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Semimetal-insulator transition on the surface of a topological insulator with in-plane magnetization
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A thin film of ferromagnetically ordered material proximate to the surface of a three-dimensional topological
insulator explicitly breaks the time-reversal symmetry of the surface states. For an out-of-plane ferromagnetic
order parameter on the surface, the parity is also broken since the Dirac fermions become massive. This leads,
in turn, to the generation of a topological Chern-Simons term by quantum fluctuations. On the other hand, for
an in-plane magnetization the surface states remain gapless for the noninteracting Dirac fermions. In this work
we study the possibility of spontaneous breaking of parity due to a dynamical gap generation on the surface
in the presence of a local, Hubbard-like interaction of strength g between the Dirac fermions. A gap and a
Chern-Simons term are generated for g larger than some critical value gc, provided the number of Dirac fermions
N is odd. For an even number of Dirac fermions the masses are generated in pairs having opposite signs, and
no Chern-Simons term is generated. We discuss our results in the context of recent experiments in EuS/Bi2Se3

heterostructures.
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I. INTRODUCTION

Due to their unique properties, topological insulators (TI)1,2

are likely to play a major role as a component material in
different types of heterostructures. For instance, with a view
towards spintronics applications,3 heterostructures involving
ferromagnetic (FM) materials or magnetic impurities have
been studied both theoretically4–13 and experimentally.14–20

Underlying the many applications of magnetic heterostruc-
tures involving TIs is the so-called axion electrodynamics,21

which was shown to distinguish the electromagnetic response
of TIs from ordinary insulators in an essential way.4 Quite gen-
erally, it was shown in Ref. 4 that the Lagrangian describing the
electromagnetic response of all three-dimensional insulators
is given by

LEM = 1

8π

(
εE2 − 1

μ
B2

)
+ α

4π2
θE · B, (1)

where θ is, in general, a scalar field, the so-called axion,21

and α = e2/(h̄c) is the fine-structure constant. In ordinary
insulators θ vanishes, but this is not the case in TIs.4 In its
simplest variant the axion field is uniform and assumes the
value θ = π for a bulk time-reversal (TR) invariant TI.4 For
uniform θ the axion term becomes a surface term, leaving
therefore the Maxwell equations unaffected.21 Despite being
a surface term when θ is uniform, the axion term still plays
an important role in finite samples. Indeed, if we imagine
a semi-infinite TI sample extending over z = −∞ up to
the surface z = 0, we can use a covariant formalism to
obtain

Saxion = αθ

32π2

∫
d4xεabcdF

abF cd

= αθ

32π2

∫
d4x∂a(εabcdA

b∂cAd ), (2)

with the Latin indices running over four-dimensional space-
time. Application of Gauss theorem yields

Saxion = αθ

8π2

∫
d3xεbcdA

μ∂νAλ, (3)

where the Greek indices run over 0, x, and y. The above
axion action at the surface actually represents a Chern-Simons
(CS) term.22 As the Chern-Simons term does not depend
on the metric, i.e., on the geometry of the sample, its
presence can be considered a manifestation of the topological
insulator.

When some symmetry breaking is induced on the topologi-
cal surface, the axion term may cause significant modifications
of the dynamics of order parameters. For example, if the TI
is in contact with a FM material and a proximity-induced
magnetization arises on the topological surface, the mag-
netization dynamics is modified7,8,10,11 due to the so-called
topological magnetoelectric (TME) effect,4 consisting of an
electric-field-induced magnetization caused by the quantum
spin Hall effect. Although the axion term with θ uniform
does not modify the Maxwell equation, it does modify the
Landau-Lifshitz equation for the magnetization precession on
the topological surface.7,8,10,11

There are also situations where a nonuniform θ is relevant,
for example, in the case of magnetic fluctuations coupled to
the electromagnetic field.23 Another example is when two
topological surfaces of the material are gapped and an external
magnetic field induces multichannel edge states.24 Also in
effective theories of topological superconductors a dynamical
axion field plays an important role.25 In all these cases the
Maxwell equations are modified as well, and in addition a
dynamical field equation for the axion arises.

In order to generate an electromagnetic response featuring
an axion term, the helical states have to gap. This may be
achieved by an out-of-plane exchange field, which may be
induced by the proximity effect. This means that the Dirac
fermions on the TI surface become massive, and integrating
them out generates a CS term, Eq. (3), having θ = π .11 Thus,
in this case TR and parity symmetries are broken on the TI
surface but are still preserved in the bulk.4 To understand why
the mass term breaks the TR and parity symmetries, observe
that the QED-like theory emerging from the proximity-induced
ferromagnetism on the surface of three-dimensional TI (see
Sec. II) features two-component Dirac fermions and, for
this reason, does not have a chiral symmetry since γ 5-like
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matrices can only be defined for representations featuring
four-component spinors.26 Indeed, for 2 × 2 γ matrices it is
not possible to find an additional matrix that anticommutes
with all of them. Hence, the massless case corresponding to
the case of in-plane magnetization has no internal symmetry
that would prevent the addition of a mass term. On the other
hand, a mass term breaks discrete space-time symmetries.
This case corresponds to an out-of-plane magnetization, which
indeed is associated with the mass term that breaks parity
and TR symmetries. In particular, in 2 + 1 dimensions parity
is realized in terms of a reflection (mirror symmetry), for
example, x = (x0,x1,x2) → (x0, − x1,x2). Note that inversion
of both x1 and x2 does not work since this is equivalent to
a rotation by π . In this case the Dirac fermions transform
under parity like ψ → γ 1ψ , ψ̄ → −ψ̄γ 1, and ψ̄ψ → −ψ̄ψ .
The mass term is therefore not invariant under parity.27,28

In addition, the TR symmetry, defined by ψ → γ 2ψ , ψ̄ →
−ψ̄γ 2,27 is also broken once the mass term is introduced.
This breaking of parity and TR symmetries by massive two-
component Dirac fermions causes a CS term22 to be generated
upon integrating them out. This generation of a CS term is
related to the TME effect if these Dirac fermions in 2 + 1
dimensions are viewed as surface states of a three-dimensional
TI.4 It has been shown recently that the generation of the CS
term by fermionic quantum fluctuations significantly affects
the magnetization dynamics.11

However, when only in-plane exchange is present, the Dirac
fermions on the TI surface remain massless, thus not violating
TR or parity. Consequently, in this case a CS term is not
expected to be generated on the TI surface. An interesting
question to ask is whether masses for the Dirac fermions
can be spontaneously generated by some symmetry-breaking
mechanism simultaneously with the CS term. We recall that
there are several examples of dynamical mass generation in
QED in 2 + 1 dimensions29,30 and related theories, including
some condensed-matter models for graphene31–34 where the
Coulomb interaction is taken into account35–38 and theories
for the pseudogap in high-Tc (cuprate) superconductors.39–43

However, the latter theories feature an even number of Dirac
cones, allowing the use of four-component Dirac spinors.
Therefore, they have a chiral symmetry29 since in this case
two γ 5-like matrices anticommuting with all γ matrices can
be defined (see Sec. III), and this is simply not possible
with an odd number of Dirac cones arising in TIs.1,2 Thus,
a CS term cannot be generated in any of the mentioned
models when masses for the Dirac fermions are dynamically
generated.

In this paper we analyze what happens for an interacting
TI having an odd number of Dirac fermions in proximity
to a FM inducing an in-plane exchange. In particular, we
show that in the presence of a screened Coulomb interaction,
a mass for the Dirac fermions is dynamically generated
only if the interaction strength exceeds some critical value.
Under the same conditions a CS term is also generated.
As a result, the dynamical generation of the mass due to
screened Coulomb interaction in the case of TI in proximity
to in-plane FM yields a TME effect similar to the case
of an out-of-plane magnetization. In agreement with earlier
calculations in the context of QED,44 we also show that for
an even number of Dirac fermions there is mass generation,

but parity and TR are overall preserved, and no CS term
arises.

The plan of this paper is as follows. In Sec. II we
define the QED-like model used in this paper and discuss
its effective action in Secs. III and IV. Section V contains
the main results, i.e., the solution of the gap equation,
showing that a semimetal-insulator transition occurs for a
large enough value of the coupling constant. Section VI
discusses the relation of our results to recent experiments,
and in Sec. VII we present the conclusions of this work. Three
appendixes contain additional technical information about the
calculations.

II. MODEL

In first-quantized form the Hamiltonian for a topological
surface with strong spin-orbit coupling in contact with a thin
FM layer can be written in a form including a Rashba-like
term and an anisotropic exchange energy,10

H = vF (−ih̄∇ × ẑ) · σ − J (nxσx + nyσy) − J⊥nzσz, (4)

where vF is the Fermi velocity, ∇ = (∂x,∂y), and J and J⊥
are the in-plane and out-of-plane exchange energies coupling
to the magnetization n, respectively. For a uniform magne-
tization, the Hamiltonian is easily diagonalized, yielding the
generally gapped energy spectrum,

E± = ±
√

(px − Jny)2 + (py + Jnx)2 + J 2
⊥n2

z, (5)

where p = h̄vF k. For a vanishing out-of-plane exchange we
have a gapless spectrum with a Dirac point at (Jny, − Jnx).
Thus, while for an out-of-plane magnetization the Dirac
spectrum is gapped, it is gapless in the case of in-plane
exchange; see Fig. 1.

In order to see whether for J⊥ = 0 a mass can be
dynamically generated, we have to consider the quantum
fluctuations of the magnetization on the TI surface and

FIG. 1. (Color online) Schematic comparison between two types
of magnetization orientation on the surface of a TI. (a) In the case of
out-of-plane magnetization the electronic spectrum at the surface is
gapped. (b) For in-plane magnetization the spectrum is gapless.
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the Coulomb interaction. If ψ = [ψ↑,ψ↓]T , the Schrödinger
equation, ih̄∂tψ = Hψ , for a vanishing out-of-plane exchange
in the absence of Coulomb interaction reads

σzih̄∂tψ = σ · (vFh̄∇ − iJa)ψ, (6)

where a = (ny, − nx) plays the role of a vector potential. The
above Schrödinger equation actually has the form of a Dirac
equation in the presence of an electromagnetic field. Thus,
the Lagrangian of the TI surface proximate to a FM thin film
inducing a planar magnetization on it is given by

L0 = ψ̄[iγ0h̄∂t − i �γ · (vFh̄∇ + iJa)]ψ, (7)

where γ 0 = σz, γ 1 = −iσx , and γ 2 = iσy . The above
Lagrangian has a QED-like form in d = 2 + 1 dimension
with a vector potential a = (ny, − nx) and no time component
for the gauge field. A time component for the gauge field is
introduced if we assume a screened Coulomb interaction on
the TI surface with interaction Hamiltonian density:

Hint = g

2
(ψ†ψ)2 = g

2
(ψ̄γ 0ψ)2, (8)

where g > 0 and ψ̄ = ψ†γ 0 as usual. Then, the full La-
grangian acquires the following form:

L = L0 − Hint, (9)

which can be rewritten in terms of an auxiliary field a0 via a
Hubbard-Stratonovich (HS) transformation to obtain

L = ψ̄(i �∂ − J �a)ψ − J 2

2g
a2

0, (10)

where we have used the standard Dirac slash notation, �Q =
γ μQμ. Note that the vector field aμ is not dynamical at the
Lagrangian level since the only quadratic term in the gauge
field aμ is a term proportional to a2

0 with a time-independent
coefficient. This term implies that the gauge symmetry is
broken in the temporal direction.

We disregard the long-range contribution to the Coulomb
interaction because it has been shown to be irrelevant in
the long-wavelength limit in theoretical studies of interacting
graphene,35,36,38 and a similar reasoning also applies here.
From a model point of view, our Lagrangian corresponds to a
restricted Thirring model,45 in the sense that only the zeroth
component of the current jμ = ψ̄γμψ appears squared in the
interaction.

One important consequence of the term quadratic in a0

is that g does not renormalize. This follows from the gauge
symmetry of the fermionic sector and can be easily proved
using Ward identities.26 An easy way of seeing this without
making explicit use of the Ward identity is to introduce
renormalized fields ψr = Z−1/2ψ and a

μ
r = Z

−1/2
a aμ and

observe that gauge invariance of the fermionic sector implies
that the renormalized exchange coupling is Jr = √

ZaJ ;
otherwise, the form of the covariant derivative would not be
preserved by a gauge transformation. Furthermore, current
conservation implies that any fluctuation correction for aμ is
transverse, and therefore, terms quadratic in aμ which are not
gauge invariant do not renormalize, yielding J 2

r /gr = ZaJ
2/g

and, consequently, gr = g. Therefore, g is a good tuning
parameter in our theory. The fact that g does not renormalize
will be important in our subsequent analysis.

Note that our Lagrangian does not include an intrinsic
dynamics for the magnetization. Although the FM above
the TI surface has its own dynamics, we are assuming a
minimal model on the topological surface where the only
exchange interaction is the one between the electronic spin
and the surface magnetization. Thus, the whole magnetization
dynamics on the topological surface will be generated by the
quantum fluctuations of the Dirac fermions. It is certainly
important to include other exchange effects, as was done
in Refs. 5 and 11. However, our main aim here is to study
the dynamical mass generation and the spontaneous breaking
of parity and TR symmetries. For this purpose our minimal
exchange model (10) already exhibits this feature and has the
advantage of being analytically more tractable.

III. EFFECTIVE ACTION IN THE PRESENCE
OF OUT-OF-PLANE EXCHANGE

A. Effective theory

Let us first recall the situation for J⊥ �= 0 that occurs
when the ferromagnet has the out-of-plane component of the
magnetization. Since we are assuming that the FM above
the TI surface is in the symmetry-broken state, we can
write n = 〈nz〉ẑ + n⊥, where 〈nz〉 �= 0, which can be either
positive or negative, and n⊥ = (nx,ny) are small transverse
fluctuations. In this case the Lagrangian (10) becomes

L = ψ̄(i �∂ − J �a − m)ψ − J 2

2g
a2

0, (11)

where m = J⊥〈nz〉. As discussed in the Introduction, the
mass term explicitly breaks parity and time-reversal symmetry.
Let us assume that we have N Dirac fermion species and
work within an imaginary time formalism. In this case after
integrating out the N fermionic degrees of freedom, we obtain

Seff = −NTr ln( �∂ − iJ �a + m) + J 2

2g

∫
d3xa2

0 . (12)

Now we expand the above effective action up to quadratic
order in the vector field aμ, which in momentum space reads

Seff = 1

2

∫
d3p

(2π )3

×
[
�μν(p)aμ(p)aν(−p) + J 2

g
a0(p)a0(−p)

]
, (13)

where p = (ω,vF p) and �μν(p) is the one-loop vacuum
polarization, which is evaluated in detail in Appendix A. The
result is

�μν(p) = NJ 2

2

[ |m|
2π

+ (p2 − 4m2)I (p)

](
δμν − pμpν

p2

)
− 2NJ 2mI (p)εμνλpλ, (14)

where

I (p) = 1

4π |p| arctan

( |p|
2|m|

)
. (15)
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Thus, in the long-wavelength regime |p| � |m| [see Eq. (A20)
in Appendix A] the effective action in real time is given by

Seff ≈ NJ 2

8π

∫
d3x

[
− 1

6|m|fμνf
μν + m

|m|εμνλa
μ∂νaλ

]
,

(16)

where fμν = ∂μaν − ∂νaμ. In Ref. 11 this result was used for
the case where m > 0. We note also that the first (Maxwell)
term in Eq. (16) contains a dimensionful coefficient as it
depends on |m|. Thus, this term is nonuniversal and receives
corrections from all orders in perturbation theory. The second
term (the CS term) is universal, and its prefactor m/|m| is
just a sign. Moreover, being independent of the metric, it is
not expected to be modified by the scale transformations, so
it does not renormalize. The Coleman-Hill theorem46 on the
nonrenormalization of the CS term provides a more precise
statement of this argument.

Observe that the number of Dirac fermions N must
necessarily be odd; otherwise, no CS term is generated.
Although this point was noticed before in Ref. 4 (see
Sec. IVD there), we would like to revisit it in the framework
of our calculations. In order to see the effect, let us now
assume that each of the N Dirac fermions has a mass mi

(i = 1, . . . ,N ). It is straightforward to see that the low-energy
form of the CS term is now given by

SCS = J 2

8π

(
N∑

i=1

mi

|mi |

)∫
d3xεμνλa

μ∂νaλ. (17)

Now, if the number of Dirac fermions is even, we can rewrite
the Dirac Lagrangian in terms of N/2 four-component Dirac
fermions using 4 × 4 γ matrices. In this case a mass term
miψ̄ψ is invariant under both parity and time-reversal trans-
formations, just like in the case of QED in four-dimensional
space-time. Namely, when four-component Dirac fermions are
introduced in 2 + 1 dimensions, it is possible to introduce
4 × 4 Dirac matrices of the form27

γ 0 =
(

σz 0
0 −σz

)
, γ 1 =

(
iσx 0
0 −iσx

)
,

(18)

γ 2 =
(

iσy 0
0 −iσy

)
,

where σx , σy , and σz are the Pauli matrices. With the above
representation the chiral symmetry can be defined via the
following two matrices:29,30

γ 3 = i

(
0 I2

I2 0

)
, γ 5 = i

(
0 I2

−I2 0

)
,

which anticommute with all γ matrices (18), where I2 is
a 2 × 2 identity matrix. The Lagrangian for massless four-
component Dirac fermions has therefore invariance under the
chiral transformations ψ → eiθγ 3

ψ and ψ → eiφγ 5
ψ . Since

under these transformations ψ̄ → ψ†e−iθγ 3†
γ 0 = ψ̄eiθγ 3

and

ψ̄ → ψ†e−iφγ 5†
γ 0 = ψ̄eiφγ 5

, the current jμ = ψ̄γ μψ is in-
variant, but ψ̄ψ is not. Thus, for massless QED in 2 + 1
dimensions with four-component Dirac fermions the chiral
symmetry prevents the addition of a mass term.29,30 Indeed,
a term mψ̄ψ in the Lagrangian would explicitly break the
chiral symmetry but not parity and TR. In our particular

case this implies that we must have
∑

i mi/|mi | = 0 in the
representation where N = 2n two-component Dirac fermions
are used since this is equivalent to n four-component Dirac
fermions. Thus, the spectrum must consist of N/2 masses
having the opposite sign of the N/2 remaining ones. We
conclude that N must be odd in order to generate a CS term,
and we can write N = 2n + 1 [n = 0,1, . . . ,(N − 1)/2]. This
is consistent with the fact that a TI features an odd number of
Dirac fermions. Therefore, the CS action originating from the
coupling of Dirac fermions to an out-of-plane exchange can
be written in the form

SCS = J 2

4π

(
n + 1

2

)
m

|m|
∫

d3xεμνλa
μ∂νaλ, (19)

which emphasizes the role of an odd number of Dirac fermions.
Note that the apparent “quantization” of the CS coefficient in
Eq. (19) does not have, in the present context, the same origin
as the Hall conductivity in the quantum Hall effect, as it arises
from integrating out Dirac fermions coupled to a vector field.
However, it is consistent with the analysis of Qi et al.4 of
the axion term since we find here that the axion field has
the constant value θ = π . Indeed, for a single Dirac fermion
(n = 0), Eq. (19) coincides with Eq. (3) for this value of θ

and identifying α = J 2, so the in-plane exchange coupling
squared plays the role of the fine-structure constant in this
case. It is worth mentioning in this context yet another aspect
of the problem discussed recently in Ref. 24, namely, the
dependence of the Hall conductivity at the edges of a finite
sample for a general value of θ , not necessarily 0 or π . This
case is relevant if there is an external magnetic field. In this
situation it can be shown that the Hall conductivity is given by
σH = e2/(2π )[n + θ/(2π )] [in units where h̄ = 1; here we are
assuming that the lowest value of n is zero, just like in Eq. (19)],
and quantization will hold if θ changes by ±2π (n + 1) on
loops containing n + 1 edge channels.24

It is important to emphasize here the difference between a
non-Abelian CS action, where the CS coupling is quantized
due to the requirement of gauge invariance,22 so that the
integer arising there is actually a winding number. Note
that the derivation of the axion term in the bulk leads to
an expression for θ given in terms of a non-Abelian Berry
connection in momentum space, which is derived in terms of
the actual band structure on the bulk.4 This is a topological
invariant generalizing the Thouless–Kohmoto–Nightingale–
den Nijs invariant,47 which features a Berry Abelian curvature
in momentum space to higher dimensions. In our calculations
done in 2 + 1 dimensions θ is also quantized in the sense that
it may have only two values, π or 0, where the latter refers to
the absence of the CS term.

B. Magnetization dynamics

Rewriting the CS term explicitly in terms of components
allows us to analyze its physical content relative to the
magnetization dynamics on the topological surface:11

SCS = NJ 2θ

8π2

∫
dt

∫
d2r(ny∂tnx − nx∂tny − 2n · E), (20)

where E = −∇a0 yields the electric field associated with
the screened Coulomb potential and n = (nx,ny,m/J⊥). We
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observed that the CS action contains an induced Berry phase
associated with the precession of the magnetization.5,11 If we
neglect for a moment the contribution of the Maxwell term in
the effective action, we obtain simply

∂tni = εijEj , (21)

which is the expected result for a spin Hall response. In order
to obtain the full magnetization precession, we also have to
consider the fluctuations in nz around its expectation value
〈nz〉. This was done in Ref. 11. The result is a Landau-Lifshitz
equation, where, in addition to the usual torque γ (n × Heff)
yielding the precession around the effective magnetic field
Heff , a magnetoelectric torque ∼n × E arises.

IV. EFFECTIVE ACTION FOR IN-PLANE EXCHANGE

When J⊥ = 0 the Dirac fermions are massless. Thus, in
this regime the effective action becomes

Seff = 1

2

∫
d3p

(2π )3

[
�(p)(p2δμν − pμpν)aμ(p)aν(−p)

+ J 2

g
a0(p)a0(−p)

]
, (22)

where �(p) = NJ 2/(16|p|) is the usual vacuum polarization
for massless Dirac fermions in 2 + 1 dimensions. From
Eq. (22) we derive the propagator (see Appendix B):

Dμν(p) = 〈aμ(p)aν(−p)〉

= 1

p2�(p)

{
δμν +

[
g

J 2
p2�(p) + 1

]

× pμpν

ω2
− (pμδν0 + pνδμ0)

ω

}
. (23)

Interestingly, this result shows that a vector field with a
mass term only along the temporal direction is not gapped.
With an isotropic mass term of the form (J 2/g)aμaμ, we
would obtain instead Dμν(p) = [p2�(p) + J 2/g]−1[δμν +
(g/J 2)�(p)pμpν], which is clearly gapped. As we will see
shortly, this difference is important, as in our case two of the
components of the vector field relate to the magnetization, and
magnetic excitations are supposed to be gapless.

The propagator (23) does not smoothly connect to the
strongly coupled regime, g → ∞. This is a typical behavior
for massive vector fields26 which is also reflected here,
although our vector field is only massive along the temporal
direction. Note, however, that in the strongly coupled regime
our model reduces to a QED model in 2 + 1 dimensions with
two-component Dirac fermions. As mentioned earlier, no CS
term is generated in this case when the Dirac fermions become
gapped.44

The purely magnetic effective action is finally obtained by
integrating out a0 in the effective action (22). This yields

SFM
eff = 1

2

∫
d3p

(2π )3
�(p)

[
p2δij − F (p)v2

F pipj

]
ai(p)aj (−p)

= 1

2

∫
d3p

(2π )3
�(p)

{[
p2 − F (p)v2

F p2
]

n(p) · n(−p)

+ F (p)v2
F [p · n(p)][p · n(−p)]

}
, (24)

where

F (p) = p2�(p) + J 2/g

v2
F p2�(p) + J 2/g

. (25)

Going back to real time, the magnetic susceptibility χ (ω,p) =
〈n+(ω,p)n−(ω,p)〉, where n± = nx ± ny , is determined from
Eq. (24) as

χ (ω,p) = 16

NJ 2
√

v2
F p2 − (ω + iδ)2

⎧⎨
⎩1 − Ngv2

F p2

(ω + iδ)2

×
⎡
⎣1 + 16

Ng

√
v2

F p2 − (ω + iδ)2

v2
F p2

⎤
⎦

⎫⎬
⎭ . (26)

From the pole of χ (ω,p) we infer that the spin-wave velocity
is identical to the Fermi velocity. This is the consequence
of our approximation as we ignored the bare spin dynamics
of the ferromagnet at the interface and our spin excitations
are itinerant excitations due to Dirac fermions. In this case,
we also see that, by comparing with the scaling behavior,
χ (ω,p) ∼ [v2

F p2 − (ω + iδ)2]η/2−1 for ω near vF |p| yields an
anomalous scaling dimension η = 1. This induced anomalous
dimension on the topological surface is very different from the
one of a two-dimensional planar FM at T = 0 corresponding to
a three-dimensional (d = 2 + 1) XY universality class, having
η ≈ 0.04.

V. DYNAMICAL GENERATION OF OUT-OF-PLANE
EXCHANGE AND SPONTANEOUS BREAKING OF

PARITY AND TIME-REVERSAL INVARIANCE

Next, we consider the fermionic propagator. Within an
imaginary time formalism, the fermion propagator G(p) is
given in general form by

G−1(p) = iγμpμ + J

∫
d3k

(2π )3
γμG(p − k)Dμν(k)�ν(p,k),

(27)

where �ν(p,k) is the vertex function. It is understood that
the Dirac matrices above are the imaginary-time counterparts
of the real-time ones defined earlier. They are assumed to
satisfy the Clifford algebra γμγν + γνγμ = 2δμν . In order to
determine G(p) approximately, we make the decomposition
G−1(p) = Z(p)iγμpμ + �(p) and assume the lowest-order
form for the vertex function, �μ(p,k) = Jγμ. Furthermore,
we will set Z(p) ≈ 1 for G(p) inside the integral in Eq. (27).
A mass will be generated if m ≡ �(0) does not vanish.
Note that a nonvanishing m implies that 〈ψ̄ψ〉 �= 0. Since
ψ̄ψ = n↑ − n↓, mass generation implies also an emergent
third component of the magnetization. Our strategy will be
to make an approximation in which �(p) is uniform, �(p) =
�(0) = m, and to see whether there is a solution to Eq. (27)
with m �= 0. We will solve Eq. (27) under the assumption that
m � |p| � �, where � is an ultraviolet cutoff, which here
is naturally given by � ≈ NJ 2/(h̄v2

F ), similarly to QED in
2 + 1 dimensions,27 where the cutoff is determined by the
charge squared times the number of fermion components. The
fermion mass modifies the vacuum polarization, and now a
term that is odd under parity may arise, so that the photon
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self-energy becomes

�μν(p) =
(

δμν − pμpν

p2

)
�even(p) + εμνλpλ�odd(p). (28)

However, under the assumption m � |p| � �, the contribu-
tion that is even under parity and time reversal, corresponding
to the transverse term in Eq. (22), remains unchanged, and we
obtain �even(p) = p2�(p).

In order to investigate the gap equation, we follow Ref. 44
and assume that N − L fermions acquire a positive mass +m,
while the remaining L fermions acquire a negative mass −m.
Thus, the effective action (22) for the vector field receives the
following additional contribution that is odd under parity and
time reversal [see Eq. (A19) in Appendix A],

Sodd
eff = 2

N

N∑
i=1

mi

∫
d3p

(2π )3
�(p)εμνλpλaμ(p)aν(−p). (29)

This leads, in turn, to an additional term in the vector-
field propagator given by Dodd

μν (p) = −32
∑

i(mi/N)εμνλpλ/

(NJ 2|p|3). Thus, the following self-consistent equation for mi

is obtained:

1 = 16

N

{[
1 − 8

m

mi

(
N − 2L

N

)]∫
d3k

(2π )3

1

|k|(k2 + m2)

+
∫

d3k

(2π )3

|k|
ω2(k2 + m2)

}
+ g

∫
d3k

(2π )3

k2

ω2(k2 + m2)
.

(30)

The second and third integrals above require some care,
although they are not difficult to solve and are calculated in
Appendix C.

After performing all integrals, the gap equation for
i = 1, . . . ,N − L becomes

1 − 8

π2N
= 64

π2N

(
1 − 2L

N

)
ln(m/�)

+ g�

4π

(
1 + 1

π
− 3

|m|
�

)
, (31)

while for i = N − L + 1, . . . ,N , we obtain

1 − 8

π2N
= − 64

π2N

(
1 − 2L

N

)
ln(m/�)

+ g�

4π

(
1 + 1

π
− 3

|m|
�

)
. (32)

To have the solution for L �= 0 one sees that the gap
equations (31) and (32) are only compatible with each other
if N is even, i.e., L = N/2. For an odd number of fermions
L = 0, which we discuss below. For an even number of Dirac
fermions we introduce the dimensionless quantities m̂ = m/�

and ĝ = �g and obtain

|m̂| = π + 1

3π

(
1 − ĝc

ĝ

)
, (33)

where

ĝc = 4π2

π + 1

(
1 − 8

π2N

)
. (34)

In terms of the dimensionful coupling constant g, we can
explicitly write

NJ 2gc

h̄2v2
F

= ĝc. (35)

Note that gc has a dimension of length squared and relates in
terms of energy scales of the lattice model via g ∼ Ua2/t ,
where a is the lattice spacing and U and t are the Hubbard
interaction and hopping, respectively. In field-theoretic units,
h̄ = vF = 1, g, it has, of course, a dimension of length since
the Dirac fermions have in this case a dimension of (length)−1

and the action has to be dimensionless.
Thus, we obtain that if N is even, a gap is generated

provided ĝ > ĝc. In this case there is no generation of the CS
term. Therefore, parity and time-reversal symmetries remain
preserved. The above result distinguishes itself from the QED
case44 due to a complete cancellation of the logarithm.

For an odd number of Dirac fermions, which is the
situation corresponding to a TI, we now search for the solution
mi = +m for all i and L = 0. In this case the logarithmic term
survives and dominates for |m| � � over the linear term in
|m|. Thus, the gap equation is given by Eq. (31), with L = 0
and where the term proportional to |m|/� is neglected. Then
we obtain

m̂ = exp

[
− (π + 1)N

256
(ĝ − ĝc)

]
, (36)

where ĝc is the same as before, given by Eq. (34). Equation (36)
only makes sense for ĝ > ĝc; otherwise, it does not decrease
with increasing N , which would at large N contradict
the condition m � |p| � �, in a situation reminiscent of the
QED case.44 However, in our case it is possible to overcome
the difficulty encountered there and obtain in addition the
generation of a CS term. In other words, we find that
the dynamic generation of the mass due to the screened
Coulomb interaction in a TI/FM heterostructure where the
FM has in-plane components has similar consequences for the
electrodynamics of the TI in contact with a FM with out-of-
plane magnetization. Namely, the topological magnetoelectric
term arises in the former case when values of the interaction
above ĝc are reached. The latter is determined by the bare
value of g in the topological insulator, multiplied by the ratio
of NJ 2/(h̄vF )2; see Eq. (35). This means that in the TI/FM
heterostructure with in-plane magnetization the dynamic mass
generation will be proportional to the absolute value of the
in-plane exchange coupling in the FM. This is interesting as
it points towards experimental realizability of the observed
effect by varying the FM substrate of the heterostructure.

VI. DISCUSSION

We note that the case of in-plane exchange coupling on a
topological surface is highly nontrivial with respect to the case
of out-of-plane exchange. Indeed, in the case of an out-of-plane
exchange a simple mean-field theory would generate a gap
for arbitrarily small values of the coupling constant g, and
no semimetal-insulator transition would take place in that
case.11 This situation is reminiscent of the metal-insulator
transition in the Hubbard model, where a mean-field theory
at half filling yields a gap � ∼ e−const/U , where U is the
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on-site Coulomb interaction.48 It is well known that this
result is not correct for values of U smaller than energy
scales of the order of the bandwidth.49 Note that on a TI
surface the mean-field result also leads to a phase transition
if the momentum dependence of the interaction induced by
projecting the bulk Hamiltonian on the edge states is taken into
account for some critical value Uc.50 In our case the out-of-
plane exchange is generated dynamically from the interplay
between quantum planar magnetic and charge fluctuations,
which is characterized by a competition between the in-plane
exchange coupling J and the screened Coulomb interaction
g. This leads to a dynamical mass generation accompanied by
the generation of a CS term, which implies a coupling between
the in-plane magnetization and the electric field E = −∇a0,
and to a Berry phase governing the precession dynamics of the
magnetization. Note that the inclusion of the charged channel
in the Hubbard-Stratonovich decoupling is crucial to obtain a
CS term.

The case of in-plane magnetization is of great experimental
relevance. Recently, a thin film of the FM insulator EuS has
been successfully grown on the surface of Bi2Se3,20 making
the surface of Bi2Se3 ferromagnetic by a proximity effect, with
magnetization at the interface being different from the bulk
EuS values. There were several features which point towards a
strong interaction between the magnetic moments of EuS and
Bi2Se3. One of them refers to the fact that the dependence of
the planar magnetoresistivity of the interface Bi2Se3 shows an
effectively lower Curie temperature than that of the bulk EuS,
which could be the result of the quantum fluctuations due to
the presence of surface Dirac fermions.11 Another effect is
even more interesting as it indicates significant out-of-plane
magnetization of the magnetic moments at the FM-TI interface
while the bulk EuS has the in-plane orientation of the magnetic
moments.20 Our results show that the out-of-plane orientation
of the moments will indeed be generated at the interface
by the interaction among the Dirac fermions, although on
the experimental side further mechanisms related to the
crystalline anisotropy at the grown interface could also be in
play. In addition, the direct gapping of the Dirac spectrum
of the surface electrons was reported very recently at the
EuS-Bi2Se3 interface.51 In particular, it was found that below
the Curie temperature there is a negative magnetoresistance
near zero field which is believed to be the consequence of
gap opening in the Dirac spectrum due to the proximity to
the ferromagnet with out-of-plane magnetization.52 According
to our calculations this effect must be dependent on the
temperature and on the strength of the out-of-plane component
of the magnetization, induced by the interaction. This would
be interesting to test experimentally.

VII. CONCLUSION

In conclusion, we have shown that in topological insulators
with a proximity-induced in-plane magnetization a gap can
be spontaneously generated by tuning the local electronic
interaction above a critical value, leading in this way to a
semimetal-insulator transition. In particular, considering the
number N of Dirac fermions, we find that when N is even,
the masses are generated in pairs ±|m| and no CS term
is generated, so that parity and time reversal are overall

preserved. On the other hand, for odd N , which is the case for
TI, all generated masses are equal and positive, and as a result, a
CS term with the TME effect is generated. In particular, we find
that the critical dimensionless value of ĝc for generating this
term is also proportional to the value of the in-plane exchange
coupling of the FM, making this effect depend on the choice
of the FM substrate in the experiment.

That no CS term is generated for even N is physically
reasonable since in that case we can change to a representation
where there are N/2 four-component Dirac spinors, in which
case the model may be reinterpreted as some model for
graphene, a material featuring an even number of Dirac cones.
Interestingly, in such a graphene model the gap generation
is associated with a mass spectrum containing masses ±|m|,
a scenario not considered so far in interacting models for
graphene where the “vector field” has only the time component
compared to QED.35,36 TIs, on the other hand, have an odd
number of Dirac cones. In this context, recent experiments
on EuS/Bi2Se3 heterostructures open the possibility that the
experimentally elusive gap generation in QED-like theories
may finally be observed in the near future.
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APPENDIX A: CALCULATION OF THE VACUUM
POLARIZATION FOR MASSIVE TWO-COMPONENT
DIRAC FERMIONS COUPLED TO A GAUGE FIELD

For pedagogical reasons, we review in this appendix in
detail the calculation of the one-loop vacuum polarization in
(2 + 1)-dimensional QED with massive two-component Dirac
fermions.22 We will perform the calculation in Euclidean space
(imaginary time). In this case the Dirac matrices satisfy the
same algebra as the Pauli matrices, having the anticommutator
{γμ,γν} = δμν and the commutator [γμ,γν] = 2iεμνλγλ. From
this algebra the traces of the product of the γ matrices
necessary to calculate the vacuum polarization follow:

tr(γμγν) = 2δμν, (A1)

tr(γμγνγλ) = 2iεμνλ, (A2)

tr(γμγνγλγρ) = 2(δμλδμρ + δμρδλν − δμνδλρ). (A3)

The vacuum polarization is represented by the Feynman
diagram shown in Fig. 2. It corresponds to the photon

FIG. 2. Feynman diagram representing the vacuum polarization.
The wiggly lines represent photons, and the internal lines represent
fermionic propagators.
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self-energy and is analytically given by

�μν(p) = −NJ 2
∫

d3k

(2π )3
tr[γμG(k)γνG(p + k)], (A4)

where G(k) is the (matrix) fermion propagator,

G(k) = 1

i �k + m
= m − i �k

k2 + m2
, (A5)

and the sign of the mass can be positive or negative. In the
field theory literature J = e, the electric charge.

Using the trace formulas (A1), (A2), and (A3), we can
express Eq. (A4) in the form

�μν(p) = 2NJ 2
∫

d3k

(2π )3

× 2kμkν + kμpν + pμkν − δμν(k2 + k · p + m2)

(k2 + m2)[(k + p)2 + m2]

− 2NJ 2mεμνλpλI (p), (A6)

where

I (p) =
∫

d3k

(2π )3

1

(k2 + m2)[(k + p)2 + m2]
. (A7)

Current conservation implies that Eq. (A6) can be cast in the
form

�μν(p) = 2NJ 2S(p)

(
δμν − pμpν

p2

)
− 2NJ 2mεμνλpλI (p).

(A8)

Indeed, it is not difficult to show that pμ�μν(p) = 0. We
will use dimensional regularization in this Appendix, with
the understanding that this is done only in the evaluation of
integrals, while γ matrices and the Levi-Civita tensor remain
as defined above for the (2 + 1)-dimensional case.

Taking the trace yields

�μμ(p) = 4NJ 2S(p) = −2NJ 2
∫

d3k

(2π )3

× k2 + k · p + 3m2

(k2 + m2)[(k + p)2 + m2]
. (A9)

By writing

k2 + k · p = 1

2
[(k2 + m2) + (k + p)2 + m2] − m2 − p2

2
,

(A10)

we can express S(p) in the form

S(p) = −1

2

∫
d3k

(2π )3

1

k2 + m2
+ 1

4
(p2 − 4m2)I (p). (A11)

The rules of dimensional regularization imply26

−
∫

d3k

(2π )3

1

k2 + m2
= 2m2

∫
d3k

(2π )3

1

(k2 + m2)2
, (A12)

such that Eq. (A11) becomes

S(p) = p2�(p) = m2I (0) + 1
4 (p2 − 4m2)I (p), (A13)

where we have introduced the standard notation �(p) used in
QED.

The integral I (p) can be evaluated explicitly,

I (p) = 1

4π |p| arctan

( |p|
2|m|

)

= 1

4π |p| arcsin

( |p|√
p2 + 4m2

)
(A14)

and

I (0) = 1

8π |m| . (A15)

We note therefore the important limit cases,

lim
m→0

S(p) = |p|
32

(A16)

and

S(p) = p2

48π |m| + O(p4). (A17)

Therefore, in the small mass limit the photon self-energy
becomes

�μν(p) ≈
m�|p|

NJ 2|p|
16

(
δμν − pμpν

p2

)
− NJ 2m

4|p| εμνλpλ,

(A18)

which in terms of the one-loop vacuum polarization for
massless fermions as defined in the main text, �(p) =
NJ 2/(16|p|), becomes

�μν(p) ≈
m�|p|

p2�(p)

(
δμν − pμpν

p2

)
− 4m�(p)εμνλpλ.

(A19)

In the large mass limit, on the other hand, we obtain

�μν(p) ≈
|p|�m

NJ 2

24πm
p2

(
δμν − pμpν

p2

)
− NJ 2

4π

m

|m|εμνλpλ.

(A20)

The above form was used in Ref. 11 to derive the effective
Lagrangian for the magnetization dynamics on the surface of
a three-dimensional TI.

APPENDIX B: VECTOR-FIELD PROPAGATOR

In order to find the propagator (23) of the vector field aμ

from Eq. (22), we simply have to solve the matrix equation,

Mμα(p)Dαν(p) = δμν, (B1)

where

Mμν(p) = �(p)(δμνp
2 − pμpν) + LμLν, (B2)

with Lμ = (J/
√

g)δμ0. In order to solve Eq. (B1), we
decompose Dμν(p) in the form

Dμν(p) = Aδμν + Bpμpν + CLμLν + DpμLν + EpνLμ.

(B3)

The unknown coefficients A, B, C, D, and E are easily
determined from Eq. (B1), so that Eq. (23) follows.
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The calculation can be easily generalized to the case where
a CS term is present, and Eq. (B2) is replaced by

Mμν(p) = �(p)(δμνp
2 − pμpν) + LμLν

+ 4

N

∑
i

mi�(p)εμνλpλ, (B4)

where we have assumed that the masses are small (see
Appendix A). In this case the decomposition of Dμν(p) has
to include the additional tensors εμνλpλ, εμαλpλLαpν , and
εμαλpλLαpμ. The result for the propagator is thus

Dμν(p) = 1

(p2 + 16m2)�(p)

×
{
δμν + [(p2 + 16m2)�(p) + L2]

(p · L)2
pμpν

− pμLν + pνLμ

p · L
− 4

Np2

∑
i

miεμνλpλ

}
, (B5)

which in the regime |p| � |m| used to solve the gap equation
and to write Eq. (29) is approximated simply by

Dμν(p) ≈ 1

p2�(p)

{
δμν + [p2�(p) + L2]

(p · L)2
pμpν

− pμLν + pνLμ

p · L
− 4

Np2

∑
i

miεμνλpλ

}
. (B6)

APPENDIX C: EVALUATION OF INTEGRALS

Here we calculate two of the integrals appearing in Eq. (30):

I =
∫

d3k

(2π )3

|k|
ω2(k2 + m2)

(C1)

and

J =
∫

d3k

(2π )3

k2

ω2(k2 + m2)
, (C2)

where we recall the notation k = (ω,vF k) and k2 = ω2 +
v2

F k2. Here we can simply set vF = 1. The integrands of both
integrals I and J are singular at ω = 0. However, we can
solve this singularity by assuming a regularization where a
finite value is obtained through the principal values of I and

J . Let us consider first the integral I . Using partial integration,
we can cast the integral in ω in the form∫ ∞

−∞

dω

2π

√
ω2 + k2

ω2(ω2 + k2 + m2)

=
∫ ∞

−∞

dω

2π

1

ω

d

dω

( √
ω2 + k2

ω2 + k2 + m2

)
=

∫ ∞

−∞

dω

2π

1√
ω2 + k2

×
[

2m2

(ω2 + k2 + m2)2
− 1

ω2 + k2 + m2

]
. (C3)

Thus, we can write

I = 2m2
∫

d3k

(2π )3

1

|k|(k2 + m2)2
−

∫
d3k

(2π )3

1

|k|(k2 + m2)
.

(C4)

For � � |m|, we have

I = 1

2π2

[
1 + ln

( |m|
�

)]
. (C5)

The integral J can be rewritten as J = J1 + J2, where

J1 =
∫

d3k

(2π )3

1

k2 + m2
(C6)

and

J2 =
∫

d3k

(2π )3

k2

ω2(k2 + m2)
. (C7)

In the limit � � |m| we can trivially evaluate J1:

J1 = �

2π2
− |m|

4π
. (C8)

For J2 we can again regularize the singularity for ω = 0,

J2 = −
∫

d2k

(2π )2

∫ ∞

−∞

dω

2π

1

ω2 + k2 + m2

d

dω

1

ω

= 2
∫

d2k

(2π )2

∫ ∞

−∞

dω

2π

k2

(ω2 + k2 + m2)2

= 1

4π
(� − 2|m|). (C9)

Therefore,

J = �(1 + π )

4π2
− 3|m|

4π
. (C10)
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