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Magnetic-field-controlled vacuum charge in graphene quantum dots with a mass gap
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The effect of a magnetic field on the charged vacuum is investigated. The field dependence of the energy
levels causes jumps in the total vacuum charge that occur whenever an energy level crosses the Fermi level,
and this leads to reentrant cycles of vacuum charging and discharging. In atomic systems these effects require
astrophysical magnetic fields of around 108 T, but in graphene with a mass gap they occur in laboratory fields of
about 1 T or lower. It is suggested that an electrostatic graphene quantum dot defined by a gate electrode provides
a solid state model of the as yet unobserved charged vacuum as well as a model of an atomic system in an
extreme astrophysical environment. Phase diagrams are computed to show how the total vacuum charge depends
on the confining potential strength and applied magnetic field. The vacuum charge density is also investigated
and experimental consequences are discussed.
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The long-sought-for charged vacuum1,2 is the ground state
of strong field quantum electrodynamics (QED). Usually the
vacuum is neutral but it charges in the presence of an electric
field strong enough to lower a bound state into the negative
energy continuum. For example, when the charge on the
nucleus of a hydrogenic atom increases to beyond �172, the 1s

state enters the negative energy continuum and the vacuum
charges. This is accompanied by spontaneous emission of
two positrons which would enable the effect to be observed
if a strong enough field could be created. In principle, this
is possible because the critical charge can be exceeded in
a collision between two uranium nuclei. But the interaction
time is too short to allow the transition to a charged vacuum to
occur3 and, despite much effort, vacuum charging still needs
to be observed. However, it may be possible to observe it in a
semiconductor analog.

The band gap of a semiconductor is analogous to the
mass gap of an atomic system and semiconductor quantum
dots are analogous to natural atoms.4 In electrostatic quantum
dots, electrons are confined by an electrostatic potential that
is generated by a gate electrode and replaces the Coulomb
potential of a natural atom. Normally the dot is engineered
so that the confined electron energies are just below the edge
of the conduction band. But in a material with a small band
gap it should be possible to use a stronger potential to lower
a state into the valence band and create a charged vacuum
analog.

Any material that allows a state to be lowered into the
valence band with a modest gate voltage is suitable. One
candidate is monolayer graphene on substrates that induce a
gap, for example, BN,5 Ru,6 and, controversially, SiC.7 Other
candidates include semiconducting carbon nanotubes and nar-
row gap semiconductors. Graphene is the only candidate with
a Dirac-like energy dispersion and hence the candidate that
provides the most precise analog of QED. Indeed, it has already
been suggested that a charged vacuum occurs in graphene in
the presence of a Coulomb impurity with enough charge,8 but
it may be difficult to vary the impurity charge experimentally.

However, any potential attractive to electrons and of sufficient
strength charges the vacuum. This means a graphene quantum
dot is an accurate and practical analog of the atomic charged
vacuum. In addition, dots made of materials with nonrelativis-
tic energy dispersion may allow studies of unusual charged
vacua whose properties differ from the atomic one.

But the most interesting feature of the quantum dot analog
is that the charged vacuum is extremely sensitive to an external
magnetic field. A rough estimate of the field needed to cause
significant effects may be obtained by equating the rest mass
energy to the cyclotron energy. For atomic electrons this gives
about 1010 T, an ultrastrong magnetic field that only occurs
in extreme astrophysical environments such as magnetized
neutron stars.9 In contrast, for graphene with m0c

2 ∼ 100 meV
and c ∼ 106 ms−1, the same estimate gives about 10 T, well
inside the laboratory regime.

Moreover, important effects already occur at lower fields.
Depending on their quantum numbers, energy levels both
rise and fall as the magnetic field increases. If the energy
of a charge carrying state rises above the Fermi level, the
vacuum discharges while it charges if the energy of a state
falls below the Fermi level. This leads to reentrant cycles of
vacuum charging and discharging. The relevant energy scale
for these processes is the depth of the state in the continuum.
For a hydrogenic atom with Z = 172 this is about 15 keV
(Ref. 2) and the field needed to discharge the vacuum is about
108 T, still in the astrophysical regime, while for a graphene
quantum dot it is �1 T. These processes do not seem to have
been investigated before and are studied here in the context of
a graphene quantum dot. But the wave equation for a graphene
dot is just the Dirac equation so exactly the same physics
should occur in atomic systems in ultrastrong magnetic fields.
The graphene dot is not only an analog of the charged vacuum
but also an analog of atomic physics in extreme astrophysical
environments.

The objectives of this Rapid Communication are, first, to
demonstrate that charged vacuum states occur in graphene
quantum dots, second, to demonstrate magnetic-field-induced
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FIG. 1. (Color online) Model potentials (top); well depth and
field dependent energy levels (bottom) and typical states at 0.704 T
(center).

vacuum charging and discharging, and finally to consider the
experimental consequences. The dot is taken to be circularly
symmetric and the dot potential is modeled by V (r) =
V0 exp[−(r/λ)p/2], where r is the radial coordinate, |V0| is
the well depth, and λ = 50 nm is its width. p determines the
shape and slope of the well; the bottom flattens and the edge
sharpens as p increases (Fig. 1, top). The Gaussian form is
convenient but not essential to the physics. The magnetic field
B is taken to be uniform and perpendicular to the dot plane.
The physics is within the range where the graphene dispersion
relation is linear, so the Dirac particle picture is applicable and
the quantum states are found from a two-dimensional effective
mass equation. Interestingly, the reduced spatial dimensions
may make it easier to realize a charged vacuum.10 The mass
is generated by including a site-dependent splitting parameter
in the Hamiltonian, the same approach as in earlier work on
graphene with a mass gap.8,11

The effective mass Hamiltonian for graphene consists
of two 2 × 2 blocks which together are equivalent to the
four-component Dirac Hamiltonian. One block gives the
states near the K point of the Brillouin zone and the other
gives the states near K ′. The states near K are obtained
from the two-component Hamiltonian H = (γ /h̄)σ · (p +
eA) + V + m0c

2σz, where the σ are Pauli matrices, p is the

momentum, and A is the magnetic vector potential. Here
c = γ /h̄, γ is taken to be 646 meV nm,12 and m0c

2 is taken
to be 100 meV, the upper end of the observed range (10–
100 meV). The eigenstates of a circularly symmetric dot are
φ(r) = {χ1(r) exp[i(m − 1)θ ],χ2(r) exp(imθ )}, where θ is the
azimuthal angle and m is the total angular momentum quantum
number. Equations for the radial functions are obtained by
making the substitutions f1 = √

rχ1, if2 = √
rχ2. This leads

to

V + m0c
2

γ
f1 +

(
d

dr
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2
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2

γ
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These equations are discretized with a second-order forward-
backward difference scheme13 which leads to a real, symmetric
eigenvalue problem that is solved numerically. The states near
K ′ are found in a similar way. The numerical system radius is
600 nm.

Physically, the valley index is equivalent to a pseudospin
and the states near K and K ′ correspond to pseudospin-up and
pseudospin-down, respectively. The total angular momentum
h̄(m − 1/2) is the sum of the orbital angular momentum and
pseudospin. The orbital angular momentum quantum number
l = (m − 1/2) ± 1/2 is therefore m − 1 for states near K and
m for states near K ′.

Figure 1 shows the typical behavior of energy levels and
quantum states. The bottom left frame shows the K energy
levels as a function of well depth when B = 0, m = 1 (i.e.,
l = 0), and p = 2. Because of the finite system size the
continuum consists of closely spaced discrete levels that form
two bands with |E| > m0c

2. The bound state levels occur
in the gap between the two continua and plunge into the
negative energy continuum as the well depth increases. Similar
behavior is found for other values of m and p. The bottom
right frame shows the K energy levels as a function of B

for the same parameters as in the bottom left frame and well
depth 265 meV. The continuum levels are now B dependent
and the top of the negative energy continuum falls from
∼−100 meV at B = 0 T to ∼−200 meV at B = 2.5 T and
within this field range the continuum levels remain closely
spaced. In contrast, the bound state energies increase with
B. Consequently, bound state levels that are in the negative
energy continuum when B = 0 T move up as B increases. In
particular, the bound state level closest to the continuum edge
crosses E = −m0c

2 (dashed line) when B ∼ 2.4 T, and this
corresponds to vacuum discharge in a system with a Fermi level
EF ∼ −m0c

2.
Typical states are shown in the center frame of Fig. 1.

When a bound state enters the continuum, it hybridizes with
the continuum states and forms a Fano resonance.14 In the
finite size numerical calculation this leads to a series of
anticrossings where the bound state levels move through the
continuum. Similar anticrossings have been found in earlier
work on the vacuum charge.2 Individual states that contribute
to the resonance closest to the continuum edge are shown in
the figure. The resonance width depends on the strength of the
hybridization. Semiclassical analysis15 shows that a forbidden
region surrounds the dot. As shown by the arrows in Fig. 1, the
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width of this forbidden region decreases when p = 8 and this
strengthens the hybridization.16 When p = 2, the resonance
width is less than the numerical continuum level separation
(∼1 meV) and the resonance consists of one state. But when
p = 8, it involves about two to four states. In the case of Fig. 1,
B is chosen so that f1 has roughly the same amplitude for the
two main contributing states and the resonance width is about
3–4 meV. The corresponding state has a large peak in f1 at
the center, consistent with bound state character, and a ring
of small oscillations that extends to about 300 nm, consistent
with continuum character. This confirms that bound states can
hybridize strongly with continuum states in a quantum dot. In
contrast, strongly hybridized states do not normally occur in
Coulomb potentials because the width of the forbidden region
is large.

The vacuum charge density is the charge density induced
in response to an external potential V . It may be found
from QED charge density operators or directly and of course
both ways give identical results.17,18 The two equivalent
QED operators are the normally ordered operator and the
commutator operator ρ̂ = (−e/2)[ψ̄,γ 0ψ], where γ 0 is a
Dirac matrix, ψ is the Dirac field operator, and ψ̄ is its adjoint.
The more widely used direct expression is ρ(V ) − ρ(0),
where the charge density ρ is found by summing over states
below EF . In the present work ρ̂ is used to ensure that
the calculation parallels earlier work on the vacuum charge2

and because this is more efficient than the direct approach.
Integrating the the vacuum expectation value of ρ̂ gives the
total vacuum charge Q = (−e/2)(

∑
En<EF ,α −∑

En>EF ,α). In
QED the sums in ρ̂ and Q are divergent and have to be
treated with charge renormalization, but they are convergent
in the present numerical model because the energy spectrum
is bounded.

The total vacuum charge as a function of well depth and
magnetic field is shown in Fig. 2. Real-spin splitting is included
and the effective g factor is taken to be 2.0. EF is taken
to be just above −m0c

2 so all real-spin-split Landau levels
remain below it, and this choice corresponds to the one used
in atomic physics. For B = 0 the vacuum charge increases
monotonically with well depth in a series of steps. The first step
occurs when the l = 0 level shown in Fig. 1 enters the vacuum.
Each step has height 4 and this corresponds to a twofold
pseudospin degeneracy and a twofold real-spin degeneracy.
At a constant well depth the vacuum charge as a function of B

shows reentrant behavior for both values of p. For instance, for
well depth 220 meV and p = 2, it falls when B ∼ 0.41 T and
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FIG. 2. Total vacuum charge as a function of well depth (left) and
magnetic field (right).
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FIG. 3. Vacuum charge phase diagrams for p = 2 (left) and p =
8 (right). K phase boundaries solid, K ′ dashed.

then rises when B ∼ 3.9 T. The fall occurs because the l = 0,
K level leaves the continuum while the rise occurs because the
l = −1, K ′ level enters the continuum. The behavior at a larger
well depth is similar but richer because some levels go through
a minimum as a function of B.18 Another effect of the field
is real-spin splitting. This allows an odd numbered vacuum
charge and leads to double steps of height 1, for example, at
B ∼ 3.9 T with a well depth 220 meV and p = 2.

To investigate the details, vacuum charge phase diagrams
are computed (Fig. 3). Each phase boundary indicates where an
energy level En crosses the Fermi level and is given implicitly
by En(V0,B) = EF . The total vacuum charge is shown on
selected portions of the diagrams. For clarity, real-spin splitting
is not included. Hence each line corresponds to a vacuum
charge step of two electrons when B �= 0 and four when B = 0.
The results in Fig. 2 are sections through the phase diagrams
with real-spin splitting included. The phase boundaries reflect
the physics of the system: They have small splittings at B = 0,
unless l = 0, and there is pronounced B-dependent splitting.
These effects can be understood from the nonrelativistic limit
of the effective mass equation. To order 1/m2

0 the splitting
at B = 0 results from the pseudospin-orbit interaction and
the B-dependent splitting results from the interaction of the
pseudospin with the magnetic field. Quantitatively, the exact
splittings at B = 0, V0 = −180 meV, and p = 2 are 1.05,
1.88, and 2.49 meV for the lowest states at l = 1, 2, 3,
respectively, while the lowest-order pseudospin-orbit splittings
are 1.36, 2.57, and 3.63 meV. The B-dependent splitting at 1 T,
calculated from the pseudospin g factor, is 6.33 meV while the
exact splitting at l = 0 is 6.05 meV. Hence the nonrelativistic
limit describes the physics qualitatively but the exact equation
is needed to find the splittings accurately.

The vacuum charge density (Fig. 4) is very similar to
the vacuum charge density found in atomic physics, and
this confirms that the graphene vacuum charge is a precise
analog of the one found in atomic physics.2 The charge
density increase associated with the charging steps is found
from ρ(V0 + δV0) − ρ(V0), where δV0 is small (−0.1 meV)—
the numerical equivalent of the procedures used in atomic
physics.2 In atomic physics terminology, states below the
threshold for vacuum charging are described as undercritical
while those above it are called overcritical. Figure 4 shows
the charge density associated with the first step at B = 0 T in
Fig. 2. To a good approximation, the vacuum charge is stored
in one overcritical state when p = 2 and two when p = 8. The
open circles indicate the charge density computed from these
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FIG. 4. Comparison of vacuum charge density and overcritical
and undercritical state densities at B = 0 T.

few states. Near the peak they agree with the exact data to
better than a few parts in 1000. This shows that the vacuum
charge density is stored in a resonance as in the atomic case.
In addition, the exact density is also approximated to similar
accuracy by the undercritical bound state density (crosses),
and this is the consequence of a sum rule similar to the one
that applies in the atomic case.2 This again suggests that
graphene vacuum charge is an exact analog of the atomic
one. However, the possibility of strongly hybridized states is a
different feature that only occurs in graphene. In this case the
resonance broadens and the figure shows the total density that
would be observed with low energy resolution.

There are several experimental consequences of these
findings. First, the vacuum charge in a graphene quantum dot
may be detectable via emission of holes that is analogous to
spontaneous positron emission. It may be possible to pump
the gate voltage to enhance this effect. Second, the strong
hybridization may be detectable with scanning tunneling
spectroscopy (STS). Although the hybridization does not affect
the density observed with low energy resolution, the states in
Fig. 1 extend to a radius about an order of magnitude larger
than the dot radius. They should be detectable when energies
less than the width of the Fano resonance can be resolved and
this requires temperatures of a few K. Third, it may be possible
to detect the vacuum charge directly, for example, by capaci-

tance measurements or quantum point contact electrometers.
These experiments only require a gate that can take a bound
state through a gap; perfect circular symmetry is not needed
and the gap may be position dependent.19 The ideal material
for the experiments should be undoped or p doped to ensure
that an empty state is taken through the gap and it should
be graphene with a gap (the situation is different in gapless
graphene20) to ensure that the effective mass equation is
a precise analog of the Dirac equation. Existing results5,6

suggest that a suitable material can be found. In addition,
it should be possible to observe a charged vacuum analog
in narrow gap semiconductors or semiconducting carbon
nanotubes, although the effective mass equation is no longer
relativistic.

In summary, a quantum dot in graphene with a mass gap
provides an accurate model of the charged vacuum. The
vacuum charge is strongly affected by a magnetic field and
a sufficiently strong magnetic field can discharge the vacuum.
These effects should also occur for atomic electrons in a
magnetic field, but the small rest mass energy of graphene
charge carriers allows them to be seen with fields ∼1 T
instead of the extreme astrophysical fields needed for atomic
electrons. Experimentally, it may be possible to detect the
graphene charged vacuum directly, or by observation of hole
emission or by probing the states with STS. The effect of
interactions remains to be investigated, but a Thomas-Fermi
approach2 suggests the atomic vacuum charge survives the
effect of interactions.

Recently, Wang et al.21 and Luican-Mayer et al.22 reported
relevant experimental work. The experiments of Wang et al.
involve the assembly of Ca dimer clusters in graphene on
BN and manipulation of the number of dimers with scanning
tunneling microscopy (STM). The experiments of Luican-
Mayer et al. involve the use of magnetic-field-dependent
screening to control the strength of the potential around a
charged impurity.
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