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Topological classification of crystalline insulators with space group symmetry
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We show that in crystalline insulators, space group symmetry alone gives rise to a topological classification
based on the discretization of electric polarization. Using C3 rotational symmetry as an example, we first prove
that the polarization is discretized into three distinct classes, i.e., it can only take three inequivalent values.
We then prove that these classes are topologically distinct. Therefore, a Z3 topological classification exists,
with polarization as a topological class index. A concrete tight-binding model is derived to demonstrate the Z3

topological phase transition. Using first-principles calculations, we identify graphene on a BN substrate as a
possible candidate to realize these Z3 topological states. To complete our analysis, we extend the classification
of band structures to all 17 two-dimensional space groups. This work will contribute to a complete theory of
symmetry-conserved topological phases and also elucidate topological properties of graphenelike systems.
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I. INTRODUCTION

Since the celebrated discovery of the quantum Hall effect,1

topological classification of electronic states has emerged as
a powerful concept in condensed matter physics. Quantum
Hall insulators are distinguished from ordinary insulators
by a topological index, the Thouless-Kohmoto-Nightingale–
den Nijs (TKNN) number, which gives the quantized Hall
conductance.2,3 For a long time, the TKNN number was
thought to be the only topological index describing nondegen-
erate electronic ground states. Recently, it was realized that in
crystalline insulators, new topological indices can be defined
in the presence of discrete symmetries, which has led to the
identification of a slew of new topological states. For example,
quantum spin Hall insulators are characterized by a nontrivial
Z2 index,4 which is protected by time-reversal symmetry.5,6

Similarly, magnetic translation symmetry can also give rise to
a Z2 classification in antiferromagnetic insulators.7 Another
interesting proposal is the so-called topological crystalline
insulators, in which a Z2 index can be defined and is
protected by both time-reversal and certain point-group
symmetries.8,9

In this paper, we show that in crystalline insulators, space
group symmetry alone can give rise to a new topological clas-
sification based on the discretization of electric polarization.
Our idea is inspired by a beautiful result due to Zak10 and
builds upon work done by Vanderbilt and King-Smith.11 Zak
showed that in one-dimensional (1D) systems with inversion
symmetry, the Berry phase of the Bloch bands can be either 0 or
π (Ref. 12) (when the origin is defined at the Wyckoff positions
of the 1D crystal). This discretization of the Berry phase
naturally leads to a Z2 classification in one dimension. Later
on, Vanderbilt and King-Smith13 showed that this property
also carries over to higher dimensions, with the role of Zak’s
phase replaced by electric polarization.13,14 In this paper,
we expand this idea by showing that under conservation of
crystal symmetry, the discretized polarization can be used as
a topological index. Recently, the role of crystal symmetry in
the classification of topological matter has been discussed in
several works.15–17

For the sake of definiteness, 2D crystals with C3 rotational
symmetry are used as an example in the following discussion.
We first prove, from a general symmetry argument, that the
polarization is discretized and can only take values belonging
to three distinct classes. Therefore, a Z3 topological classi-
fication exists. We then proceed by constructing a concrete
tight-binding model to demonstrate the existence of various
Z3 topological states and the topological phase transition
in the presence of C3 symmetry. We prove that transition
between distinct classes of polarization closes the band gap
and is therefore topological in nature. Polarization is a useful
topological index, as it is theoretically and experimentally
easily accessible. Moreover, our result links the polarization
values of all materials that are topologically equivalent under
this classification. Using first-principles calculations, we iden-
tify graphene on a BN substrate18–21 as a possible candidate
to realize the Z3 topological states. The misconception that
C3 symmetry enforces zero polarization is also clarified.
Finally, we extend our analysis to all space groups in two
dimensions. Since a many-body formulation of the electric
polarization already exists,22,23 the topological classification
scheme discussed here can be readily applied to interacting
systems.

II. GENERAL SYMMETRY ANALYSIS

The discretization of polarization under high crystal sym-
metry has been mentioned by Vanderbilt and King-Smith.11

Here we discuss it using a concrete example of systems with C3

rotational symmetry. Theoretically, it has been well established
that the polarization in a crystal is formally defined only
modulo a quantum uncertainty,13,14 i.e., the polarizations �P
given in the following expression are all equivalent to each
other:

�P � �P + e

�

∑
i

ni �ai, (1)

where e is the electron charge, ni are integers, �ai are the
primitive lattice vectors, and � is the unit cell volume. In
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the following discussion, we shall set � = 1 such that �P
can be regarded as a dipole moment per unit cell. This is a
direct consequence of the translation symmetry of the lattice.
Additionally, �P has to also satisfy the relevant symmetries of
the crystal, which places great restriction on the allowed values
of �P , thereby discretizing it. For example, in one dimension the
only point group symmetry is inversion, which requires that
�P and − �P must be equivalent. This leads to two possibilities

of �P (0 and ea/2),10 and a Z2 classification. Thus here crystal
symmetry discretizes polarization into two distinct classes.
Each class in itself is a set of equivalent values, linked by
lattice vectors due to translation symmetry. We later show that
distinct classes are topologically disparate.

Next we study the impact of C3 symmetry on the values of
polarization. Let us consider a 2D lattice with C3 rotational
symmetry. We denote the two primitive lattice vectors by �a and
�b. The polarization vector can be expressed as �P = e(α�a +
β �b). Consider the in-plane rotation R̂ by an angle of 2π/3.
R̂ operates on the lattice vectors such that

R̂(�a) = �b − �a , R̂(�b) = −�a , (2)

and �P transforms according to

R̂( �P ) = �P ′ = e[α�b − (α + β)�a]. (3)

However, the transformed vector �P ′ must be equivalent to the
starting value �P according to Eq. (1), i.e.,

�P ′ = �P + e(m�a + n�b). (4)

Combining the above equations of �P ′ yields possible values
for α and β:

α = n − m

3
= j

3
, β = −m + 2n

3
= j

3
− n, (5)

where n, m, and j are integers. The polarization values allowed
by C3 symmetry thus fall into three distinct classes described
by 0, e(�a + �b)/3, 2e(�a + �b)/3, and corresponding series of
equivalent values given by Eq. (1).

This result has two important consequences. First, it shows
that while zero is an allowed value, C3 symmetry does not
preclude nonzero polarization values, as is sometimes assumed
in the literature. This misconception is a result of the classical
intuition that as with forces, one can cancel polarization
vectors in opposing directions. While this may apply for dipole
vectors in finite, discrete charge distributions, it is not true for
bulk crystalline insulators. Secondly, and more importantly,
the above result suggests that 2D crystalline insulators with
C3 symmetry can be distinguished by the three distinct classes
of �P , giving rise to a Z3 classification with �P as a class
index. Following the same procedure, one can verify that C6

rotational symmetry, e.g., as seen in graphene, allows only
zero polarization in insulators. Generally speaking, consider
a system described by a parameter-dependent Hamiltonian
H (λ). As long as varying λ does not change the crystal
symmetry, �P must remain discretized. If there is a sudden
change in �P , then there must be a singularity in the phase of
the Bloch functions, which signals the closing of the band gap.

III. Z3 TOPOLOGICAL PHASE TRANSITION

We now provide a concrete example of Z3 topological
states by constructing a tight-binding model. Let us consider
a honeycomb lattice with two orbitals, denoted by φα and
φβ , on each site. We assume that there is a nearest-neighbor
hopping t between orbitals from the same type, and an on-site
interorbital coupling t ′ between the α and β orbitals. To
lower the symmetry from C6 to C3, the A and B sublattices
are assumed to have opposite site energies, ±�α and ±�β ,
for each type of orbital. The tight-binding Hamiltonian is
given by

H = t
∑
〈ij〉

(c†αicαj + c
†
βicβj ) + t ′

∑
i

(c†αicβi + c
†
βicαi)

+
∑

i

ξi(�αc
†
αicαi + �βc

†
βicβi), (6)

where ξi = ±1 for A and B sublattices. The corresponding
Bloch Hamiltonian is obtained by Fourier transform:

H (�k) =

⎛
⎜⎜⎝

�α tVk t ′ 0
tV ∗

k −�α 0 t ′

t ′ 0 �β tVk

0 t ′ tV ∗
k −�β

⎞
⎟⎟⎠, (7)

where the structural factor Vk is given by Vk = 1 +
2 cos(

√
3/2kx) cos(ky/2) − 2i sin(

√
3kx/2) cos(ky/2).

Next we show that at half-filling the system can be
tuned to three topologically distinctive states by changing
the parameters without breaking the C3 symmetry. To guar-
antee charge neutrality, we assign an ionic charge of 2|e| to
each lattice site. We first identify the gap closing point in the
parameter space because �P cannot change unless the band gap

FIG. 1. (Color online) Topological phase diagram of the tight-
binding model described by the Hamiltonian (7). The solid (blue)
curve is the phase boundary given by �α�β = t ′2. In each region,
the polarization is given by PI = −(�a + �b)/3, PII = 0, and PIII =
(�a + �b)/3. The dashed line indicates a representative path in the
parameter space that undergoes the topological phase transition
twice.
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closes. The band energies at the K point are given by

E = ±(�α + �β) ±
√

(�α − �β)2 + 4t ′2. (8)

Obviously, when t ′ = √
�α�β the band gap will close, which

signals a topological phase transition characterized by a sudden
change of �P . To confirm this statement, we calculate the
polarization at three representative points in the �α-�β plane,
and indeed find three inequivalent values of �P predicted by
Eq. (5). Note that the polarization has two contributions: the
electronic and ionic contribution. Here the electronic contri-
bution is calculated according to the Berry-phase formula,13,14

whereas the ionic contribution is calculated by summing over
the lattice site in a unit cell. Separately, both contributions
depend on the choice of origin; only the total polarization is
origin-independent. The resulting topological phase diagram
is shown in Fig. 1.

IV. MATERIAL REALIZATION

We now present a realistic material system, graphene on
h-BN substrate,18–21 in which various Z3 topological states
can be realized. Specifically, we consider four cases: h-BN,
AA stacking of graphene on h-BN, and AB stacking of
graphene on h-BN with either boron or nitrogen atoms sitting
directly underneath the carbon atom. Although graphene has
C6 rotational symmetry, placing graphene on h-BN reduces
the symmetry from C6 to C3, allowing nonzero polarization
values to emerge.

We have performed first-principles calculations to obtain
the polarization in these structures and compare with our
symmetry analysis. While the carbon-carbon (C-C) bond
length in graphene is known to be 1.42 Å, h-BN has a B-N bond
length of 1.46 Å,24 hence the mismatch is very small, ∼2%.
Our initial structures were comprised, as shown in Fig. 2,
of bulk monolayer h-BN and various stacking of graphene
monolayer on it. We lattice-matched h-BN to graphene by
taking an initial lattice constant of 1.417 Å, and we constructed
supercells representing these materials in bulk (see Fig. 2).
The out-of-plane distance between graphene and h-BN was
taken to be 3.2 Å.18 The vacuum along the z direction was
taken to be 30 Å approximately. We used the Vienna ab initio
Simulation Package (VASP),25 which uses a plane-wave basis
set and employed PAW pseudopotentials,26 along with a local
approximation to the exchange-correlation potential (LDA).27

We set an energy cutoff of 400 eV and a k-mesh of 4 × 4 × 1
for the self-consistent run and 36 × 36 × 1 for the subsequent
polarization calculation.

The total polarization can be divided into electronic and
ionic parts. While the electronic part of the polarization was
calculated using the Berry phase formula,13,14 the ionic part
was obtained from the dipole density distribution. Polarization
values thus calculated for bulk structures shown in Fig. 2 are
listed in Table I, in corresponding order. We list α and β for ev-
ery �P , such that �P = e(α�a + β �b), where �a and �b are the corre-
sponding lattice vectors of the system. In complete agreement
with our symmetry analysis, all obtained values fell into and
exhausted the three topological classes predicted by Eq. (5).

Here we comment on the zero polarization found in
h-BN.28,29 The electronic structure of h-BN can be well

FIG. 2. (Color online) (a), (b) Schematic illustration of polar-
ization in systems with C3 symmetry. (a) h-BN lattice with three
equivalent unit cells. (b) Possible values of polarization. Each
topological class is marked by a specific symbol. Parts (c)–(f) display
calculated values of polarization for different structures and the
corresponding topological classes. (c) Structure 1: h-BN monolayer;
(d) structure 2: AA stacking of graphene monolayer on h-BN; (e) AB

stacking of graphene monolayer on h-BN with a carbon sublattice
lying above the boron sublattice; and (f) structure 4: AB stacking
with a carbon sublattice lying above the nitrogen sublattice. The unit
cells and lattice vectors �a and �b are marked in black, whereas the
polarization vector is marked in red. Colors used to represent various
atoms are listed.

described by taking the ionic limit, i.e., the boron atom loses
all its valence electrons to nitrogen. The nominal charges
at the boron and nitrogen sites are therefore +3 and −3,
respectively. (One can verify that in the ionic limit, the ionic
and electronic contributions agree with the DFT calculation.)

TABLE I. In-plane polarization values for the structures shown
in Fig. 2, specified in terms of lattice vectors �a and �b. We tabulate the
values of the ionic part �Pion and the electronic part �Pele, followed by
the total value of polarization �P . All values are in terms of electronic
charge×lattice vector such that �P = e(α�a + β �b).

�Pele �Pion �P
α β α β α β

System (e ∗ �a) (e ∗ �b) (e ∗ �a) (e ∗ �b) (e ∗ �a) (e ∗ �b)

1 − 2
3 − 2

3
2
3

2
3 0 0

2 0 0 1
3

1
3

1
3

1
3

3 2
3

2
3 0 0 2

3
2
3

4 2
3

2
3

2
3

2
3

1
3

1
3
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FIG. 3. (Color online) Allowed values of polarization for all 17 two-dimensional space groups. The corresponding Wigner-Seitz cells for
various lattices are displayed in blue. Allowed points and lines of points are marked in magenta. Allowed values of polarization are vectors
joining the origin of the Wigner-Seitz cells to the points marked.

This guarantees that the total polarization of h-BN will always
be an integer multiple of �a + �b, which is equivalent to zero. If
we make an artificial crystal by replacing boron and nitrogen
with beryllium and oxygen, then the total polarization will not
vanish. So the zero polarization of h-BN is not because C3

rotational symmetry forbids other values, rather it is due to
simple electron counting.

V. POLARIZATION IN 2D SPACE GROUPS

A similar analysis can be carried out for all 17 two-
dimensional space groups. The allowed values of polarization
derived from symmetry constraints are shown in Fig. 3.

Several remarks are in order. For space group p1, the
allowed value of �P forms a continuum and fills up the entire
Wigner-Seitz cell. This is consistent with the fact that the only
point group symmetry operation of p1 is the identity operator
and there is no topological classification protected by p1. We
also note that for several space groups, the allowed value of �P
forms a line in one direction but is still quantized in the other

direction. In this situation, a topological classification can be
obtained by taking the discrete component of �P .

VI. SUMMARY

We have presented polarization as a topological index
protected by space group symmetry for crystalline insulators.
In particular, we derive three distinct topological classes for C3

rotational symmetric systems. Topological phase transitions
between these classes are shown to be accompanied by closing
the band gap. We complete the analysis by deriving polariza-
tion values for all 17 2D space groups, which provides rich
possibilities of topologically distinct classes. The topological
classification scheme discussed here can be readily applied
to interacting systems via the many-body formulation of
polarization.22,23
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