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All-analytical semiclassical theory of spaser performance in a plasmonic nanocavity
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Experimental approaches to manipulating light-matter interaction at the nanoscale level have quickly advanced
in recent years, leading to the use of surface plasmon amplification by stimulated emission of radiation (spaser) in
plasmonic nanocavities. Yet, a well-understood analytical theory to quantitatively explain certain characteristics
of the spaser system has still been lacking and is greatly needed. Here, we develop an all-analytical semiclassical
theory to investigate the energy exchange between active materials and fields and the spaser performance in
a plasmonic nanocavity. The theory incorporates the four-level atomic rate equations in association with the
classical oscillator model for active materials and Maxwell’s equations for fields, thus allowing one to uncover
the relationship between the characteristics of the spaser (the output power, saturation, and threshold) and
the nanocavity parameters (quality factor, mode volume, loss, and spontaneous emission efficiency), atomic
parameters (number density, linewidth, and resonant frequency), and external parameters (pumping rate). The
semiclassical theory has been employed to analyze previous spaser experiments and shows that using a single
gold nanoparticle plasmonic nanocavity to ignite the spaser is very difficult due to its high threshold. The theory
can be commonly used in understanding and designing all novel microlaser, nanolaser, and spaser systems.
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I. INTRODUCTION

In recent years we have witnessed the rapid develop-
ment of microprocessing technology, integrated optics, and
nanophotonics.1–3 One of the central issues, the interaction
between light and active photonic and plasmonic nanostruc-
tured materials, has attracted extensive and intensive interest
in research.1–6 The capability to control light at the nanoscale
level by these active nanostructures has given rise to a rich
variety of physical phenomena, such as trapping and manipula-
tion of photons in a resonant nanocavity,1–3 coherent emission,
transport, and amplification of surface plasmons,4–6 giant local
field enhancement,7,8 compensation of metallic dissipation
loss,9,10 and amplification of gain.11,12 These phenomena
can be harnessed for building high-efficiency miniaturized
photonic and optoelectronic devices. Through a multipronged
effort, numerous theoretical and experimental works have been
devoted to exploring novel ways to miniaturize traditional
laser systems and realizing nanolasers with tiny footprints
and low power consumption. Among them, photonic crystal
nanocavity lasers13–18 and plasmonic lasers19–31 have stood
out as two prominent routes toward this fundamental purpose.
The former is based on localization and amplification of light
within a semiconductor nanocavity with gain media, while
the latter is based on so-called surface plasmon amplification
by stimulated emission of radiation (spaser)4,19 in plasmonic
nanostructures incorporated with gain media.

In principle, the properties and performances of nanolasers
are understood with the semiclassical physical model of
harmonic oscillators coupled to electromagnetic fields. Yet,
because the geometries of nanolasers are very complicated,
involving many subtle nanoscale morphologic features, the
electromagnetic fields of laser modes do not have simple
spatial profiles, but rather they are far more complex than
plane waves or Gaussian beams in traditional laser systems. As
a result, it is not easy to describe the interaction of gain media
with electromagnetic fields in a simple analytical way as in a
traditional laser system.32 Perhaps, for this reason up to now,

researchers largely only employ numerical simulation meth-
ods, e.g., a finite-difference time-domain (FDTD) method,
in combination with the atomic rate equations, the dipole
approximation model, and Maxwell’s equations, to investigate
nanolasers in several realistic, active dielectric and plasmonic
systems.33–39 In contrast, the efforts to build some analytical
models to solve the central issues of nanolaser performance
are still very rare.40–42 As is known, a simple, comprehensive,
and still quantitatively accurate analytical theory can greatly
help to better understand, explain, and predict all related
and important issues of these complicated active nanolaser
systems, making it easier to design novel systems with im-
proved performance. In comparison, using only all-numerical
simulations, although they provide technically accurate data
about nanolaser performance, is insufficient to provide a clear
overall physical picture about these central issues.

In this paper, we report our effort to construct an easy-to-
understand, all-analytical semiclassical theory for nanolasers
by taking into account the energy exchange between active
materials and fields, power density conservation, spontaneous
emission, and stimulated emission. The theory starts from the
basic atomic rate equation in association with the classical
oscillator model, considers various aspects of nanocavity
parameters, atomic parameters, and external pumping param-
eters, and has a final form looking very similar to that for
conventional lasers.32 We will focus on plasmonic lasers,
where the spaser takes place in a plasmonic nanocavity
with active materials. The derived all-analytical semiclassical
theory can explain the spaser effect in this plasmonic nanolaser
system more clearly and precisely.

II. THEORETICAL MODEL AND
ANALYTICAL SOLUTION

We consider a plasmonic nanocavity that is composed
of a metallic core, providing plasmon resonance modes,
surrounded by a dielectric shell containing active materials,
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FIG. 1. (Color online) Schematic plot of the light-matter interac-
tion of a general four-level atomic system with a metallic nanocavity.
(a) Geometry of the plasmonic nanocavity, which is a core-shell
nanoparticle consisting of a metallic core and dielectric shell doped
with four-level atoms as active materials. Each atom is modeled as
a radiation dipole. θ is the angle of the dipole polarization, and r is
the distance between the dipole and the center of the metallic core.
(b) Energy output from the plasmonic nanocavity, where pout is the
output laser power density, pabs is the metallic absorption power
density by the plasmonic cavity, and ploss−spo is the loss of spontaneous
emission power density. (c) Schematic of a general four-level atomic
system that describes the spontaneous and stimulated radiation and
various atomic transition parameters. The straight and dashed lines
correspond to the radiative and nonradiative transitions, respectively.
pin is the storage power density by the upper lasing level.

providing gain. The active materials are described by a general
four-level atomic system. The structure, as schematically
illustrated in Figs. 1(a) and 1(b), can describe the gain and
loss process happening in a general optical nanocavity very
well. When the electrons are pumped from the ground-state
level with a constant pump rate, spontaneous emission happens
immediately. Due to the feedback effect by the surface
plasmon resonance of the metallic core, it will cause stimulated
emission until a steady state is reached. The schematic diagram
of the atomic system is shown in Fig. 1(c), where level one
and two are the lower and upper lasing levels, respectively.
Under the dipole approximation, the active materials can be
seen as dipoles. Our aim is to develop a methodology to
describe the characteristics of light-matter interaction in this
nanolaser system. Similar to conventional laser theory,32 we
consider atomic transitions in the current nanolaser system
quantum mechanically and adopt the model of atomic rate
equations to describe these transitions, while handling the
radiation of electromagnetic field classically, whose motion
follows Maxwell’s equations. The interaction between atoms

and fields is thus treated semiclassically. Such a semiclassical
theory should yield a much more precise description and
better prediction of the optical properties of these nanolaser
systems than the usual classical theory, where the role of
atoms comprising the active materials is described by the
phenomenological parameter of dielectric permittivity.7,8,11,12

The occupation numbers of electrons at the atomic levels
at each spatial point vary according to the atomic rate
equations:35–37

dN3

dt
= WP N0 − N3

τ32
, (1)

dN2

dt
= N3

τ32
+ 1

h̄ωa

El · ∂Pat

∂t
− N2

τ21
, (2)

dN1

dt
= N2

τ21
− 1

h̄ωa

El · ∂Pat

∂t
− N1

τ10
, (3)

dN0

dt
= N1

τ10
− WP N0. (4)

Equations (1) to (4) mean that an external excitation
mechanism pumps electrons from the ground-state level (N0)
to the third level (N3) at a certain pump rate (WP ), which
is proportional to the pumping light intensity in the case of
the optical pumping experiment. After a short lifetime (τ32),
electrons transfer nonradiatively into the upper lasing level,
i.e., the second level (N2). Electrons can be transferred from
the upper to the lower lasing level, i.e., the first level (N1),
by spontaneous and stimulated emission. At last, electrons
transfer quickly and nonradiatively from the first level (N1)
to the ground-state level (N0). The lifetimes and energies
of the upper and lower lasing levels are τ21, E2 and τ10,
and E1, respectively. The center frequency of the radiation is
ωa = (E2 − E1)/h̄. El is the local electric field in the cavity,
Pat is the electric polarization of atoms, and 1

h̄ωa
El · ∂Pat

∂t
is the

induced radiation rate or excitation rate, depending on its sign.
As time goes on, the system gradually reaches the steady state,
which is described by dNi/dt = 0. The populations at steady
state can be easily solved and written as

N1,ss = WP N0τ10, (5)

N2,ss = WP N0τ21 − ωτ21ε0

2h̄ωa

χ ′′
atE

2
l , (6)

N3,ss = WP N0τ32, (7)

where χ ′′
at is the imaginary part of the atomic polarizability.

The population difference between the lower and upper
lasing level is

�N12 = WP N0(τ10 − τ21) + ωτ21ε0

2h̄ωa

χ ′′
atE

2
l . (8)

Following the classical harmonic oscillator model, the
polarization Pat in the presence of an electric field obeys locally
the following equation of motion:

d2Pat(t)

dt2
+ �ωa

dPat(t)

dt
+ ω2

aPat(t) = 	a�N (t)El(t), (9)

where �ωa is the linewidth of atomic transition frequency and
	a is the coupling strength of the polarization to the external
electric field. The expression 	a is 3ωaεhλ

3γrad/4π , where γrad
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is the radiative decay rate, εh is the dielectric constant of host
material, and λ is the radiation wavelength.

From Eq. (9), the polarization can be written as

Pat = 	a(N1 − N2)(
ω2

a − ω2 + jω�ωa

)El. (10)

According to the power density conservation, the storage
power density by the upper lasing level pin is equal to the
sum of the output power density pout, the absorption power
density by the cavity pabs, and the loss of spontaneous emission
power density ploss−spo. The output power density and the
absorption power density constitute the loss of cavity power
density ploss−cav. The above relationship can be expressed as

pin = pout + pabs + ploss−spo, (11)

and

ploss−cav = pout + pabs. (12)

Due to the electronic pumping, the power density, which
can be seen and used by the third level, can be written as

ppump = WP N0h̄ω30. (13)

We introduce a parameter called quantum efficiency ηqe so
that the storage power density by the upper lasing level pin is

pin = ηqe × ppump. (14)

As is known, the power loss of the cavity is proportional
to ωε0E

2
l Vm/Q, where ω is the resonance frequency of the

cavity, Vm is the mode volume, and Q is the quality factor
(Q factor) of the cavity. This is the standard definition of the
Q factor of a resonant cavity. We bring in another parameter
called the cavity loss coupling strength coefficient ηF , which
strongly depends on the geometric and material parameter of
the cavity so that the total power loss of the cavity can be
written as

Ploss−cav = ηF × ωε0E
2
l Vm

Q
, (15)

and the power density loss is ploss−cav = Ploss−cav/Vc, where
Vc is the cavity volume. It is obvious that a larger value of ηF

means easier loss of energy power from the cavity.
The spontaneous emission power is only relevant to the

population of the upper lasing level, and we can obtain the
spontaneous emission power density in the follow expression

pspo = N2,ssh̄ωa

τ21
. (16)

We notice that the spontaneous emission power is propor-
tional to the upper lasing level population; however, not all of
the spontaneous emission power runs away from the cavity.
Most of them are either used to excite stimulated emission
or absorbed by the cavity. The escaped spontaneous emission
power density from the cavity can be defined as

ploss−spo = ηspo × pspo, (17)

where ηspo is called the loss of spontaneous emission efficiency.
Obviously, a larger value of ηspo means the greater loss of spon-
taneous emission power from the cavity and simultaneously
less conversion of this power into the useful laser energy power
for the cavity.

Taking Eqs. (12), (14), (15), and (17) into consideration,
we have

ηqe × ppump = ηF × ωε0E
2
l Vm

QVc

+ ηspo × pspo. (18)

Taking the relevant equations into Eq. (18), then we have

ηqe × WP N0h̄ω30 = ηF × ωε0E
2
l Vm

QVc

+ ηspo × N2,ssh̄ωa

τ21
.

(19)

We consider the original definition of polarization that is
shown below

Pat = χatε0El = (χ ′
at + jχ ′′

at)ε0El, (20)

where χ ′
at is the real part of the atomic polarizability.

The above formulae can be combined together to offer a
solution for various optical properties for the nanolaser system,
after some tedious, but straightforward, algebraic manipula-
tions. We start from the quantity of atomic polarizability χat.
For the sake of simplicity of the discussion, we define three
parameters:

ρ1 = QVcηspoωaε0

[
4ω2

a (ωa − ω)2 + ω2�ω2
a

�ωa

]
, (21a)

ρ2 = QVc	aWP N0ω(ηspoωaτ10 − ηqeω30τ21)

− 2VmηF ωaε0

[
4ω2

a (ωa − ω)2 + ω2�ω2
a

�ωa

]
, (21b)

ρ3 = 2	aWP N0VmηF ωaω (τ21 − τ10) . (21c)

By using Eqs. (6), (10), (19), and (20), χ ′′
at can be written as

χ ′′
at = −

ρ2 +
√

ρ2
2 − 4ρ1ρ3

2ρ1
. (22)

Equation (22) represents the absorbing (or amplifying) part
of the atomic response.

Respectively, χ ′
at and the local electric field can be written

as

χ ′
at = 2ωa (ω − ωa) χ ′′

at

ω�ωa

, (23)

E2
l = (ηqe × h̄ω30 − ηspo × h̄ωa)WP N0

(ηF × ωε0Vm/QVc − ηspo × ωε0χ
′′
at/2)

. (24)

If the radiation frequency ωa is equal to the cavity resonance
frequency ω, the equations will become much simpler.

Considering the dipole approximation and the tiny nanocav-
ity volume, the absorption power density of the metallic core
can be written as

pabs = 1
2ε0ωχ ′′

hostE
2
l . (25)

If the power loss density of the cavity ploss−cav is larger than
the absorption power density of the metallic core pabs, which
means that the cavity constant ηF is larger than χ ′′

hostVcQ/2Vm,
the laser can output from the cavity. We will discuss how to
calculate the cavity constant ηF later. Now, we can deduce the
output power density of the nanolaser system, which can be
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written as

pout = (2ηF Vm − Qχ ′′
host)

2Q
ωε0E

2
l . (26)

The output power of the active nanocavity is also pro-
portional to the laser field intensity within the cavity. Until
now, we have used the all-analytical semiclassical theory for
quantitatively describing the spaser system. The theoretical
model has considered all concerned parameters, and it is a
generic model enabling us to solve and explain a variety of
complex spaser and nanolaser systems. In order to show a
clearer physical image, we will give a detailed analysis in the
following section.

We notice that in the above derivation of the all-analytical
semiclassical theory, the local electric field El within the
plasmonic nanocavity has been assumed to be a constant.
This approximation is reasonable for a nanocavity whose
size is much smaller than the radiation wavelength, e.g.,
the spherical nanoparticle in Ref. 24 that will be discussed
in the following section. In this simple situation, classical
electrostatics indicates that the inner electric field, parallel
to the external electric field, is almost uniform everywhere
within the spherical nanoparticle. In the more complicated
situation for a general nanocavity whose size is not very tiny
and whose geometric shape is not a regular sphere, the general
framework of our semiclassical theory still holds true. This
is because many cavity parameters, such as the cavity loss
coupling strength coefficient ηF , Q factor Q, cavity volume
Vc, mode volume Vm, the resonance frequency ω, and the
loss of spontaneous emission efficiency ηspo, are concepts
applicable to various situations of nanolaser, rather than only
to the simple spherical nanoparticle considered in Ref. 24.
In fact, these parameters are case sensitive, and they need to
be determined in each case. The thing that needs significant
modification is the local field El , which now is not a constant
but has a spatial distribution, and its interaction with the electric
polarization of atoms, which is described by El · ∂Pat

∂t
. The

detailed modal profile of the nanocavity laser mode must
be taken into account, and the contribution of each atomic
dipole within the modal field to the energy exchange must be
weighted appropriately. Taking into account this modification,
the semiclassical nanolaser theory can be applicable to a
general nanolaser system with sufficient quantitative precision.

III. ANALYTICAL AND NUMERICAL
RESULTS AND DISCUSSIONS

The above equations that constitute the all-analytical semi-
classical theory involve many parameters, most of which are
adjustable. We divide these parameters into three parts: cavity
parameters, atomic parameters, and external input parameters.
As these parameters have encompassed all the geometric and
physical details of the nanocavity system, the theory is quite
general and can handle various types of nanolasers and various
optical problems. The quantum efficiency ηqe, the coupling
strength of atomic polarization to the external electric field
	a , the lifetime of each level τ21, τ10, and τ32, the transition
frequency ωa and ω30, and the linewidth of atomic transition
frequency �ωa belong to atomic parameters. The cavity loss
coupling strength coefficient ηF , Q factor, Q, cavity volume

Vc, mode volume Vm, the resonance frequency ω, even the loss
of spontaneous emission efficiency ηspo are cavity parameters.
The pump rate WP is the only external input parameter. Also,
there are some constant quantities in this system, e.g., the total
population density N0.

To obtain clear physical images and insights about the
relationship between the spaser properties and the cavity
parameters as well as the external excitation parameters, we
choose several parameters as reported in Ref. 24. The number
of dye molecules per nanoparticle is 2700. The core and
shell diameters of the plasmonic cavity are 14 and 44 nm,
respectively, so the cavity volume Vc is 1.436 × 10−24 m3,
and the total population density N0 is 6.255 × 1025 m−3.
The radiation frequency ωa is 3.5565 × 1015 Hz, and the
corresponding wavelength is 530 nm, which is close to
the resonance wavelength of the cavity. The linewidth of
the transition frequency �ωa is around 0.04ωa . The lifetime
τ10, τ21, and τ32 are chosen as 10−9 s, 10−8 s, and 10−9 s,
respectively. The coupling strength of Pat to the external
electric field 	a is taken to be 10−4 C2/kg according to Ref. 35.
In our calculations, we find that 	a does not have a direct
influence on the local electric field, the atomic polarizability,
or even the output power density. Instead, it is the nature of
the atomic system, so we will not discuss the influence of 	a

in this paper.
We first consider the relationship between the local electric

field and cavity parameters. The results are shown in Fig. 2
by color contour maps. Each time, we only discuss the
relationship between two various parameters and the local
electric field. Here, the pumping rate WP , the Q factor, the
cavity loss coupling strength coefficient ηF , and the loss
spontaneous emission efficiency ηspo are fixed as 104 s−1, 10,
3, and 6%, respectively. From Figs. 2(a) to 2(c), we find that
the local electric field increases with the increase of WP and Q

factor, and with the decrease of ηF and ηspo. The relationship
between these four parameters and the local electric field can
be described by Eq. (24). From Figs. 2(a) and 2(e), we see that
when ηspo is large enough, i.e., when most of the spontaneous
emission does not participate in the lasing action, the local
electric field can achieve saturation phenomenon with the
increase of WP and the Q factor. Otherwise, the saturation
phenomenon cannot happen easily. From Fig. 2(b), we find
that when the Q factor is small enough, i.e., when the loss
of cavity is large, the local electric field can also achieve
saturation phenomenon with WP increasing. From Figs. 2(c),
2(d), and 2(f), the relationship between ηF and the local electric
field is shown clearly. When ηF increases, the local electric
field decreases. Note that a larger local electric field does not
necessarily mean a higher lasing output power because of the
absorption of the cavity, i.e., the absorption of the metallic
core.

As is mentioned above, χ ′′
at means the absorbing (or

amplifying) part of the atomic response, and it can directly
describe the gain and loss of the system. Due to the complex
expression of χ ′′

at by Eq. (22), it is hard to know its quantitative
relationship with the cavity parameters directly. With the aid
of computer calculation, we obtain some results as shown in
Fig. 3. From Figs. 3(a) to 3(f), we find that χ ′′

at increases with the
increase of WP , ηF , ηspo, and with the decrease of the Q factor.
The results are quite different from Fig. 2, and this means the
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FIG. 2. (Color online) Contour maps of the local electric field amplitude El (V/m) as functions of various cavity parameters. (a) El as
functions of pumping rate Wp and ηspo; (b) El as functions of Wp and the Q factor; (c) El as functions of Wp and ηF ; (d) El as functions of the
Q factor and ηF ; (e) El as functions of the Q factor and ηspo; and (f) El as functions of ηF and ηspo.

absorbing (or amplifying) part of the atomic response does
not have a direct relation with the local electric field. From
Figs. 3(a) and 3(c), we find that the influences of ηF and
ηspo on χ ′′

at are not obvious, because of the huge influences of
pumping rate. We also find that when ηspo is large enough, i.e.,
when most of the spontaneous emission does not participate in
the lasing action, χ ′′

at can achieve the saturation phenomenon
with the Q factor increasing. From Figs. 3(c), 3(d), and 3(f),
the relationship between ηF and χ ′′

at is shown clearly. When
ηF increases, χ ′′

at increases. This interesting phenomenon here
is different from long-held general knowledge: A larger local
electric field does not necessarily mean a larger gain for the
nanocavity.

Next, we discuss an important quantity of much concern:
the output power density pout of the nanolaser system. This
is a characteristic indicator for describing a laser system. The

results are shown in Fig. 4. From Figs. 4(a) to 4(f), we find that
the output power density increases with increasing of pumping
rate and ηF and with decreasing of the Q factor and ηspo. What
is more, from the shaded parts of Figs. 4(b) and 4(c), we find
that sometimes no matter how large the pumping rate is, there is
still no output power density. At first glance, this may seem odd
because as long as the gain is larger than the loss, there should
be laser output, and the critical value of the pumping rate
corresponds to the threshold. However, if we think over it more
closely, we can find it is not difficult to explain. This spaser
system is different from the traditional laser system because the
cavity loss comes from the metallic absorption and the loss of
spontaneous emission. Whether the metallic absorption or the
loss of spontaneous emission, both of them are related to the
local electric field, and the local electric field is proportional to
the pumping rate, which means with increasing the pumping
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FIG. 3. (Color online) Contour maps of the imaginary part of atomic polarizability χ ′′
at as functions of various cavity parameters. (a) χ ′′

at as
functions of pumping rate Wp and ηspo; (b) χ ′′

at as functions of Wp and the Q factor; (c) χ ′′
at as functions of Wp and ηF ; (d) χ ′′

at as functions of
the Q factor and ηF ; (e) χ ′′

at as functions of the Q factor and ηspo; and (f) χ ′′
at as functions of ηF and ηspo.

rate, the loss also increases. The threshold of the spaser
system comes from the cavity characteristics, i.e., the Q

factor and ηF instead of large enough pumping rate. From
Fig. 4(a), we note that when ηspo is large enough, i.e., most of
the spontaneous emission does not join in the lasing action,
the saturation phenomenon still exists, and the output power
density can achieve saturation phenomenon with the pumping
rate increasing. However, from Fig. 4(b), we can also find the
similar saturation phenomenon only if the Q factor is less than
the threshold. Focusing on the shaded region in Figs. 4(b) to
4(f), we obtain some important conclusions. As is known, the
larger Q factor means the smaller cavity loss, and the larger ηF

corresponds to the easier loss of energy power from the cavity.
The function of the Q factor and ηF are opposite in influencing
the performance of the spaser. From Eqs. (11) and (12), we can
find that pout = ploss−cav − pabs. As is mentioned above, both
the metallic absorption and the loss of spontaneous emission

are related to the local electric field intensity, either directly
or indirectly. Therefore, this spaser system shows a threshold
related with cavity parameters, i.e., Q factor and ηF .

To have a clarified physical image to illustrate the nature
of the plasmonic nanocavity, we calculate the relationship
between power density, the Q factor, and ηF . The results are
shown in Fig. 5. From Figs. 5(a) to 5(d), the power densities
are ploss−cav, pabs, and ploss−spo, and the needed threshold
power density of the plasmonic nanocavity pthr, where pthr =
pabs + ploss−spo. From Eqs. (15) and (25), we find that both
ploss−cav and pabs are proportional to the local electric field
intensity. The calculation results show the same phenomena in
Figs. 5(a) and 5(b). From Fig. 5(c), we observe that ploss−spo

increases with increasing ηF and with decreasing Q factor.
From Eq. (11), we can find when pin is larger than pthr, the
laser can output from the spaser system. In our model, pin is
equal to 2.3458 × 1011 W/m3, which is marked in Fig. 5(d).
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FIG. 4. (Color online) Contour maps of the laser output power density pout (GW/m3) as functions of various cavity parameters. (a) pout as
functions of the pumping rate Wp and ηspo; (b) pout as functions of Wp and the Q factor; (c) pout as functions of Wp and ηF ; (d) pout as functions
of the Q factor and ηF ; (e) pout as functions of the Q factor and ηspo; (f) pout as functions of ηF and ηspo. The shaded regions indicate that the
output power density is zero.

Compared with Fig. 4(c), we find that when pthr is larger than
2.3458 × 1011 W/m3, the output power density is zero.

Another famous phenomenon that is often a concern is
the population difference saturation. Using the all-analytical
semiclassical theory, we can obtain the relationship between
population saturation and pumping rate. The result is shown in
Fig. 6. Here, the Q factor, ηF and ηspo are fixed as 10, 3, and
6%, respectively. From Fig. 6, we note that when the pumping
rate increases, the population difference gradually becomes
larger and larger until the saturation phenomenon happens.

IV. APPLICATION TO ANALYSIS OF
PRACTICAL EXPERIMENTS

To further illustrate the power of the all-analytical semiclas-
sical theory in handling the practical problems of nanolasers,

we consider the experiments of Noginov et al.,24 which present
the first demonstration of the spaser. The spaser system is
a plasmonic core-shell nanoparticle, which is composed of
a gold core (diameter 14 nm), providing plasmon modes,
surrounded by a silica shell (thickness 15 nm) containing
the organic dye Oregon Green 488 (OG-488; density 6.25 ×
1019 cm−3), providing gain. In the experiment, the spectral
and temporal characteristics of light leaking from the particles
suspended in solution when optically pumped by nanosecond
laser were measured. The narrowing of the radiation linewidth
and linear increase of the magnitude of the resonant peak
were observed and attributed to the ignition of the spaser
from a single plasmonic nanoparticle, instead of from a
collective group of nanoparticles.24 However, this point has
raised controversy, and is our target of theoretical evaluation
by using the all-analytical semiclassical theory. To solve this
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FIG. 5. (Color online) Contour plot of various power densities of the active plasmonic nanocavity as functions of the Q factor and ηF .
(a) The loss of cavity power density ploss−cav; (b) the absorption power density of the metallic core pabs; (c) the loss of spontaneous emission
power density ploss−spo; and (d) the needed threshold power density of the nanocavity pthr.

problem theoretically, we adopt a model as schematically
depicted in Fig. 1, where the geometric parameters of the
nanoparticle are explicitly shown.

To quantitatively handle this spaser problem, we first
employ the FDTD method to calculate various cavity pa-
rameters. Considering the dipole approximation method, these
OG-488 four-level atoms can be seen as dipoles that distribute
uniformly around the metallic particle. Through the FDTD
calculation, we obtain the single-dipole emission power P0.
The single-dipole emission power is an external parameter
related to the pumping rate. The initial power density then
can be written as pin = N0P0, and the pumping rate can
be written as WP = P0/ηqe × h̄ω30. Taking into account

FIG. 6. (Color online) The relationship between the population
difference and pumping rate.

the atomic parameters, we obtain P0 ≈ 1.46 × 10−15 W and
WP ≈ 4 × 103 s−1. Next, we determine the loss spontaneous
emission efficiency ηspo. Considering the different positions
and dipole polarization angles, we take the average of the
radiation power and calculate the value of ηspo. The dipole
radiation power Prad(θ,r) shows resonance at θ = 90◦, where
the loss of spontaneous emission of the spaser system becomes
negligible. Considering different positions and angles, we
take average of the radiation power and calculate the loss of
spontaneous emission efficiency, which is ηspo ≈ 6%. The Q

factor of this plasmonic cavity structure is about 10, and the
modal volume is about 4.831 × 10−6 μm3. The absorption
power Pabs0 by the metallic particle can also be calculated
by FDTD method with a single-dipole source. Considering
different positions and angles, we also need to take average
of the absorption power. We obtain Pabs0 ≈ 9.448 × 10−14 W,
and the total absorption power density pabs−fdtd = N0Pabs0 ≈
5.91 × 1012 W/m3.

From now on, the only unknown value is the cavity loss
coupling strength coefficient ηF . From the above complete
semiclassical theory, we have the relationship between absorp-
tion power density pabs−theory and ηF when other quantities are
fixed. From the FDTD method, we have the determined total
absorption power density, pabs−fdtd which is shown above.
For the same system, no matter which method we use,
either the all-analytical semiclassical theory or all-numerical
simulation method, the total absorption power density is
determined. Comparing the numerical results with the all-
analytical theoretical results, we can always find pabs−theory =
pabs−fdtd, which corresponds with the only determined ηF .
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Through calculation, we determine ηF = 0.04 in this system.
Recalling Fig. 4(d), we find that in that case, there is no
output power density of the spaser from this plasmonic system.
The measurement results in Ref. 24 are more likely not
related with the spaser for a single plasmonic nanocavity.
Instead, the observed laser performance (sharply narrowing the
spectral response of emission light) might be attributed to other
factors, such as random lasers due to the collective action of a
group of metal nanoparticles. Our all-analytical semiclassical
theory strongly suggests that in order to observe the spaser in
this single plasmonic nanocavity, the atomic density of gain
materials must be increased by two orders of magnitude so
that a sufficiently large gain could be achieved.

V. CONCLUSIONS

We have investigated the interaction between light and the
four-level atomic system embedded within a metallic particle
and the spaser properties of this active plasmonic nanocavity
system. By solving the coupled equations encompassing
the atomic rate equation, the classical oscillator model, and
Maxwell’s equations and introducing several parameters that
merely depend on the geometric and physical properties of the
nanocavity, we have constructed an all-analytical semiclassical
theory for describing the energy exchange between active
materials and fields, light emission, and spaser performance
in the plasmonic nanocavity. The theory incorporates the
atomic rate equation in association with the classical oscillator
model for active materials and Maxwell’s equations for fields,
thus allowing one to uncover the relationship between the
characteristics of the spaser (the output power, saturation, and

threshold) and the nanocavity parameters (quality factor, mode
volume, loss, and spontaneous emission efficiency), atomic pa-
rameters (number density, linewidth, and resonant frequency),
and external parameters (pumping rate). As a result, the all-
analytical semiclassical theory can handle various nanocavity
systems (semiconductor nanocavity, plasmonic nanocavity,
and semiconductor nanowires) consisting of various active
materials (atoms, molecules, ions, and semiconductors).

Through detailed calculation and analysis, several remark-
able things about the spaser performance are discovered. The
spaser system has all the characteristics of the traditional laser
system, e.g., the saturation phenomenon and the threshold.
The semiclassical theory has been employed to analyze
previous spaser experiments and shows that using a single
gold nanoparticle plasmonic nanocavity to ignite the spaser is
very difficult due to its high threshold. As the all-analytical
semiclassical theory has a simple formalism that looks like the
conventional laser theory, it can offer an easy-to-understand
yet sufficiently accurate means to explain the behavior of
the spaser in plasmonic nanocavities and will be very useful
in designing novel spaser devices with high performance.
Furthermore, as this universal theory has involved many model
parameters, it is expected that the theory can be applicable to
many different microlaser, nanolaser, and spaser systems.
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