically scatters
the electrons. For simplicity, we will consider a single-mode
(or one-dimensional) quantum conductor with transmission
probability D as shown in Fig. 2.

Noise occurs only when an electron incoming from the
left finds no incoming electron from the right or if a hole
incoming from the left finds an incoming electron from the
right. Indeed, because of the Pauli principle, or fermionic
antibunching, the case where two electrons or two holes
are simultaneously incoming gives no noise. In the former
case, the incoming charges are randomly partitioned by the
conductor with binomial statistics. At zero temperature and
for zero ac voltage, the noise is zero. In the presence of an ac
voltage, electron and hole excitations are created in the left
lead. The photocreated electrons span energies above the
right-lead Fermi sea and the photocreated holes below the
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FIG. 2. (Color online) Electrons emitted by the left reservoir
and pumped by the ac voltage in a superposition of states of
different energy are scattered. The random partitioning between
reflected and transmitted scattering states leads to current noise.
The noise measures the sum of the number of holes and electrons
which are photocreated. On the right is represented the energy
distribution function f̃ (ε). It should not be confused with an
incoherent distribution function as the nondiagonal terms of the
density matrix are nonzero.

right-lead Fermi sea. All the excitations contribute to partition
noise, which is called the photon-assisted shot noise (PASN).
According to Refs. 29 and 30, the low-frequency current
noise spectral density due to photon-assisted process SPASN

I

is, including the Fermi distributions fL,R(ε) of the left and
right reservoirs,

SPASN
I = S0

I

∫
dε

hν

+∞∑
l=−∞

Pl{fL(ε − lhν)[1 − fR(ε)]

+ [1 − fL(ε − lhν)]fR(ε)}, (5)

where S0
I = 2 e2

h
D(1 − D)hν is the typical scale of the PASN.

The complete noise expression is obtained by adding the
thermal noise of the reservoirs: 4kBTeD

2 e2

h
. Its origin is the

thermal fluctuation of the population in the reservoir and is
not related to partitioning nor to photon-assisted processes.
In absence of ac voltage, Pl = δl,0, the full noise reduces to
thermal noise 4kBTeD

e2

h
and vanishes at zero temperature, as

discussed above.
In order to best extract the physics, we first consider the

zero-temperature limit

SPASN
I = S0

I

+∞∑
l=−∞

|l|Pl. (6)

The sum in the right-hand side is directly proportional to the
number of electrons and holes created, respectively, above and
below the Fermi energy (chosen as the zero of energy). To
understand this, let us consider for simplicity that only P0

and P±1 are important and first concentrate on the absorption
process. Electrons below the Fermi surface at energy ε − khν,
k positive integer, can be promoted to energy ε − (k − 1)hν

with probability P1. This global upward shift of the Fermi
sea leaves the electron population unchanged below EF but
fills the empty states of energies ε ∈ [0,hν] with occupation
probability P1, above EF . Similarly, in the emission process,
electrons are displaced to energies ε − (k + 1)hν with prob-
ability P−1. The downward shift of the Fermi sea gives no
net change of the population of states with energy <−hν,
while for the energy range [−hν,0] the population is now
1 − P−1. More generally, the l-photon processes give electron

excitations above the Fermi sea with population Pl in the
energy range [0,lhν], l > 0, and hole excitations below the
Fermi sea in the energy range [−lhν,0] (see Fig. 2). As
the current of electrons emitted by the left contact and able
to create a l-photon electron excitation is (e/h)lhν = leν,36

the number of corresponding electrons created per period is
lPl . The total number of electron excitations generated per
period is thus

Ne =
+∞∑
l=1

lPl (7)

and similarly the number of holes

Nh =
−1∑

l=−∞
(−l)Pl (8)

and, from Eq. (6), the PASN is

SPASN
I = S0

I (Ne + Nh). (9)

To conclude this section, we must emphasize that the energy
distribution function f̃L(ε) = ∑+∞

l=−∞ PlfL(ε − lhν) depicted
in Fig. 2 does not arise from a stationary state characterized
by an incoherent nonequilibrium distribution. If this were
the case, even for a perfect lead (D = 1), one would expect
a current noise associated with the population fluctuation
∝ ∫

dεf̃L(ε)[1 − f̃L(ε)] as for thermal noise. In the present
case, the terms p∗

l pl+k contributing to the nondiagonal part of
the density matrix should not be forgotten. For example, they
are important for the multiparticle correlations considered by
Moskalets et al.50 or for the concept of electron coherence
defined in analogy with quantum optics by Grenier et al.47,49

These interference terms contribute to make the low-frequency
photon-assisted shot noise strikingly vanishing at unit
transmission. This was experimentally shown by Reydellet
et al.36 In this work, the theory of quantum partition noise
of photon-created electron-hole pairs [Eqs. (6)–(9)] was
experimentally checked from weak to large ac excitation and
by varying the transmission. Motivated by this experiment,
Rychkov et al.31 have theoretically shown that the electron
and hole excitations contributing to noise in Eq. (9) are
not statistically independent. Equation (9) was derived by
Lee et al.,51 Levitov et al.,1 and later by Keeling et al.2 In
the different context of periodic injection of energy-resolved
single electron and single hole from a quantum dot, a similar
equation has been derived and experimentally tested by
Bocquillon et al.21 for the partitioning of single charges, but
Ne and Nh are not given by Eqs. (7) and (8) but originate from a
different mechanism. Finally, as discussed in the following, it is
important to note that Eq. (9) measures the number of electron
and hole excitations accurately only at zero temperature.

B. Photon-assisted and transport shot noise

We consider now a dc voltage bias Vdc > 0 added to
the periodic ac voltage Vac(t) on the left contact while the
right-lead Fermi energy remains zero. Let q = eVdc/hν be
the number of electrons emitted per period due to the dc
bias. The total number of left electrons participating to noise
is q + ∑+∞

l=1 lPl = q + Ne. The number of holes generating
partition noise is, however, reduced by the positive shift of the
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left Fermi energy. For (n − 1)hν < q < nhν the number of
holes participating to noise reduces to

∑−n
l=−∞(−l − q)Pl <

Nh. The shot-noise expression (9) is then changed by replacing
the |lhν| terms by |lhν + eVdc| as originally derived by
Lesovik et al. and later by Pedersen et al.29,30 This result
has been extended to the full counting statistics of electron
transfer for PASN with dc bias by Vanevic et al.32 In absence
of ac voltage, one recovers the transport shot noise STSN

I =
2 e2

h
D(1 − D)|eVdc|.
The mixed situation with both Vac and Vdc leads to

interesting effects due to the competition between PASN and
TSN. They are best displayed using the excess noise where the
pure TSN is subtracted from the total noise:

�SI = 2
e2

h
D(1 − D)

[ +∞∑
l=−∞

Pl|lhν + eVdc| − |eVdc|
]
. (10)

This would correspond to an experimental situation where the
noise measured with Vac on is subtracted from the dc transport
shot noise measured with Vac off while keeping the dc voltage
on.10,13

Finally, we can write reduced units for the excess shot
noise �SI = S0

I �Neh. Using the dc voltage in reduced unit
q = eVdc/hν, this gives

�Neh =
+∞∑

l=−∞
|l + q|Pl − |q|, (11)

which represents at zero temperature the total number �Neh

of photon-created electrons and holes not contributing to the
TSN.

The derivative of the excess shot noise �SI (or of �Neh)
with respect to q shows remarkable singularities each time
q = eVdc/hν is an integer n. At the singularity, the change of
slope of the variation of �SI with positive (negative) Vdc is
proportional to 2P−n(2Pn) for n �= 0 and (2P0 − 1) for n = 0.
Varying Vdc thus provides direct information on the Pl . Their
direct measure is provided by the second derivative of the
noise:35,52,53

∂2�Ne-h/∂q2 = (2P0 − 1)δq,0 +
∑
l �=0

2Plδq,−l . (12)

Applying a monochromatic sine wave to a contact, the noise
singularities at dc voltage multiple of the frequency has
been observed in a diffusive metallic wire by Schoelkopf
et al.35 via the second derivative of the noise, giving the Pl

spectroscopy. Later, the controlled suppression by a dc voltage
bias of hole or electron excitation contribution to PASN has
been discussed and observed in a quantum point contact by
Reydellet et al.36 The extracted set of Pl quantitatively agrees
with the Bessel functions expected for the monochromatic
sine wave used in the experiments35,36 and considered in the
first derivation of PASN,29,30 as well in Ref. 32. Inferring
the energy distribution of photon-excited electrons from
shot-noise spectroscopy has been discussed in Ref. 52 and
was compared to tunnel spectroscopy by Shytov.53 In the
different context of the energy-resolved single-electron and
hole source using a mesoscopic capacitor, a similar shot-noise
spectroscopy was proposed by Moskalets and Büttiker.8 In
this same context, the concept of shot-noise spectroscopy and

Eq. (12) has been extended to propose a full tomography
of the electron and hole quantum states by Grenier et al.47

The shot-noise spectroscopy is used in Sec. IV to analyze the
excitation content of periodic charge voltage pulses.

Finally, directly relevant to the topics of charge injection,
the singularity at eVdc = nhν (q = n) corresponds exactly to
the condition required for injecting n electrons per period.
This is why the presentation of periodic charge injection using
voltage pulses is particularly relevant and enlightening in the
framework of PASN. This singularity is also a useful tool
to characterize the carrier charge in interacting systems. The
superconducting-normal junction where conjugated electron-
hole Andre’ev pairs carry twice the electron charge has been
studied by Torres et al.54 The finite-frequency PASN noise of
charge e and charge e/3 partitioned by a QPC was studied,
respectively, in the integer and the fractional quantum Hall
regime at 1

3 Landau level filling factor by Crépieux et al.55 and
later by Chevallier et al.56

For comparison with realistic experimental situation, we
provide the excess noise formula at finite electron temper-
ature Te. We start from the expression of PASN derived
at finite temperature by Lesovik and Levitov and by Ped-
ersen and Büttiker29,30 and rewrite it in reduced units to
define the finite-temperature excess noise �SI (Vac,Vdc,T e) =
S0

I �Neh(α,q,θe) where

�Neh(α,q,θe) =
+∞∑

l=−∞
(l + q) coth

(
l + q

2θe

)
Pl(α)

− q coth

(
q

2θe

)
(13)

and θe = kBTe/hν is the temperature in frequency units. At
finite temperature, �Neh(α,0,θe) no longer represents a direct
measure of Ne + Nh as the excitations created in the energy
range kBTe around the Fermi energy interfere with thermal
excitations. This reduces the shot noise, which therefore misses
these excitations.57

C. Photon-assisted current

Finally, we consider another photon-assisted effect, the
photocurrent, which also depends on the probabilities Pl . We
consider a weakly energy-dependent transmission probability
D(ε)  D + ε∂D/∂ε and neglect the energy dependence of
the transmission amplitude phase for simplicity. This situation
is known to give a rectification effect characterized by a
quadratic term in the low-frequency I-V characteristic of the
conductor. In terms of photon-assisted effect, this leads to a dc
photocurrent whose expression is

Iph = e2

h
(hν)2∂D/∂ε

+∞∑
l=−∞

l2Pl. (14)

One can see that Iph gives information on the Pl and can
discriminate between different types of ac signal. However,
as shown in the next sections, it is not as useful as shot
noise as it can not distinguish between electron and hole
excitations and in particular can not identifies the min-
imal excitation Lorentzian pulses. Indeed,

∑+∞
l=−∞ l2Pl =

1
T

∫ T

0 |dϕ(t)/dt |2 = (e/h̄)2〈Vac(t)2〉 and Iph gives the same
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information than a classical time averaging of V (t)2. As the ac
amplitude of the pulses Vac is proportional to the average value
Vdc = qhν/e, the photon-assisted current varies as the square
of the injected charge as shown in Fig. 4. This quantity is
also proportional to the production rate of heat in the contacts
I (t)V (t) ∝ V (t)2.

III. INTEGER PERIODIC CHARGE INJECTION

In this section, we give the expression of the probabilities Pl

associated with various types of pulses carrying q = n charges
per period: the sine, the square, and the Lorentzian. From the
shot noise we establish the hierarchy of the pulses in terms
of number of e-h excitations �Neh. We also calculate the
photocurrent and conclude that shot noise is the right quantity
able to characterize the purity of the charge pulses. We consider
a periodic excitation carrying a charge q = ne per period T =
1/ν. This occurs if 1/T

∫ t+T

t
V (t ′)dt ′ = nhν. It is convenient

to decompose the voltage into its mean value Vdc = nhν and
its ac part Vac.10,13,32

For the sine wave V (t) = Vac[1 − cos(2πνt)], we have
Vdc = Vac = nhν/e. The emission and absorption probabilities
are given by integer Bessel functions with Pl = Jl(n)2 where
Pl is calculated putting in the time-dependent phase only
the Vac term and not the dc voltage part. Then, we can directly
use the PASN shot-noise formula with dc bias (11) to calculate
the number of excitations (n > 0). Similarly, for the square
wave V (t) = 2Vdc = 2hν/e for t ∈ [0,T /2] and V (t) = 0 for
t ∈ [T/2,T ] (mod T ). The probabilities are given by Pl =
4
π2

n2

(l2−n2)2 for odd l − n, Pl = 0 for even l − n, and Pn(n) = 1
4 .

Both the sine and the square wave have symmetric variation
around zero voltage, which implies symmetric electron and
hole excitation creation. With Pl = P−l , Eq. (11) now writes

�Neh = 2
+∞∑

l=n+1

(l − n)Pl. (15)

The above expression is useful to provide the asymptotic
expression of �Neh at large n for square wave pulses:
�Neh(n)sq  1

π2 [ln(n) + γ + 2 ln(2) − 1] where γ is the Eu-
ler constant. By contrast, the sine wave does not lead to a log
divergence since Pl  1

2πl
(en/2l)l for l � n. Figure 3 gives

FIG. 3. Excess electron and hole particle number for sine and
square wave pulses carrying q = n integer charges per period at zero
temperature. The asymptotic log divergence of the square for large
number, as defined in the main text, is shown as a dashed line.

�Neh versus the number n of injected electrons for the square
and the sine waves. Clearly, the square wave pulse creates
more excitations than the sine wave.

We now consider the Lorentzian pulse whose behavior is
quite different. As shown in the following, the Pl associated
to the ac part of the voltage pulse remarkably vanishes for
l < −n. The expression for the periodic sum of Lorentzian
pulses where each pulse carries n electrons and the full width
at half maximum (FWHM) is 2W writes

V (t) = Vac

π

+∞∑
k=−∞

1

1 + (t − kT )2/W 2
, (16)

where eVac = nhν.
The total phase (t), including the dc voltage part and using

reduced time units u = t/T and η = W/T , gives

exp[−i(t)] =
(

sin[π (u + iη)]

sin[π (u − iη)]

)n

. (17)

The above expression has only poles in the upper complex
plane. This implies that its Fourier transform contains only
positive frequencies. In physical terms, under total the appli-
cation of Lorentzian voltage pulses, the electrons only absorb
photons. This induces a global upward shift of the Fermi sea
and no hole creation. Going back to the decomposition into dc
and ac parts of the voltage

eV (t) = n
hν

2

sinh(2πη)

sinh(πη)2 + sin(πu)2
(18)

with eVdc = nhν, the amplitude probabilities associated with
the only ac part are the Fourier transform of exp{−i[(t) −
nνt]} is

pl =
∫ 1

0
du

(
sin[π (u + iη)]

sin[π (u − iη)]

)n

exp[i2π (l + n)u] (19)

and the probabilities Pl = |pl|2. From the above consideration
on the analyticity of  we see that P(l<−n) = 0. Note that
this is consistent with vanishing negative frequency Fourier
component for the total phase  as the pl differs from them
by of shift of l into l − n.

For n = 1, we find Pl = 0 for l < −1, P−1 = exp(−4πη),
and Pl = exp(−l4πη)[1 − exp(−4πη)]2 (see also Ref. 32).
The expression of the Pl for integer charge number > 1
involves the same exponential factor exp(−l4πη) and a
Laguerre polynomial. The complete expression is given in
the next part as a special case of fractional charges q when
q = n. Using

∑∞
l=−n lPl = 0 and Eq. (11) gives

�Neh = 0. (20)

The excess shot noise vanishes and only the transport shot
noise of n electrons remains. The Lorentzian pulses are
therefore minimal excitation states as no excess electron and
hole excitations are created. The n electronic excitations are,
however, not concentrated on the energy window [EF ,EF +
eVdc] but they occupy states above the Fermi energy with a
weight exponentially decaying on the scale ∼ h̄/2W .

We also compare the photocurrent for different types of
pulses (see Fig. 4). For the square and the sine waves with n

electrons, the sum
∑+∞

l=−∞ l2Pl is 1 and 1
2 , respectively. This

is consistent with the hierarchy found using shot noise which
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FIG. 4. Photocurrent in arbitrary units versus charge per period.
We see that this photon-assisted effect can not probe the hierarchy of
excitation content of different types of pulses. The dashed and dotted
curves are guides for the eyes.

showed that the square contains more energetic excitations.
For the Lorentzian, the sum is however nonzero and given by
coth(2πη) − 1. It strongly increases with the sharpness of the
Lorentzian shape. We conclude that the photocurrent can not
characterize the neutral excitation content of charge pulses.

IV. PERIODIC INJECTION OF ARBITRARY CHARGES

In this section, we calculate �Neh for arbitrary charge q

carried per period. As in the previous section, we consider the
square, sine, and Lorentzian pulse shapes and also include
rectangular pulses. We show that �Neh oscillates with q

and is locally minimal for integer q = n. For the sine wave
Pl = Jl(q)2, while for the Lorentzian case the calculation of
the Pl for noninteger charges is less trivial. Physically, one
may expect that carrying noninteger charges will involve more
complex excitations. Mathematically, we immediately see that
the term in the right-hand side of Eq. (17) is no longer analytic
in the lower plane when q, replacing n, is not an integer. We
thus expect a proliferation of hole excitations contrasting with
the integer case. The calculation is done in the Appendix.

Figure 5 shows the Pl for periodic Lorentzian pulses of
width W/T = 0.1. The absence of components for l � 1 when

FIG. 5. (Color online) Absorption l > 0 and emission l < 0
probabilities corresponding, respectively, to electron and hole particle
creation for periodic Lorentzian pulses of width W/T = 0.1 and
various charge q per pulse. The asymmetric spectrum for q = 0.99
reflecting the lack of hole creation quickly leads to a symmetric
spectrum for q � 1. Lines connecting the discrete Pl values are
guides for the eyes.

FIG. 6. Excess electron and hole particle for square, sine, and
Lorentzian pulses carrying q charges per period. For the Lorentzian,
the ratio W/T = 0.1.

q = 0.99  1 strikingly contrasts with the case of q < 1. For
small q, the Pl spectrum is almost symmetrical with l sig-
naling nearly equal electron and hole pair excitation creation.
Figure 6 shows the evolution of the excess particle number (or
excess noise) versus q from 0 to 3 for square and sine wave
pulses and for Lorentzian pulses of width η = W/T = 0.1.
We observe that, even if the square and the sine do not provide
minimal excitation states, they do provide a minimum of
excitations for integer charges. This seems to be a remarkable
property of the Fermi sea. A similar figure can be found in
Ref. 10.

Figure 7, left, shows how the excess particle number evolves
for Lorentzian pulses of different width. We see that for
W/T � 0.1 the particle number becomes exponentially weak.
Indeed, the potential becomes close to a constant voltage
V (t)  Vdc. For small width and half-integer charge, the
electron hole excitation number is large but quickly decreases
with q, which contrasts with the almost constant value found
for the sine wave and the increasing value for the square wave.
For comparison, the right graph of Fig. 7 shows the excess
particle content of discrete Dirac pulses (or rectangular pulses)
of similar width W (the voltage pulses have amplitude h/eW

for the time duration W and zero otherwise). Here again the
excitation content is much larger. It increases with q, which
contrasts with the Lorentzian pulse behavior which definitely
shows the lowest noise.

It is interesting to see how the temperature affects the excess
noise. As mentioned previously, �Neh no longer measures the
number of excess electron and hole quasiparticles with good
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FIG. 7. Excess electron and hole particle number for Lorentzian
(left) and rectangular (right) pulses carrying q charge per period and
for different width to period ratio W/T .
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FIG. 8. (Color online) Effective excess electron and hole particle
for sine pulses carrying q charges per period and for different values
of the electron temperature Te.

fidelity. For simplicity, we will keep the same notation but
call it now the effective excess particle number. For sine and
square waves, there is only one energy scale to compare with
the temperature, i.e., hν. For the Lorentzian case, there are
two energy scales hν and h̄/2W . Figure 8 shows the sine wave
case. We observe that the minima occur to higher-q values.
The effect is even more pronounced for the case of Lorentzian
voltage pulses shown in Fig. 9 and is probably related to the
stronger asymmetry of �Neh with q around q = n for η =
W/T = 0.1. This has been observed by Dubois13 for sine and
Lorentzian pulses and for the PASN shot noise of a biharmonic
excitation by Gabelli.58 The oscillations of �Neh are quickly
damped by the temperature and when kBTe > 0.2hν are almost
unobservable.

To end this section, it is worth to note that the nonin-
teger charge considered here is injected in a noninteracting
fermionic system (more precisely, a good Fermi liquid where
interaction gives rise to Landau quasiparticles). Extension to
fractional charges in Luttinger liquids has been considered by
Ref. 2. The e/3 fractional charge of fractional quantum Hall
edge states has been considered by Jonckheere et al.59

V. ENERGY DOMAIN: SPECTROSCOPY OF
THE e-h PAIR EXCITATIONS

In this section, we use the shot-noise spectroscopy tool
discussed in Sec. II to analyze the periodic charged states in

FIG. 9. (Color online) Effective excess electron and hole particle
for Lorentzian pulses of width W/T = 0.1 carrying q charges per
period and for different electron temperature Te.

FIG. 10. (Color online) Zero-temperature excess partition noise
versus dc voltage in reduced units for sine amplitudes α = 1 and 2
corresponding to single- and double-charge pulses when, respectively,
q = 1,2.

the energy domain. To do this, we compute �Ne-h as a function
of Vdc. Here, the dc bias q = eVdc/hν is no longer linked to the
ac amplitude parameter α = eVac/hν. As explained in Sec. I,
this allows us to make a spectroscopy of the electron and hole
excitations and infer the Pl from the excess noise variation with
Vdc or from the first or second noise derivative with respect
to Vdc. The calculations and graphs are done and displayed at
zero and finite temperatures.

Figures 10 and 11 show the variations of �Ne-h versus
q at zero temperature for, respectively, a sine wave and
a Lorentzian wave. For each case, we show the curves
for two different amplitudes Vac corresponding to α = 1
and 2. These amplitudes would correspond, respectively, to
single- and double-charge voltage pulses when q = α = 1
or 2, respectively. For sine and square waves �Neh(α,q)
is symmetric with q (or Vdc) as Pl = P−l . However, it is
asymmetric for the case of Lorentzian pulses. Such asymmetry
is expected for pulses whose ac part of the voltage is not
symmetrical with respect to zero voltage. But, more relevant
and striking, for the Lorentzian case the excess noise is zero
for q > α (or eVdc > nhν), a direct consequence of zero Pl

for l < −n.
The effect of finite temperature is shown on Fig. 12 for a sine

wave of amplitude α = 1. Finite-temperature calculations are
also shown in Figs. 13 and 14 for Lorentzian pulses of width

FIG. 11. (Color online) Zero-temperature excess partition noise
versus dc voltage in reduced units for Lorentzian amplitudes α =
1 and 2 corresponding to single- and double-charge pulses when,
respectively, q = 1,2.
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FIG. 12. (Color online) Finite-temperature excess electron and
hole particle noise versus dc voltage in reduced units for sine wave
of amplitudes α = 1.

W/T = 0.1 with, respectively, α = 1 and 2. The relevant
temperature needed to reveal the asymmetry of �Neh with
dc bias for a Lorentzian is given by the width, the smaller
the width, the higher the energy h̄/W at which we find the
contributions of the positive Pl responsible for the long tail at
negative voltages. The other temperature scale is given by the
ratio kBT /hν which controls the smoothing of the singularities
at integer q.

VI. TIME DOMAIN: SHOT-NOISE CHARACTERIZATION
USING COLLISION OF PERIODIC CHARGE PULSES

The time periodicity imposes that only information on a
discrete energy spectrum is available and full characterization
must be completed with a dual-time-domain information
within a period. Here again, shot noise is the useful tool to
provide this information. Inspired by the optical Hong-Ou-
Mandel (HOM) correlation experiment, an electronic HOM
analog can be built as a useful tool to infer the time shape of
wave packets where electrons emitted from two contacts with
a relative time delay collide on the scatterer. A clear relation
between shot noise and wave-packet overlap can be made for
a single-charge Lorentzian pulse. For other pulse shapes, it is
expected that the contribution of the neutral excitation cloud
gives an extra contribution to the shot noise.

FIG. 13. (Color online) Finite-temperature excess electron and
hole particle noise versus dc voltage in reduced units for Lorentzian
waves of amplitude α = 1.

FIG. 14. (Color online) Finite-temperature excess electron and
hole particle noise versus dc voltage in reduced units for Lorentzian
waves of amplitude α = 2.

In an optical experiment, single photons are emitted from
two distinct sources in each of the two input channels of a
semitransparent beam splitter. Photon detectors are placed
on the two respective outputs and a time delay between
them, sizable with the photon wave packet, is introduced. For
zero delay, Bose statistics implies a constructive two-particle
interference where the two photons bunch and exit, at random,
in one of the two output channels. The coincidence events
are zero and the particle fluctuations (the noise) are doubled
with respect to a Hanbury Brown–Twiss (HBT) experiment
where only one photon at a time arrives on the beam splitter.
The latter situation is recovered when the delay τ is much
longer than the size of the wave packets. For intermediate time
delays, the noise variation is directly related to the overlap
of photon wave packets.60,61 A similar experiment could be
done with electrons with an artificial scatterer in the form
of a controllable beam splitter, i.e., a quantum point contact.
For zero time delay, Fermi statistics leads to a destructive
interference for the probability of finding two electrons in
the same output channel. In terms of charges counted by the
detector (here the contacts of a conductor), there is always a
charge arriving in each contact and consequently no current
fluctuations. The noise increases from zero at τ = 0 to the
single-particle noise value (similar to the photon HBT case) for
time delay larger than the electron wave packet. The difference
between fermion and boson for HOM correlations has been
discussed by Loudon.62 An electronic HOM experiment
has been proposed by Giovannetti et al.63 HOM shot-noise
correlation of electron-hole pairs using two phase-shifted ac
voltages of weak amplitude (eVac < hν) has been theoretically
considered by Rychkov et al.31 Up to now, the theoretical
works have only addressed the case not discussed here of
two single charges emitted from two ac driven quantum dot
capacitors. In this case, the HOM noise has been calculated
by Ol’khovskaya et al.23 In the adiabatic regime, the wave
packets mimic those emitted by a contact driven by Lorentzian
voltage pulses carrying a single electron followed by a single
hole (note that, except for well-separated electron and holes,
the alternate charge prevents to have clean excitations1). More
recently, considering the same system, Jonckheere et al.28

have looked to similar HOM correlations and include the
effect of electron and hole collisions. Their analysis used
the quantum electron optics framework developed by Grenier
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et al.47,49 Other recent theoretical works discussed various
related situations.8,24,25,64 In particular, Ref. 8 considered a
mixed situation where electrons emitted from a quantum dot
capacitor collide with electrons from a voltage pulse source.
Here, we consider only voltage pulse electron sources. This
regime was also addressed by Grenier.47

Practically, two generic situations, different in their ge-
ometry, provide similar information: the zero magnetic field
case for which the reflected path physically coincides with
the input path (this corresponds in optics to the mirror
facing the two sources and detectors); the high magnetic
field case, using the edge states of the quantum Hall regime
where chiral propagation allows us to geometrically separate
input and output channels. The first case provides simpler
interpretation as the interaction is well screened [for example,
the electrons reservoirs formed by a two-dimensional electron
gas (2DEG) is a good Fermi liquid]. The second case better
mimics the optical geometry, but the Coulomb interaction
between copropagating quantum Hall edge channels leads
to fractionalization of the injected pulses (see Ref. 49).
Experimentally, a HOM experiment with energy-resolved
single electrons injected from mesoscopic capacitor has been
performed in the chiral regime65 and a HOM experiment
with time-resolved electrons using the present voltage pulse
technique has been performed in the nonchiral regime.13

In the following, the HOM shot noise of colliding trains
of electron pulses is used as a tool to investigate the time
shape of electron wave packets. For simplicity, we will
consider, as above, a two-terminal geometry in zero magnetic
field. The result can be directly applied to the edge state
geometry. Indeed, the noise of a voltage pulse electron source
vanishes for unit transmission whatever the pulse shape is. The
autocorrelation and cross correlation are thus pure partition
noise and have the same amplitude. We consider the periodic
injection of charges from both contacts with voltage V (t) and
V (t + τ ) applied, respectively, on the left and right contacts.
The scatterer has transmission D. In order to compute the shot
noise, we use the above photon-assisted Floquet scattering
description, with the left and right input operators defined
immediately at the left and right entrance of the electronic
beam splitter (or scatterer) :

âL(R)(ε) = S(ε)L(R) × â0
L(R)(ε) (21)

with

S
L(R)
l′l = 1

T

∫ T

0
dt exp[iφL(R)(t)] exp[i2π (l − l′)νt] (22)

and φL(t)=2π e
h

∫ t

−∞ V (t ′)dt ′ and φR(t) = 2π e
h

∫ t+τ

−∞ V (t ′)dt ′.
Then, the shot noise can be calculated as in Sec. II now using
both the left and right amplitude probabilities.

Interestingly, in the present case of energy-independent
scattering, the gauge invariance property valid at all times,
makes the electronic HOM problem formally equivalent to the
calculation of the shot noise with a single contact, say the
left, biased with the voltage difference V (t) − V (t + τ ) while
keeping the right contact at zero. Note the equivalence is only
true for a fully coherent system. If not, the reservoir which
is a source of decoherence has to be included in the gauge
transformation. Consequently, a vanishing HOM shot noise is
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FIG. 15. (Color online) Electron shot noise versus the time delay
τ for Hong-Ou-Mandel–type correlations for colliding Lorentzian
(left) and rectangular (right) pulses. The noise is normalized to S0

I .

expected at τ = 0, the case of maximal wave-packet overlap
or maximal antibunching. However, the fact that the gauge
invariance allows us to map the problem to a simpler problem
does not prevent the HOM physics to be the underlying process.
Indeed, we will see below that the HOM noise is directly
related to the overlap of the electronic wave functions for
periodic trains of wave packets carrying a single electron. A
HOM realization not reducible to voltage drop differences via
a gauge transformation would, for example, require the use of
two single-electron sources based on quantum dots.65

Figure 15 gives the calculated shot noise in reduced unit S0
I

versus the time delay τ/T for the collision of single-charge
pulses per period emitted by the left and right reservoirs.
The left figure corresponds to Lorentzian pulses of different
widths and the right figure to discrete Dirac pulses of similar
corresponding widths [V (t) = h/eW if 0 � t � W , V (t) = 0
for W < t < T ]. For both cases, the noise starts from zero
at τ = 0 (perfect antibunching) and is maximum at τ = T/2
where the wave-packet overlap is minimal. For the Lorentzian
case and W/T � 1, the wave packets at τ = T/2 are well
separated and the noise is doubled as two electrons (one
from the left, one from the right) contribute independently
to single-particle noise at each period. We note, however,
that the noise for rectangular pulses exceed the value 2.
Indeed, rectangular pulses (which identify to square waves
for W/T = 0.5) involve a large amount of neutral excitations
which are measured in the HOM noise.

How far can the HOM noise correlation be used to infer the
single-charge wave-packet shape in the time domain? Ideally,
one expects the noise to be given by 2[1 − C(τ )] where

C(τ ) = |〈�(t − τ − x/vF )|�(t − x/vF )〉|2 (23)

and � denotes the wave function of the excess electron injected
right above the Fermi sea by the pulse. For Lorentzian pulses,
which are clean excitations, a clear positive answer can be
given. The shot noise of single-electron colliding Lorentzian
pulse is

SColl
I (τ )/S0

I = 8β2 sin(πντ )2

1 − 2β2 cos(2πντ ) + β4
. (24)

The noise is zero for τ = 0 and for the case of infinite width W

(β = 0). The maximum noise is S0
I

2
cosh(2πW/T )2 for τ = T/2.

For W/T → 0 (or β → 1), it goes to twice S0
I as expected

for the partition noise of well-separated single-charge pulses
alternatively emitted by the left and right contacts. In this
limit, we can use the known expression for the wave function
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generated by a single Lorentzian voltage pulse: �(t) ∝ 1/(t +
iW )2. This yields for the square of the wave-function overlap
C(τ ) = 1

1+(τ/2W )2 and this agrees with the limiting expression
of Eq. (24):

SColl
I (τ )/S0

I  2

(
1 − 1

1 + (τ/2W )2

)
. (25)

In the Appendix, we show that Eq. (24) is also proportional
to 1 − C(τ ) even for the case of arbitrary overlap between
pulses carrying single electrons. In the small W/T limit, close
expressions have been obtained by Ol’khovskaya et al.23 and
by Jonckheere et al.28 (see also Grenier47). In these works,
single charges whose charge sign periodically alternates are
emitted from an ac driven quantum dot capacitor and the trains
of charges collide in a QPC. In the adiabatic ac drive limit,
the wave packets mimic those emitted by Lorentzian voltage
pulses on a contact.

Another striking property of the shot noise of colliding
single-charge Lorentzian pulses is the trivial effect of the
temperature: SColl

I (τ,Te) = SColl
I (τ,0)F (Te) where

F (Te) = 1 − β2

β2

l=∞∑
l=1

lβ2l coth

(
lhν

2kBTe

)
. (26)

The time-delay variation and the temperature variation de-
couple: thermal fluctuations do not prevent getting accurate
information on the time shape of the wave packet, but they
only reduce the noise signal. As shown in the Appendix, this
is not true for sine wave pulses and in general for other pulse
shapes.

All these remarkable properties demonstrate that, for
integer charge Lorentzian, the HOM shot noise does give
information on the time-domain shape of the charge wave
packet. This property is no longer verified for the case of
non-Lorentzian pulses as the neutral excitations contribute.
The left graph of Fig. 16 shows the value of the HOM noise of
Dirac pulses time shifted by T/2 normalized to the partition
noise of single pulses, denoted SHBT

I . We see that when the
overlap between pulses becomes negligible, the ratio tends
to twice the single-pulse partition noise. This doubling is
expected as now two separate pulses are partitioned per period.
For large overlap, the ratio found in Fig. 16 is well smaller than
two because of antibunching. An inherent large overlap is also
found for a sine wave (right graph of Fig. 16).
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FIG. 16. Left figure: HOM noise at τ = T/2 for a rectangular
pulse normalized to twice the partition noise of a single pulse versus
pulse width. Right figure: HOM noise of sine pulses versus τ/T

normalized to twice the partition noise of single charge (dashed line,
right axis) and to twice the single-pulse partition noise (solid line, left
axis).
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FIG. 17. (Color online) HOM shot noise for sine (left graph)
and Lorentzian (right graph) pulses versus time delay and carrying
charges q = 0.5, 1, 1.5, and 2.

Finally, we have calculated the HOM noise of Lorentzian
pulses for larger charge, including fractional. For noninteger
charge pulses, we do not expect to get simple information on
charge pulses in the time domain because of the large content
of neutral excitations expected even for the Lorentzian case.
The left and right graphs of Fig. 17 show the shot noise for
colliding sine wave and Lorentzian pulses for q = 0.5, 1, 1.5,
and 2. For both pulse shapes, the variation with τ for q = 2
suggests a double structure related to the interference of several
electrons. A detailed study of colliding pulses for large q will
be given elsewhere.66

To conclude this section, we have shown that the HOM
electronic shot-noise correlation provides meaningful time-
domain information on the wave packet. This is true, however,
only for a single-charge Lorentzian which is a clean excitation.
Other kinds of electron generation are accompanied by a cloud
of neutral excitations which contribute to the HOM shot noise
and prevent getting time-domain information on the charge
part of the excitations.

VII. CONCLUSION

We have studied in detail the physics of periodic voltage
pulses carrying few electrons with the aim to give a useful basis
for comparison with experiments.13 Shot noise, as emphasized
in the pioneering papers on Lorentzian voltage pulses, is a
tool of choice to characterize the charge pulses. We have
exploited the periodicity to show the intimate connection
with the well-established physics of photon-assisted shot noise
using the powerful Floquet scattering approach. We have used
the known properties of PASN as a direct measure of the
electron and hole excitation number and, when combined
with transport shot noise, as a tool for spectroscopy of the
excitations. In the latter case, this provides an energy-domain
characterization of the pulses accessible to experiments. This
information has been supplemented by a time-domain study of
the charge wave packets using HOM-type pulse collisions. The
gauge invariance was used to map the charge pulse collision
problem to the partitioning of neutral pulses. The comparison
of different pulse shapes emphasizes the peculiar nature of
Lorentzian pulses with integer charge as ideal electron source.
We have also considered pulses with arbitrary charge and
show that they always contain a large number of neutral
excitations, even for Lorentzian, a manifestation of dynamical
orthogonality catastrophe for fermions. For large arbitrary q,
the low-noise property of Lorentzian remains remarkable as
the neutral excitation content rapidly decreases with q, while
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it shows a logarithm increases for rectangular shape pulses
of the same width, or remains almost constant for sine wave
pulses.

Integer charge Lorentzian pulses deliver a noiseless source
of few electrons. One expects many applications in quantum
physics. For example, by repeating the injection of clean
coherent packets with the same electron number and measuring
the charge arrived in contacts, the full counting statistics
of few electrons partitioned in quantum conductors become
accessible. One may also envisage to explore the fermionic
statistics of multiple electrons colliding of a beam splitter or
interfering in Mach-Zehnder interferometers. Integer charge
Lorentzian pulses are also the appropriate source for realizing
electronic flying qubits and to entangle few electrons in ballis-
tic conductors. Finally, the powerful approach of Lorentzian
pulses could find similar applications in fermionic cold-atom
analogs.
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APPENDIX

1. Lorentzian voltage pulses carrying arbitrary charge

In this appendix, we calculate the amplitude probabilities
pl for Lorentzian pulses with arbitrary charges. We start with
Eq. (19) with n replaced by q:

pl =
∫ 1

0
du

(
sin[π (u + iη)]

sin[π (u − iη)]

)q

exp[i2π (l − q)u]. (A1)

Here, the physical decomposition of the voltage into dc
and ac parts is essential to avoid ill mathematical behavior.
While the Fourier transform of exp[−i(t)] leads to divergent
logarithmic terms as (T −) − (0+) = 2πq is not a multiple
of 2π , that of the phase associated to the ac part is well defined
as φ(T −) − φ(0+) = 0.

Defining z = exp(i2πu) and β = exp(−2πη),

pl = exp(i2πq)

i2π

∮
dz

z
zl

(
1 − βz

1 − βz

)q

. (A2)

The numerator has a branch cut singularity for z on the real axis
for x > 1/β and similarly for z in the denominator. Here, we
use a series expansion and then perform the integration. Indeed,
as β < 1 and z (and z) are on the unit circle, both the numerator
and the denominator are convergent series of positive powers
of βz and βz, respectively. The integral reduces the double
series expansion to a single power series of β by imposing that
the power of z under the integrand is zero. After some algebra,
we get

pl = qeiqπβl

∞∑
k=0

(−1)kβ2k�(q + l + k)

�(k + 1)�(q − k + 1)�(l + k + 1)

(A3)

for l > 0, and

pl = qeiqπβ |l|
∞∑

p=0

(−1)p + lβ2p�(q + p)

�(p + 1)�(q − |l| −p + 1)�(|l| +p + 1)

(A4)

for l < 0. Interestingly, while for noninteger q the sums are
infinite (but quickly convergent), for q = n the sums reduce
to the expected polynomial expressions of order n − 1 and
the terms for l < −n vanish. Indeed, when the terms (q − k)!
and (q − |l| − p)! in the denominator of, respectively, the first
and second above expressions are negative integer, they take
infinite values which therefore truncate the infinite series.

2. HOM shot-noise calculation

Calculating the HOM noise of colliding electron pulses
generated at opposite contacts when applying voltage VL =
V (t − τ/2) and VR = V (t + τ/2) on left and right contacts,
respectively, is equivalent to calculate the noise when applying
V (t − τ/2) − V (t + τ/2) on the left contact only. The result-
ing zero-temperature shot noise is then

SI /S
0
I =

+∞∑
k=−∞

|k||�k|2, (A5)

where

�k = 1

T

∫ T

0
dt e−iϕ(t−τ/2)eiϕ(t+τ/2)ei2πkνt , (A6)

�k = e−i2πνkτ/2

(∑
l

plp
∗
l−ke

i2πνlτ

)
, (A7)

where pl takes the same values as in the main text and is
associated to the unshifted potential V (t). Because the effective
voltage V (t − τ/2) − V (t + τ/2) has symmetric weight for
positive and negative values and is symmetric in τ , we have
�k = e−i2πkντ�∗

−k . The shot-noise computation then reduces
to calculate

SI /S
0
I = 2

∞∑
k=1

|k||�k|2. (A8)

3. HOM noise of periodic single-charge Lorentzian pulses

To calculate the �k , we use the exact values p(l<−1) = 0,

p−1 = −β and p(l�0) = (1 − β2)βl obtained for single-charge
q = 1 Lorentzian voltage pulses . Injecting these values in
Eq. (A7), we find

�0 = 1 − (2 − ei2πντ )β2

1 − β2ei2πντ
, (A9)

�l�1 = βl(1 − β2)e−i2πlντ/2 ei2πντ − 1

1 − β2ei2πντ
. (A10)

This allows us to calculate the HOM shot noise for single-
charge colliding periodic Lorentzian pulses:

SColl
I

/
S0

I =
(

2
∞∑
l=1

lβ2l

)∣∣∣∣ ei2πντ − 1

1 − β2ei2πντ

∣∣∣∣2

(1 − β2)2, (A11)

which gives Eq. (24) of the main text.
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To calculate, the temperature dependence one has to
replace in Eq. (A10) |l| by l coth(lhν/2kBTe) − 2kBTe/hν.
Interestingly, as �l�1 = �1β

2l , we see that the τ dependence
is only included in �1. The temperature dependence of
the HOM shot noise decouples from the τ dependence. The
temperature only reduces the noise but does not affect the
shape.

4. HOM noise of periodic sine wave pulses

Rather than calculating the �l using Eq. (A7), it is better
to remark that the difference of two sine wave voltages,
time shifted by ±τ/2, is also a sine wave. We get �l =
Jl[2q sin(πντ )] for arbitrary charge q per period. This gives

SColl
I /S0

I =
(

2
∞∑
l=1

lJl[2q sin(πντ )]

)2

(A12)

and

SColl
I

/
2SHBT

I =
∑∞

l=1 lJl[2q sin(πντ )]2

2
∑∞

l=1 lJl(q)2
. (A13)

The temperature dependence of the HOM signal can be
calculated by replacing |l| by l coth(lhν/2kBTe) − 2kBTe/hν.
We see, however, that the series of Bessel functions in the
above expressions does not allow a decoupling of the τ and Te

dependence and the HOM shape is expected to change with
temperature. Indeed, the change affects electron and hole pairs
with lhν � kBTe which interact with thermal excitations.

5. Wave-packet interpretation of the Floquet
scattering approach

Here, we show that the Floquet approach finds a use-
ful wave-packet interpretation which allows us to calculate
the single-electron wave function in the time domain for
single-charge pulses. The wave-function overlap can then be
computed and be compared with the HOM shot noise. This
approach is restricted to zero temperature.

We start with the Martin-Landauer wave packets41 defined
in the energy bandwidth hν. Without loss of generality, the
wave functions describing the states of the, say left, reservoir
∼e−iε(t−x/vF )/h̄ and labeled by the continuous energy variable
ε can be transformed into a set of orthogonal wave packets
ϕn,l(t − x/vF ) defined by integration over the energy window
ε ∈ [lhν,(l + 1)hν]. Defining u = (t − x/vF )/T ,

ϕn,l(t − x/vF ) = 1√
2πh̄VF

sin[π (u − n)]

π (u − n)
e−i2πν(l+1/2)(u−n).

(A14)

Using the annihilation operators â0
n,l acting on the Fock states

of the unperturbed reservoir, the fermion operator before the
action of the ac potential is

�̂0(t − x/vF ) =
∑

l

∑
n

ϕn,l(t − x/vF )̂a0
n,l (A15)

with 〈̂a0†
n′,l′ â

0
n,l〉 = δn,n′δl,l′fl and fl = 1 for l < 0 and fl = 0

for l � 0. After the electrons have experienced the potential

V (t), the electron fermion operator becomes

�̂(t − x/vF ) =
∑

k

∑
l

∑
n

pkϕn,l(t − x/vF )̂a0
n,l−k. (A16)

We see that the ac potential does not mix wave packets of
different n but only wave packets of different energies and
same n [we can also see that

∑
l plϕn,l(t − x/vF ) forms a new

orthogonal basis of wave functions].

6. Hong-Ou-Mandel correlation for single-charge Lorentzian
periodic pulses

We remind that the HOM noise associated with independent
Lorentzian voltage pulses carrying one electron is directly
related to the overlap of the electron wave function in the
beam splitter. Here, we would like to see if a generalization
is possible in the case of a periodic train of overlapping
Lorentzian pulses still carrying only one electron. To do that,
instead of the wave-function overlap we consider the time-
average Hermitian product of the electron fermion operators
with a relative time shift τ . Using the reduced variable
θ = τ/T it is given, before time averaging, by〈

�̂†
(

u + θ

2

)
�̂

(
u − θ

2

)〉
=

∑
ll′

∑
nn′

∑
kk′

p∗
k′pkϕ

∗
n′,l′+k′

(
u + θ

2

)
×ϕn,l+k

(
u − θ

2

)〈̂
a

0†
n′,l′ â

0
n,l

〉
. (A17)

After time averaging and subtracting the contribution of the
Fermi sea [i.e., with no V (t)], we get〈

�̂†
(

u + θ

2

)
�̂

(
u − θ

2

)〉
=

(
sin(πθ )

πθ

)2

C(τ ), (A18)

where

C(τ ) =
∣∣∣∣∣∑

l

fle
i2πlθ

∑
k

(Pk − δk,0)ei2πkθ

∣∣∣∣∣
2

. (A19)

For the presently considered case of periodic Lorentzian
voltage pulses carrying unit charge and using the probabilities
defined with respect to the total voltage V (t) = Vdc + Vac(t),
i.e., P0 − 1 = β2 − 1 and Pl = (1 − β2)2β2(l−1) for l � 1, we
get

C(τ ) = (1 − β2)2

1 − 2β2 cos(2πτ/T ) + β4
. (A20)

It is then straightforward to show that 1 − C(τ ) yields the
HOM shot noise given by Eq. (24), i.e.,

SHOM
I = 2S0

I [1 − C(τ )]. (A21)

Thus, even for overlapping pulses (but carrying a single
electron), the HOM noise can still be interpreted as a measure
of the overlap of the electronic wave function.
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