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Many-body effects and possible superconductivity in the two-dimensional metallic surface states
of three-dimensional topological insulators
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We theoretically consider temperature- and density-dependent electron-phonon interaction induced many-
body effects in the two-dimensional (2D) metallic carriers confined on the surface of the three-dimensional
topological insulator (e.g., Bi2Se3). We calculate the temperature and the carrier density dependence of the real and
imaginary parts of the electronic self-energy, the interacting spectral function, and the phonon-induced velocity
renormalization, enabling us to obtain a simple density- and temperature-dependent effective dimensionless
electron-phonon coupling constant parameter, which increases (decreases) strongly with increasing density
(temperature). Our theoretical results can be directly and quantitatively compared with experimental angle-
resolved photoemission spectroscopy or scanning tunneling spectroscopy studies of the 2D spectral function of
topological insulator surface carriers. In particular, we predict the possible existence of surface superconductivity
in Bi2Se3 induced by a strong electron-phonon interaction.
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Electronic properties of two-dimensional (2D) metallic
states on three-dimensional (3D) topological insulator (e.g.,
Bi2Se3) surfaces1–3 continue to be one of the most active
areas of condensed matter physics and materials science
research worldwide.4–8 The reason for this intense interest
is partly fundamental and partly technological. The 2D
metallicity of the surface carriers here is topologically pro-
tected by the time reversal symmetry9 as long as the bulk
is a gapped insulator,10 and, as such, it is a new kind
of a 2D electron system where carrier backscattering is
completely suppressed, thus making it possible for a 2D
system to be a metal even at T = 0 in the presence of an
arbitrary amount of impurity disorder.11 This is in sharp
contrast to ordinary 2D electron systems which are generically
insulators at T = 0 in the presence of any finite disorder
due to the complete destructive quantum interference arising
from the 2kF scattering. The 2D metallic surface carriers
in topological insulators form helical bands with massless
linear Dirac-like energy dispersion protected by time reversal
invariance.5,12

Since the basic phenomenon of 3D topological insulators
(TIs) with the associated protected 2D gapless metallic
surface carriers arises entirely from purely single-particle
physics, much of the theoretical work on the subject
has focused on the single-particle aspects involving topol-
ogy and symmetry, including band structure,13 magnetic
impurities,14 magnetoelectric response,15–17 integer quantum
Hall effect,18 localization,19 and topological classification.20,21

In the current Rapid Communication we focus on many-
body TI properties with a theoretical investigation of the
interaction-induced renormalization of the single-particle
properties of the surface 2D carriers. Such a many-body
renormalization of the single-particle properties manifests
itself directly in various spectroscopic measurements such
as angle-resolved photoemission spectroscopy (ARPES)22–24

and scanning tunneling spectroscopy (STS),25 and, therefore,
our theory presented in this work provides direct predictions
for ARPES and STS studies of TI surface metallic states.

Since our theory provides the renormalized quasiparticle
energy dispersion and level broadening, it is of crucial
importance in understanding many properties of the TI surface
states.

In discussing electronic many-body effects in general, it is
useful to distinguish between electron-electron and electron-
phonon interaction effects. Both are, of course, always present
in any experimental solid state system, and can, in fact, be stud-
ied on an equal footing theoretically since the electron-phonon
interaction can be eliminated in favor of an effective phonon-
mediated electron-electron interaction through a canonical
transformation which simply adds to the direct electron-
electron Coulomb interaction to produce a complicated effec-
tive electron-electron many-body interaction including phonon
effects implicitly.26 Such an effective Hamiltonian is a good
starting point when electron-electron and electron-phonon
interactions are of comparable strengths. 2D carriers on
TI surfaces are, however, very weakly interacting Coulomb
systems by virtue of the bulk material (i.e., Bi2Se3,10,27

Bi2Te3,28,29 Bi1−xSbx ,30 etc.) usually having a very large
lattice dielectric constant (>50) which strongly suppresses
the effective 2D Coulomb interaction (going as 2πe2/κq,
where q is the 2D momentum transfer with κ the background
lattice dielectric constant). The Coulomb interaction strength
(i.e., the ratio of the Coulomb potential energy to the nonin-
teracting kinetic energy) in the 2D surface carriers, defined
by the effective fine-structure constant rs = e2/(κh̄vF ), where
vF is the velocity (typically vF ≈ 7 × 107 cm/s) of the linear,
massless Dirac band dispersion of the 2D carriers, is very small
(rs ∼ 0.05) by virtue of the large background lattice dielectric
constant. As such all effects of a direct electron-electron
Coulomb interaction can be safely neglected in discussing TI
electronic properties, except perhaps at an extremely small 2D
carrier density, which is of little experimental or technological
interest.31

The starting point of our theory is the calculation of
the finite-temperature electron self-energy arising from the
electron-phonon interaction, which can be written in the
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leading-order theory as32

Re �(k,ω) =
∑

s ′=±1

∫
d2q

(2π )2
|M|2 1 + s ′ cos θ

2

×
[
nF (ε′) + N0(ωq)

ω + ωq − ε′ + 1 − nF (ε′) + N0(ωq)

ω − ωq − ε′

]

(1)

and

Im �(k,ω) = −π
∑

s ′=±1

∑
ν=±1

∫
d2q

(2π )2
|M|2 1 + s ′ cos θ

2

× [nF (ωq + νω) + N0(ωq)]δ(ω + νωq − ε′).
(2)

In Eqs. (1) and (2), � = Re � + i Im � is the wave vector
or momentum (k) and energy- or frequency- (ω) dependent
finite-temperature 2D electron self-energy arising from the
interaction of the 2D carriers with the effective TI surface
acoustic phonons, with the phonon dispersion given by
ωq = h̄vlq, where vl is the surface phonon velocity. The
electron-phonon interaction is considered to be mediated
by the deformation potential coupling33 quantified by the
coupling strength M given by |M|2 = D2h̄q

2ρmvl
, with D and ρm

respectively being the deformation potential coupling strength
and the 2D (ionic) mass density of the TI material. In Eqs. (1)
and (2), ε′ ≡ s ′h̄vF |k + q| − μ denotes the linear massless 2D
energy dispersion of the surface metallic electron-hole bands
(with s ′ = ±1 denoting electrons or holes in the conduction or
valence band) measured with respect to the finite-temperature
chemical potential μ, and nF (ε′) is the finite-temperature
Fermi distribution function corresponding to the carrier energy
ε′. Finally, N0(ωq) is the finite-temperature Bose distribution
function for phonons with energy ωq . We mention that the
1+s ′ cos θ

2 factor is a matrix element effect arising from the
topological nature of the surface bands which suppresses
backscattering (i.e., cos θ = −1 for θ = π ) due to the chiral
nature of the surface 2D bands associated with the intrinsic
spin-orbit coupling in the system. We note that although we
explicitly consider 2D surface phonons, the same theory should
also apply for the interaction of the surface 2D electrons
with 3D bulk acoustic phonons where a sum over all the
bulk transverse phonon wave vectors has to be carried out,
thus reducing the bulk phonon coupling to an effectively 2D
coupling problem anyway. We do not, however, believe that
the coupling to bulk phonons would play a significant role
in the physics under consideration since our interest here is
restricted entirely to the surface 2D carriers.

The finite-temperature electron-phonon self-energy defined
by Eqs. (1) and (2) arises directly from the formal expression
� ∼ ∫

G|M|2P for the self-energy, where an integration over
all internal energy or momentum is implied with G,P,M

being the electron propagator, the phonon propagator, and
the electron-phonon interaction matrix element, respectively.
This leading-order expression for the self-energy is, in fact,
essentially exact for the weak-coupling problem by virtue of
Migdal’s theorem, guaranteeing all vertex correction contribu-
tions being parametrically small in powers of vl/vF (�0.01 in
the current problem).

Once the electron self-energy is calculated using Eqs. (1)
and (2), there are two possible alternative (and, in principle,
inequivalent) methods to define an effective dimensionless
electron-phonon coupling strength parameter λ for the system
(which depends on the carrier density n and temperature T )
given by32,34

λr ≡ −∂ Re �(kF ,ω)

∂ω

∣∣∣∣
ω=ξkF

, (3)

where ξkF
= h̄vF kF − μ, and35

λi ≡ −Im �(TF � T � TBG)

πkBT

∣∣∣∣
ω=ξkF

, (4)

where TF = EF /kB = h̄vF kF /kB and TBG = 2h̄kF vl/kB are,
respectively, the Fermi temperature and the Bloch-Grüneisen
temperature with kF ≡ (4πn)1/2. The effective coupling
constant λr in Eq. (3) directly provides the (density- and
temperature-dependent) 2D carrier velocity renormalization
due to the electron-phonon interaction35 v∗

F = vF (1 + λr )−1.
The effective coupling constant λi in Eq. (4) is the high-
temperature electron-phonon coupling parameter directly con-
tributing to the phonon-induced carrier resistivity for T �
TBG = 2h̄vlkF /kB—in particular, ρT ∝ λiT for T � TBG,
where ρT is the phonon-dominated linear-in-temperature
electronic resistivity at high temperatures above the Bloch-
Grüneisen regime.2,36

Before presenting our detailed results for the electron-
phonon self-energy, we mention that the standard textbook
definition of the dimensionless electron-phonon coupling
constant in metals (e.g., the coupling strength entering the
standard BCS-Eliashberg theory for phonon-induced super-
conductivity) is based on the electronic density of states (DOS)
at the Fermi energy and is defined as37

λd ≡ D0(EF )|M(q)|2
ωq

≡ D2kF

4πh̄vF ρmv2
l

, (5)

where D0(EF ) = kF /(2πh̄vF ) is the electronic density of
states of the surface 2D Dirac carriers at the Fermi surface
(k = kF or E = EF = h̄vF kF ).

How do λr , λi , λd relate to (or compare with) each other?
This is, in fact, a main topic discussed in this work, but it
maybe useful to mention here that we find the three definitions
to be completely consistent with each other in their respective
regimes of validity.

Using the delta function in Eq. (2), and using the high-
temperature (T � TBG) expression for the Bose distribution
function N0, it is straightforward to calculate the asymptotic
form for Im � in the high-temperature (TBG 	 T 	 TF ) limit
of the equipartition regime for the acoustic phonons, obtaining

Im �(k,ξk) ≈ −1

2

kF

h̄vF

D2

2ρmv2
l

kBT , (6)

with ξk = ±h̄vF k − μ denoting the electron/hole energy.
Equation (6) combined with the definition for λi given in
Eq. (4) leads to λi = kF

2πh̄vF

D2

2ρmv2
l

, which is exactly the same

as the DOS definition for the coupling strength λd given in
Eq. (5). Since λi also gives the phonon scattering contribution
to the high-temperature carrier resistivity, we conclude that
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FIG. 1. (Color online) Re �(k,ω) of the surface state of Bi2Se3

as a function of ω/EF for n = 3 × 1012 cm−2. (a) k = 0.1kF .
(b) k = kF .

the DOS and the transport definition of the electron-phonon
coupling parameter λ agree with each other, i.e., λd ≡ λi ≡ λt ,
where λt is the coefficient of the phonon contribution to
the temperature-dependent electronic resistivity for T � TBG

where the electronic resistivity is linear in T .2

The velocity renormalization factor λr defining the many-
body suppression of the carrier Fermi velocity35 v∗

F /vF =
(1 + λr )−1 is obtained from the real part of the electron-
phonon self-energy defined in Eqs. (1) and (3). At T = 0,
the frequency derivative at the Fermi energy in Eq. (1) can be
analytically evaluated to obtain λr = kF

2πh̄vF

D2

2ρmv2
l

, which agrees

precisely with the DOS definition of the coupling parameter.
Having established the complete equivalence among the
definitions of the three distinct electron-phonon coupling
strength parameters (λd , λi , and λr ), we now focus on the
electron-phonon self-energy function at finite temperature and
carrier density by directly numerically integrating Eqs. (1) and
(2). The corresponding electronic spectral function A(k,ω)
is given by A(k,ω) ≡ −2 Im G(k,ω), where G(k,ω) = [ω −
ξk − �(k,ω)]−1 is the renormalized propagator for the 2D
surface electrons including electron-phonon interaction.

In Figs. 1–3, we show our representative numerical results
for Re �, Im � and A, respectively. For numerical calculations,
we use the deformation potential D = 22 eV, vF = 7 ×
105 m/s, the mass density of Bi2Se3 for a single quintuple layer
ρm 
 7.68 × 10−7 g/cm−2, and the surface phonon velocity
vl = 2900 m/s.2 In addition to the well-defined quasiparticle
peak, there is a substantial background incoherent contribution
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FIG. 2. (Color online) Im �(k,ω) of the surface state of Bi2Se3

as a function of ω/EF for n = 3 × 1012 cm−2 and k = kF . The inset
presents Im �(k,ω) around ω = 0.
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FIG. 3. (Color online) A(k,ω) of the surface state of Bi2Se3 as
a function of ω/EF for n = 3 × 1012 cm−2. (a) k = 0.1kF . (b) k =
0.8kF .

to the spectral weight and a sharp (but very small) zero-energy
feature associated with the carrier coupling to the acoustic
phonon mode.

Our most important results are shown in Fig. 4, where
we show our calculated electron-phonon coupling parameter
λ (≡λr ), calculated on the basis of Eq. (1) through a direct
numerical differentiation of the self-energy function. Since
the quasiparticle velocity is given by v∗

F = vF (1 + λ)−1,
Figs. 4(a) and 4(b) directly provide, as a function of density
and temperature, the experimentally relevant carrier velocity
renormalization by the electron-phonon interaction. It is
interesting to note the very strong (weak) density (tempera-
ture) dependence of the coupling parameter for low- (high-)
temperature (density), respectively. Thus, while λ at T = 0
varies in Fig. 4(a) as

√
n with carrier density (consistent with

the λ ∝ kF analytical behavior), the λ parameter at T = 100 K
in Fig. 1 varies very little with carrier density (being very
small, λ ∼ 0.01 throughout). Similarly, we see in Fig. 4(b)
that λ(T ) for n = 1013 cm−2 (relatively high density) starts at
a high value (λ ∼ 0.25), but quickly falls to around 0.05 for
T ∼ 40 K.

Although all our calculations are done using the parameters
for the Bi2Se3 TI system, which is by far the most extensively
studied TI system in the literature, we believe that the
general trends we find in our work [e.g., the functional
dependence of λ(n,T ) on density and temperature] should
be valid for 2D surface states on all TI materials. In this
context, it is crucial to emphasize the obvious fact that
λ ∝ D2, and as such all our quantitative results depend on
our choice of D = 22 eV for the Bi2Se3 system, which we
take from the recent detailed transport measurements2 of the
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FIG. 4. (Color online) (a) λr as a function of carrier density for
different temperatures T = 0, 5, 10, 20, and 100 K from top to bottom.
(b) λr as a function of temperature for different carrier densities
n = 0.5, 1, 5, and 10 × 1012 cm−2 from bottom to top.
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temperature-dependent resistivity of the Bi2Se3 surface 2D
carriers, which then lead directly to an estimate of λi and
hence of D2. We emphasize that the subject matter of the
electron-phonon coupling strength in the context of the Bi2Se3

surface metallic carriers23 has been highly controversial with
claims ranging from very weak coupling (λ < 0.1)24 to very
strong coupling (λ � 0.5).38 Our work should resolve this
controversy because, as our Figs. 4(a) and 4(b) clearly show,
the electron-phonon coupling parameter λ in the Bi2Se3

surface 2D states depends very strongly on the temperature
and carrier density. Since λ increases strongly with carrier
density [Fig. 4(a)], particularly at lower temperatures (<20 K),
the coupling can be increased arbitrarily by increasing carrier
density and could reach as high as λ ∼ 0.3–0.4 for n � 1013

cm−2. By contrast, λ decreases sharply with temperature
[Fig. 4(b)], and thus even at high carrier density (n ∼ 1013

cm−2), the coupling constant will be very small (�0.01) for
T � 100 K. A direct observation of the strongly temperature-
and density-dependent quasiparticle velocity renormalization,
as predicted in our Figs. 4(a) and 4(b), could completely
settle the controversy about the precise value of λ (and
hence D) in Bi2Se3. We emphasize that the electron-phonon
coupling in the 2D surface states of Bi2Se3 is much stronger
(λ ∼ 0.25) quantitatively than the corresponding coupling in
graphene (λ � 0.1)39 and 2D GaAs (λ � 0.01)40 systems for
comparable temperatures and carrier densities.

Since the original definition of the electron-phonon cou-
pling parameter λ (as used in our work) arose in the context
of the BCS superconductivity (and the associated electron-
phonon interaction in 3D metals), where λ is indeed a constant
for each metal, it may appear strange that we are discussing
here [Figs. 4(a) and 4(b)] a λ parameter which depends
strongly on temperature and density. This seeming paradox
is resolved by realizing that, in regular 3D metals, the carrier
density is very high (corresponding to a Fermi energy of
∼10 eV) which cannot be varied at all except for small changes
in going from one metal to another. Thus, the 3D metals

are essentially always in the high-density regime. Equally
importantly, the relevant temperature scale for 3D metals
is the Debye temperature (TD) which is high, T � 300 K.
Thus, any temperature dependence of the λ parameter in 3D
metals can only manifest itself at rather high temperatures
T � TD , which perhaps does happen as reflected in the
so-called “resistivity saturation” phenomenon. In our 2D
metallic system on the TI surfaces, however, the electron
temperature scale (TF ∝ √

n) and the phonon temperature
scale (TBG ∝ √

n) are both relatively small, leading to a
very strong temperature dependence of the electron-phonon
coupling “constant.” (As an aside we mention that the relevant
phonon temperature scale is either TBG or TD depending
on whichever is smaller—in 3D metals TBG ∼ 104 K � TD

since kBTBG = 2h̄vF kF is a very large energy scale because
of the very high value of kF in metals, and on the other
hand, TBG 	 TD in 2D systems since kF ∝ √

n is typically
small.)

We conclude by mentioning an important consequence
of our theoretical findings. Given the large value of λ (at
least for n > 1012 cm−2) and very weak Coulomb repulsion
in the 2D TI surface states on Bi2Se3, we predict the
possibility of phonon-induced surface BCS superconductivity
in Bi2Se3. In fact, using our calculated λ (and taking the
Coulomb repulsion parameter μ∗ = 0) we predict Tc � 1 K
for Bi2Se3 surface 2D states for n � 5 × 1012 cm−2. The
relevant mean-field Tc formula here is easily obtainable from
a BCS-Eliashberg theory, where λ in our work is related to
the Eliashberg function α2F (ω) by λ = 〈α2F (ω)〉ω,32 which
gives the following approximate Tc expression for the surface
2D system: Tc ≈ TD exp[−(1 + λ)/(λ − μ∗)]. Using TD ≈
200 K, λ = 0.25, and μ∗ = 0, we get Tc = 1.35 K. We propose
that 2D superconductivity (with Tc ∼ 1 K) should be looked
for in the surface metallic states of Bi2Se3.

This work is supported by ONR-MURI, LPS-CMTC and
Microsoft Q.
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