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Role of duality symmetry in transformation optics
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Maxwell’s equations in curved space time are invariant under electromagnetic duality transformations. We
exploit this property to constrain the design parameters of metamaterials used for transformation electromagnetics.
We show that a general transformation must be implemented using a dual-symmetric metamaterial. We also show
that the spatial part of the coordinate transformation has the same action for both helicity components of the
electromagnetic field, while the spatiotemporal part has a helicity dependent effect. Dual-symmetric metamaterials
can be designed by constraining the polarizability tensors of their individual constituents, i.e., the meta atoms.
We obtain explicit expressions for these constraints. Two families of realistically implementable dual-symmetric
meta atoms are discussed, one that exhibits electric-magnetic cross polarizability and one that does not. In simple
three-dimensional periodical arrangements of the meta atoms (Bravais lattices), the helicity dependent effect can
only be achieved if the meta atoms exhibit nonzero electric-magnetic cross polarizabilities. In our derivations,
we find that two dipoles located at the same point, one electric (p) and one magnetic (m), are needed to produce
a total field with well-defined helicity equal to +1 or −1 and that they must be related as p = i

c
m or − i

c
m,

respectively.
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Transformation electromagnetics offers us a path to the
design of invisibility cloaks, perfect lenses, and any other
device whose action on the electromagnetic field can be
casted as a coordinate transformation in space time.1–3

Transformation electromagnetics is based on the fact that
Maxwell’s equations in an empty region of curved space time
are equivalent to those inside a material medium in a flat
space-time background.4 The desired transformation specifies
a space-time metric which at its turn specifies the constitutive
relations of the material. A detailed treatise in transformation
electromagnetics can be found in Ref. 5.

Such a formidable step in our ability to manipulate
electromagnetic waves comes with a correspondingly steep
increase in the tunability requirements of material constitutive
relations. Nature does not provide us with nearly enough
flexibility in this aspect. We must synthesize artificial mate-
rials: electromagnetic metamaterials.6 Transformation media
are typically implemented by means of an ensemble of in-
clusions inside a homogeneous and isotropic dielectric. These
inclusions, electromagnetically small for the wavelengths of
the operating bandwidth, are sometimes referred to as meta
atoms. The idea is to obtain the required constitutive relations
from the collective response of the meta atoms. Currently,
though, there is no systematic design methodology to go
from the constitutive relations to the actual implementation
of the metamaterial. In general, this is a highly complex task,
partly because of the huge number of degrees of freedom
of a general metamaterial, which include the electromagnetic
response of the meta atoms and their three-dimensional spatial
arrangement. Reducing the number of degrees of freedom
while maintaining the ability to implement general coordinate
transformations is desirable.

In this paper we use a nongeometrical symmetry of
Maxwell’s equations, electromagnetic duality, to constrain
the individual response of the meta atoms without restricting
the implementable transformations. There is a deep con-
nection between transformation electromagnetics and duality

symmetry. Almost two decades ago, I. Bialynicki-Birula
realized that the two helicity components of an electromagnetic
wave do not mix in a gravitational field.7,8 Since helicity,
as an operator, is the generator of duality transformations
in the same sense that angular momentum is the generator
of rotations, helicity preservation is equivalent to invariance
under duality transformations. It follows that Maxwell’s
equations in a general space-time geometry are invariant under
duality transformations. We can therefore obtain a constraint
without sacrificing generality: a metamaterial that implements
a transformation medium should preserve helicity or, in
other words, possess duality invariance. It follows that any
transformation can be implemented using only dual-symmetric
meta atoms, that is, meta atoms which, upon scattering,
preserve the helicity of the electromagnetic field. Assuming
that the meta atoms are electromagnetically small enough so
that they can be treated in the dipolar approximation, we
can obtain the restrictions that the requirement of duality
invariance imposes on the polarizability tensors of the meta
atoms.

In this paper, we provide the theoretical basis and tools
for the use of duality symmetry as a guide in the design of
transformation electromagnetic devices. The paper starts with
a brief introduction to the concepts of duality and helicity in
free space and continues with the study of duality symmetry
for materials with general linear constitutive relations. We
obtain the restrictions that the constitutive relations must meet
in order for the material to be dual symmetric. As expected,
the constitutive relations induced by a general space-time
geometry meet those restrictions. Following the argument
that the metamaterial must be dual symmetric, we derive the
constraints on the polarizability tensor of a dual meta atom.
Finally, we discuss two classes of realistically implementable
dual-symmetric meta atoms.

Electromagnetic duality is a transformation that mixes
electric and magnetic fields by means of a real angle θ

(Chap. 6.11 in Ref. 9). Assuming space and time dependent
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fields (r,t),

E → Eθ = E cos θ − Z0H sin θ,
(1)

Z0H → Z0Hθ = E sin θ + Z0H cos θ,

where Z0 = √
μ0/ε0 and (e0,μ0) are the vacuum permittivity

and permeability constants. In vacuum, Eq. (1) is a sym-
metry of Maxwell’s equations: If the electromagnetic field
(E(r,t),H(r,t)) is a solution of the free space Maxwell’s
equations, then the field (Eθ (r,t),Hθ (r,t)) is also a solution
for any value of θ . In the 1960s, Calkin10 and Zwanziger11

showed that helicity was the conserved quantity related to
such symmetry. The helicity operator is defined (Chap. 8.4.1 in
Ref. 12) as the projection of the total angular momentum J onto
the linear momentum direction, i.e., � = J · P/|P|. In the same
way that linear momentum generates translations and angular
momentum generates rotations, the helicity operator generates
the duality transformation in Eq. (1). For the transverse
electromagnetic field, helicity can take the values ±1, which
completely describe its polarization degrees of freedom. It
is possible to intuitively understand the meaning of helicity
when considering the momentum space decomposition of a
general field, that is, as a superposition of plane waves. In
this representation, helicity is related to the handedness of
the polarization of each and every plane wave. Helicity is
well defined only when all the plane waves have the same
handedness with respect to their momentum vector, including
both propagating and evanescent plane waves.

In general, the presence of matter breaks the symmetry
of the equations: a solution (E(r,t),H(r,t)) does not result
in a new solution when transformed as in Eq. (1). As a
consequence, the interaction with matter generally produces
components of changed helicity. Nevertheless the electromag-
netic duality symmetry can be restored for the source-free
macroscopic Maxwell’s equations in material systems charac-
terized by scalar permittivities and permeabilities when these
meet a particular constraint.13 We shall see that duality can also
be restored in a macroscopic bianisotropic and inhomogeneous
medium as well as in the dipolar approximation. Both of
these cases are relevant for transformation devices made
with metamaterials. Figure 1 illustrates helicity preserving
and nonpreserving electromagnetic interactions with material
systems.

In this paper, we will use the Riemann-Silberstein represen-
tation of electromagnetic fields.7,8,14 This formulism is very
well suited to treat problems involving duality and helicity.
If the duality transformation in Eq. (1) is applied to the
combinations

G±(r,t) = 1√
2

(E(r,t) ± iZ0H(r,t)), (2)

they transform in a simple way by just acquiring a phase
Gθ

±(r,t) → exp(∓iθ )G±(r,t). This means that the G±(r,t)
are eigenstates of the duality transformation with eigenvalues
equal to exp(∓iθ ). The same is true for

F±(r,t) = 1√
2

(Z0D(r,t) ± iB(r,t)) (3)

(a)

Non-Dual

(b)

Dual

FIG. 1. (Color online) (a) An incoming field with well-defined
helicity, in this case a single plane wave of definite polarization hand-
edness (blue), producing a scattered field that contains components
of the opposite helicity (red). The helicity of the scattered field in
figure (a) is not well defined because it contains plane waves of
different helicities. In general, the helicity of an electromagnetic field
is not preserved after interaction with a non-dual-symmetric object.
(b) Helicity preservation after interaction with a dual-symmetric
object. The helicity of the scattered field is well defined and equal to
the helicity of the input field.

under the companion transformation (Chap. 6.11 in Ref. 9)

Z0D → Z0Dθ = Z0D cos θ − B sin θ,
(4)

B → Bθ = Z0D sin θ + B cos θ,

which results in Fθ
±(r,t) → exp(∓iθ )F±(r,t).

It follows that G±(r,t) and F±(r,t) are eigenstates of the
generator of the duality transformation with eigenvalues equal
to ±1. Under the restriction of positive frequencies, helicity
can be shown to be such a generator (see Refs. 10,11,13,15, and
16 for explicit derivations). As explained in Sec. 2.2 of Ref. 8,
this restriction avoids redundant degrees of freedom, and then
G+(r,t) and F+(r,t) are eigenstates of the helicity operator
with eigenvalue 1 and G−(r,t) and F−(r,t) are eigenstates of
the helicity operator with eigenvalue −1.

The crucial point is that the free space time evolution of the
two helicities F±(r,t) or G±(r,t) is decoupled.8 This is clearly
seen in the free space Maxwell’s curl equations written as8

(c0 = 1/
√

ε0μ0)

i∂tF±(r,t) = ±c0∇ × F±(r,t). (5)

The same arguments hold for the case of a homogeneous and
isotropic medium with constitutive relations D = εE, B = μH
by simply replacing ε0 and μ0 by ε and μ and hence Z0 by Z

and c0 by c.
The separate evolution of the two helicity components is a

consequence of the invariance of the equations under duality
transformations. This also happens for Maxwell’s equations in
a gravitational field. The formalism of transformation optics
implicitly contains this invariance. This is the property that we
exploit in the remainder of this paper to obtain guidelines in the
design of metamaterials suitable for transformation devices.

Having used the very convenient Riemann-Silberstein
notation to discuss helicity and duality in Maxwell’s equations
for electromagnetic fields of general time dependence, we will
now assume a harmonic decomposition of all fields, as in

X(r,t) =
∫ ∞

0
dωR{X̂(r,ω) exp(−iωt)}, (6)
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whereR{·} is the real part, and treat each frequency component
X̂(r,ω) exp(−iωt) separately for the rest of the paper. This
separation is a common approach in the field of metamaterials
because it allows for a simple treatment of the frequency
dependent responses of many meta atoms. For linear systems,
this setting is completely general. In Eq. (6), ω is restricted
to positive frequencies only. It is important to note that this
restriction does not reduce the generality of the treatment
because, for electromagnetic fields, all the information is
contained in the positive frequency part and duplicated in
the negative frequency part, or vice versa. For the rest of the
paper, the time dependence is always implicitly assumed to be
harmonic. The general spatiofrequential dependency (r,ω) is
assumed but normally not explicitly written. For example, the
symbols E and E(r,ω) both refer to Ê(r,ω) exp(−iωt).

In order to keep the expressions formally similar to those
in Refs. 5 and 8, which use the (r,t) representation, time
derivatives ∂t , which correspond to multiplication by −iω for
harmonic fields, will not be taken.

To exploit the simple transformation properties of F± and
G± under duality, we will use the following two six-component
vectors:

F = 1√
2

[
ZD + iB

ZD − iB

]
, G = 1√

2

[
E + iZH

E − iZH

]
. (7)

Both vectors in Eq. (7) keep the positive helicity component on
the upper three elements and the negative helicity component
on the lower three elements. We are now ready to start the
derivations.

First, we examine the duality transformation properties
of Maxwell’s equations in a medium with general linear
constitutive relations F = NG and derive the conditions on
N for the medium to be dual symmetric. We implicitly assume
that N can in general be a function of space and frequency
N (r,ω), and that it can also include losses. Then, we focus on
the particular case of the linear constitutive relations induced
by a general space-time geometry and verify that they meet
the duality conditions.

Using Maxwell’s curl equations we can write

i∂tF = i∂tNG =
[∇× 0

0 −∇×
]
G. (8)

In the G(F) basis, the duality transformation of Eqs. (1) and
(4) is simply the 6×6 matrix:

Dθ =
[

exp(−iθ )I 0

0 exp(iθ )I

]
, (9)

where I is the 3 × 3 identity matrix. We now use Eq. (9) to
transform Eq. (8):

Dθi∂tND−1
θ DθG = Dθ

[∇× 0

0 −∇×
]
D−1

θ DθG. (10)

Since Dθ commutes with i∂t and with the block-diagonal
operator containing the curls, we obtain

i∂tDθND−1
θ Gθ =

[∇× 0

0 −∇×
]
Gθ , (11)

where Gθ = DθG. The necessary and sufficient invariance
condition that keeps the form of Eq. (11) in the Gθ variable the

same as the form of Eq. (8) in the G variable is DθND−1
θ = N ;

that is, N and Dθ must commute. This happens if and only if
N is block diagonal in 3×3 blocks. If we use the definitions
in Eq. (7) to work back what this block-diagonal condition
means for a more common form of the constitutive relations[

Z0D

B

]
=

[
ε(r,ω) χ(r,ω)

γ (r,ω) μ(r,ω)

][
E

Z0H

]
, (12)

we obtain that a block diagonal N forces [(r,ω) dependence
implicit]

ε = μ, χ = −γ . (13)

The restrictions in Eq. (13) are the necessary and sufficient
conditions for duality invariance (helicity preservation) for a
general linear inhomogeneous and bianisotropic media. When
they are met, the time evolution of G reads

i∂t

[
ε − iχ 0

0 ε + iχ

]
G =

[∇× 0

0 −∇×
]
G. (14)

Equation (13) generalizes the results obtained in Sec. 2.2
of Ref. 8 for isotropic and inhomogeneous media without
magnetoelectric couplings. Since in general N depends on the
spatial position, Eq. (13) also applies across the boundaries of
different bianisotropic media, which generalizes the results for
helicity preservation across boundaries of different isotropic
and homogeneous media without magnetoelectric couplings.13

We now turn our attention to the constitutive relations
induced by an empty but curved space time with a metric
gμν . They were derived in Ref. 4. In the Riemann-Silberstein
representation, they can be shown to be8

(F+)n = − 1

g00
(
√−ggnm − ig0kε

nkm)(G+)m, (15)

where n,m = [1,2,3],
√−g is the square root of the determi-

nant of −gμν , the inverse metric gμν is such that gμνgνk =
δ

μ

k = diag(1,1,1,1), and εnkm is the totally antisymmetric
three-dimensional Levi-Civita symbol.

For the other helicity components (G−,F−), straightforward
algebra leads to

(F−)n = − 1

g00
(
√−ggnm + ig0kε

nkm)(G−)m. (16)

We can combine Eqs. (15) and (16) in a matrix form:

F =
[

A+ 0

0 A−

]
G, (17)

where Anm
± = (−√−ggnm ∓ ig0kε

nkm)/g00. From our previ-
ous discussion, the block-diagonal form of Eq. (17) implies
duality invariance of a curved space time. Since we have not
imposed any restriction on gμν , duality invariance must be
inherent to the structure of any space-time metric. Duality
invariance can hence be seen as a necessary condition
for any transformation medium. Furthermore, using results
from Ref. 3, we arrive at some interesting conclusions. In
Ref. 3, the authors showed that ε is related to space-only
transformations and χ is related to transformations which

mix space and time components. In Eq. (14) we note that,
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since the curl operator has an opposite sign effect on the
two helicity components, ε has the same effect in the time
evolution of both helicity components while χ causes a helicity

dependent transformation. Consequently, from the coordinate
transformation point of view, space-only transformations are
helicity independent while space-time mixing has a helicity
dependent effect.

We will now discuss how the requirement of duality
invariance in transformation electromagnetics affects the
design of metamaterials. If all the constituent meta atoms are
dual symmetric, their collective response will also be dual
symmetric. In other words, if the field scattered by each meta
atom preserves the helicity of its exciting field, helicity will
be preserved by the entire metamedium. Dual-symmetric meta
atoms are the only kind of meta atoms needed to implement a
general transformation. We will later discuss two realistically
implementable classes of dual-symmetric meta atoms.

At this point, the question arises of whether a dual-
symmetric metamaterial could be built using non-dual-
symmetric meta atoms, in other words, if by some collective
effect there is a cancellation of the changed helicity com-
ponents generated by each nondual meta atom. There is
evidence that, in general, a medium composed by several
copies of the same particle does not preserve helicity unless the
particle itself preserves helicity. For example, Ref. 17 shows
that random mixtures of small particles are dual only when
the particles themselves are dual. Also, for arrays of meta
atoms,18,19 the type of polarization conversion obtained in both
reflection and transmission shows that helicity was not pre-
served in the interaction. In those experiments, the amount by
which the array rotates the plane of linear polarization depends
on the polarization angle of the incident light. This negates the
conservation of the helicity eigenstates (see Ref. 17 for an
extended discussion). Duality is therefore not a given. The
investigation of the question at the beginning of the paragraph
is left for the future. In the remainder of this paper we only
consider the engineering of the electromagnetic properties of
the individual meta atoms as the way to achieve duality of the
metamaterial.

We advance to the study of duality symmetry for the meta
atoms. We assume that the size of a meta atom allows us to
model it by a polarizability tensor and derive the restrictions
that the tensor must meet in order for the meta atom to be dual
symmetric.

We start with a dipolar scatterer at position r′ with
polarizability tensor M . The electric (p) and magnetic (m)
dipoles induced by an incident electromagnetic field can be
written as the product of the 6 × 6 tensor M times the six
component column vector formed by the incident electric
E(r′,ω) and magnetic H(r′,ω) fields:[

p(ω)

m(ω)

]
= M

[
E(r′,ω)

H(r′,ω)

]

=
[

αpE(ω) αpH(ω)

αmE(ω) αmH(ω)

][
E(r′,ω)

H(r′,ω)

]
, (18)

where M is decomposed into its four 3 × 3 blocks, which are
labeled using an obvious notation. The strategy we now follow
is to impose that the total scattered field due to p(ω) and m(ω)

preserves the helicity of the incident field. We first obtain the
relationship that must hold between p(ω) and m(ω) in order
for their combined emission to have a well-defined helicity.
Then, we find the conditions that M must meet so that incident
fields with well-defined helicity induce dipoles which produce
a scattered field with the same well-defined helicity. The ω

dependence is from now on implicit. Strictly speaking, the
restrictions that we will obtain must be met across the whole
bandwidth of operation.

For the first task, we consider the field emitted by an electric
dipole p and a magnetic dipole m located at the same point in
an infinite homogeneous and isotropic medium with electric
and magnetic constants (ε,μ). We denote by (Ep,Hp) the
fields produced by the electric dipole p and by (Em,Hm) those
produced by the magnetic dipole m. The total fields are the
sum of the fields radiated by the two dipoles:

E = Ep + Em, H = Hp + Hm, (19)

from which we can obtain the two helicity components:
√

2G+ = (Ep + Em) + iZ(Hp + Hm),
(20)√

2G− = (Ep + Em) − iZ(Hp + Hm).

A total field with well-defined helicity equal to +1 will have
no component of helicity equal to −1; thus,

√
2G− = (Ep + Em) − iZ(Hp + Hm) = 0. (21)

To solve Eq. (21), we use the relations in Chap. 9.3 of Jackson’s
book:9 A magnetic dipole m produces electric and magnetic
fields (Em,Hm) which are related to the electric and magnetic
fields (Ep̄,Hp̄) produced by an auxiliary electric dipole p̄ in
the following way:

p̄ = m
c

, Em = −ZHp̄, Hm = 1

Z
Ep̄. (22)

Note that, for now, p̄ and p are not related. Using Eq. (22) we
turn Eq. (21) into

Ep − iZHp = iEp̄ + ZHp̄. (23)

Equation (23) must be met in all points of space. Since
the radiated fields depend linearly on the dipole vectors, the
solution is

m
c

= p̄ = −ip. (24)

The corresponding steps for a well-defined helicity equal to
−1 result in m/c = p̄ = ip.

We conclude that

p = ±i
m
c

(25)

are the only two cases in which electric and magnetic dipoles
at the same point produce a field with well-defined helicity,
respectively, equal to ±1. Both types of dipole must be present
for it.

We can now advance to the last part of our program and
find the conditions on the polarizability tensor M under which
the helicity of the incident field is preserved in the scattered
field due to the induced dipoles in Eq. (18). We proceed
by changing our representations of the incident fields and
the induced dipoles in Eq. (18) in order to separate the two
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helicity components. For the fields, we will use the vector G in
Eq. (7). For the dipoles, in light of Eq. (25), the transformation
q± = 1/

√
2 (p ± im/c) separates the dipolar components that

produce fields with well-defined helicity. The transformations
to obtain G from E and H and q± from p and m are,
respectively, given by the matrices

T1 = 1√
2

[
I iZ

I −iZ

]
, T2 = 1√

2

[
I i

c
I

I − i
c
I

]
. (26)

With the use of these matrices, we transform Eq. (18),

T2

[
p

m

]
= T2MT −1

1 T1

[
E

H

]
, (27)

into [
q+
q−

]
= T2MT −1

1 G. (28)

In light of Eq. (28), the condition for helicity to be preserved is
that T2MT −1

1 must be 3×3 block diagonal, which then imposes

αpE = εαmH, αmE = −
αpH

μ
. (29)

Note that this condition does not depend on whether the tensors
represent a lossless or lossy meta atom. When Eq. (29) is met,
we obtain[

q+
q−

]
=

⎡
⎣αpE − i

√
ε
μ
αpH 0

0 αpE + i
√

ε
μ
αpH

⎤
⎦G. (30)

It is clear from the derivations that a field with well-defined
helicity incident upon a small scatterer whose polarizability
tensor meets Eq. (30) will only induce the dipole of type
Eq. (25) that corresponds to its helicity. The resulting scattered
field radiated by such a dipole will preserve the helicity of
the incident field. We conclude that, for scatterers described
by their polarizability tensors, the relations in Eq. (29) are the
necessary and sufficient conditions for helicity preservation or,
equivalently, duality symmetry. Therefore, and accordingly to
our previous arguments, in the context of transformation elec-
tromagnetics and metamaterials, Eq. (29) provides a constraint
of the electromagnetic response of the meta atoms that does
not sacrifice the generality of the achievable transformation. In
Ref. 20, the authors arrive at conditions Eq. (29) as one of the
necessary conditions for zero backscattering of an electrically
small object.

The comparison of Eqs. (30) and (14) shows that both ε and
αpE have the same action on the two helicity states, while χ and

αpH are the ones responsible for helicity dependent transfor-
mations. The spatial inversion properties of the inclusion are
crucial to establish a priori which inclusions can and which
cannot exhibit nonzero cross polarizabilities (αpH,αmE). For
example, if we take inclusions that are invariant under a spatial
inversion (parity) operation, their cross polarizabilities can be
shown to vanish due to the transformation properties of p,m,E,
and H under spatial inversion (Table 6.1 in Ref. 9).

For the overall effective response of the metamaterial,
the properties of the three-dimensional arrangement are also
important. For example, if we choose a Bravais lattice with

Δx

Δy

Δz

(a)

l

r

(b)

Δs
Δs

Δs

(c)

FIG. 2. (a,c) Lattice unit cells. (b) Single turn helix. (a) Spheres
in an orthorhombic lattice arrangement (
x �= 
y �= 
z). The spatial
inversion symmetry of this structure precludes it from exhibiting
magnetoelectric coupling in its effective constitutive relations. In (c),
the inversion symmetry of the cubic lattice is broken by the chiral
inclusions (b), and the magnetoelectric coupling is allowed.

sites r(n1,n2,n3) given by

r(n1,n2,n3) = n1a + n2b + n3c, (31)

where ni are integers and (a,b,c) are the lattice vectors,
spatial inversion is always a symmetry of the lattice because
for each point (n1,n2,n3) there exists its spatially inverted
image at (−n1,−n2,−n3). Using now the spatial inversion
transformation properties of E,H,D, and B, we can see that the
lattice itself cannot induce nonzero values of the constitutive
magnetoelectric tensors (χ,γ ) in Eq. (13). In a Bravais lattice,

these tensors must originate from the inclusion’s cross polariz-
abilities (αpH,αmE). This situation is analogous to the breaking
of time-reversal symmetry in a magnetic crystal due not to the
lattice itself but to the alignment of the magnetic moments
of the atoms in it and their transformation properties under
time reversal. Figure 2 illustrates the discussion about spatial
inversion. In this context, and considering Eq. (30), we can
also conclude that αpE performs space-only transformations
and αpH mixes space and time components.

We now apply our results to two kinds of inclusions
that are commonly considered for metamaterials: dielectric
spheres21–24 and conducting chiral inclusions.23,25,26 Inclu-
sions that are small with respect to the wavelengths of the
operating bandwidth can be modeled with good approximation
by a pair of colocated electric and magnetic dipoles. In this
approximation, the sphere can be made to meet the duality
condition Eq. (29) by appropriately choosing its radius as
a function of the material.27 For a conducting helix and
other conducting chiral inclusions, duality can be ensured by
adjusting their geometrical dimensions. Figure 2 illustrates the
two kinds of inclusions.

Spheres have spatial inversion symmetry. Therefore αpH =
αmE = 0, and it follows that the sphere is an inclusion
that cannot produce helicity dependent transformations for
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arrangements of the type Eq. (31). It also follows that the
only condition that a sphere has to meet for it to be dual
symmetric is αpE = εαmH. Consider then a small dielectric
sphere with relative electric and magnetic constants equal to
εS and 1, respectively. The polarizabilities of a such a sphere
when immersed in a homogeneous and isotropic medium can
be derived analytically. Their expressions can be found, for
example, in Chap. 3.4 of Ref. 21. In our choice of units for the
tensors, they read

αpE = Iε
6πi

k3
a1, αmH = I

6πi

k3
b1, (32)

where ε and k are those of the host medium. The numbers a1

and b1 are the Mie coefficients of dipolar order. Expressions
for the Mie coefficients can be found, for example, in Sec.
9.25 of Ref. 28. The duality condition Eq. (29) is then met for
the sphere when a1 = b1. Assuming that the relative magnetic
constants of both the sphere and the host medium are one, the
Mie coefficients depend on the wavelength of the illumination
and the permittivity εS and radius rS of the sphere. For a given
wavelength and εS , the solution to the equation a1(rS) = b1(rS)
determines one particular radius. For that radius, the sphere is
dual in the dipolar approximation according to Eqs. (29) and
(32). Outside the dipolar regime, if higher multipolar orders
are considered, the sphere ceases to be dual. There will be
some helicity change upon scattering. The idea is that for
small spheres, where the nondipolar terms are very small, the
helicity change will be correspondingly small. For example, in
a recently published study of duality in dielectric spheres,27 the
following case can be found: A sphere of 130-nm radius and a
refractive index of 2.55 is dual in the dipolar regime (a1 = b1).
The total helicity conversion due to symmetry-breaking higher
multipolar orders is of the order of 10−4 in converted power.

Now to the other example. Chiral inclusions lack spatial
inversion symmetry. Consequently, nonzero electric and mag-
netic cross polarizabilities αpH and αmE are allowed. This type
of inclusions is inherently suitable for the implementation of
helicity dependent transformations. Helices and chiral split
ring resonators (Ch-SRRs)25,26,29,30 are being considered as
meta atoms for operation from the microwave to the infrared
regime. Analytical expressions for their polarizability tensors
have been derived under suitable approximations.30–32 Using
those expressions, it can be seen that duality Eq. (29) can be
achieved around the resonant frequency of the inclusion by
adjusting its dimensions. For the helix (Sec. 4.1 of Ref. 32),
the key dimensional parameter is r2/l, the ratio between the
square of the radius of the loop and the length of the straight
wire [see Fig. 2(b)]. For the Ch-SRR (Sec. 3 in Ref. 30), it is the
ratio between the square of the radius of the rings and the height
separation between the two parallel rings comprising the chiral
inclusion (see Fig 1. in Ref. 30 for a drawing of a Ch-SRR).
In electromagnetic terms, the meaning of the key parameter is
very similar in both the helix and the Ch-SRR cases.

The value of the key parameter that makes the inclusion dual
has a 1/ω dependency. If the structure is made dual for the
resonant frequency, many physically interesting phenomena
occur. For example, in Ref. 25, it is shown that a helix
meeting such a condition interacts only with one of the
circular polarizations, that is, is transparent for the other
one. In Ref. 32, such a helix is shown to maximally interact
with a given electromagnetic field, extracting the maximum
possible power from it. In Ref. 30 the authors state that,
under such a condition, a Ch-SRR has several advantages
for building negative refractive index metamaterials, including
wide operation bandwidth and lack of forbidden bands.

All these conditions were found in those works without
consideration of the duality-symmetry properties of the struc-
ture. In our opinion, the fact that all these interesting and
apparently useful phenomena occur when the structure is dual
is not a coincidence. We think that it is an indication that the
consideration of the duality symmetry provides a useful guide
for the design of meta atoms for transformation devices.

In this article, we have introduced the theoretical basis
and tools for the use of duality symmetry in the design
of transformation electromagnetic devices. In particular, we
have derived the constraints that the polarizability tensor of
a dual-symmetric meta atom must meet. Duality symmetry,
equivalent to helicity preservation, is already an inherent
property of Maxwell’s equations in a curved space time;
therefore, the restriction to the duality invariant class of
meta atoms does not restrict the implementable space-time
transformations. Additionally, we have shown that the space-
only part of the coordinate transformation acts equally on both
helicity components of the field, while the part that mixes
space and time has a helicity dependent effect. Two families of
realistically implementable dual-symmetric meta atoms have
been discussed, one that exhibits electric-magnetic coupling
and one that does not. In simple three-dimensional periodical
arrangements of the meta atoms (Bravais lattices), the helicity
dependent effect can only be achieved for meta atoms
exhibiting nonzero electric-magnetic cross polarizabilities.
Additionally, we have found that for a pair of colocated electric
(p) and magnetic (m) dipoles to generate a field with well-
defined helicity equal to ±1 they must be related as p = i

c
m

or − i
c
m, respectively. We have also found the restrictions for

dual-symmetric constitutive relations of inhomogeneous and
anisotropic media, which comprise the case of the boundary
between two different such media.
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