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Loop liquid in an Ising-spin Kondo lattice model on a kagome lattice
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Phase diagram of an Ising-spin Kondo lattice model on a kagome lattice is investigated by a Monte Carlo
simulation. We find that the system exhibits a peculiar ferrimagnetic state at a finite temperature, in which each
triangle is in a two-up one-down spin configuration but the spin correlation does not develop any superstructure.
We call this state the loop liquid, as it is characterized by the emergent degree of freedom, self-avoiding up-spin
loops. We elucidate that the system shows phase transitions from the loop liquid to ferrimagnetically ordered
states and a crossover to a partially ferromagnetic state by changing the electron density and temperature. These
can be viewed as crystallization and cohesion of the loops, respectively. We demonstrate that the loop formation
is observed in the optical conductivity as a characteristic resonant peak.
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The interplay between charge and spin degrees of freedom
in electrons has long been studied as one of the central
problems in condensed matter physics. In particular, itinerant
electron systems coupled to localized spins are fundamental
models in the study of such interplay in correlated electrons.
In these systems, effective spin-spin interactions mediated by
itinerant electrons play a crucial role in the magnetism. For
instance, spin-glass behavior in metallic alloys with doped
magnetic ions is driven by the so-called Ruderman-Kittel-
Kasuya-Yosida interactions.1–3 Another example is metal-
lic ferromagnetic (FM) behavior in perovskite manganese
oxides, which is understood by the double-exchange (DE)
interaction.4,5 On the other hand, the interplay between charge
and spin also triggers significant changes of the electronic
structure and transport properties. In the perovskite magnanese
oxides, the competition between the FM DE and antiferromag-
netic (AFM) superexchange interactions plays an important
role in the colossal magnetoresistance.6

The interest in the spin-charge coupling has recently been
extended to frustrated systems, in which geometrical frustra-
tion provides an additional degree of freedom for controlling
the system. In these systems, a simple AFM ordering of
localized spins is suppressed by geometrical frustration, and
instead, a disordered spin state with strong local correlations
is expected to be realized at a sufficiently low temperature
(T ). Such a “liquidlike” spin state is anticipated to have
characteristic effects on the coupled itinerant electrons. Indeed,
the importance of characteristic noncoplanar spin textures was
discussed for an unconventional anomalous Hall effect and
peculiar metallic behavior observed in Nd2Mo2O7 (Ref. 7)
and Pr2Ir2O7.8,9

Stimulated by such interesting experiments, many theo-
retical studies have been done recently. For instance, char-
acteristic metal-insulator transitions were found in extended
Falicov-Kimball models with local constraint on the spatial
configuration of localized particles.10 A similar problem was
also studied for the model with localized spins.11 Meanwhile,
a noncoplanar spin correlation in an Ising-spin Kondo lattice
model on a pyrochlore lattice was studied for explaining the
resistivity minimum in Pr2Ir2O7.12,13 A similar noncoplanar
correlation on a kagome lattice was shown to induce a charge
gap and quantum anomalous Hall effect.14,15 These results

indicate that liquidlike states can be realized in frustrated spin-
charge coupled systems and their peculiar spin correlations
significantly affect the electronic and transport properties.

In this study, to explore such liquid states and exotic
electronic properties, we investigate a Kondo lattice model
with Ising localized moments on a two-dimensional kagome
lattice. By using a Monte Carlo (MC) method, we show
that the model exhibits a locally correlated spin state with
a fractional magnetic moment. We call this ferrimagnetic
(FR) liquidlike state the loop liquid, as it can be viewed as a
soup of self-avoiding up-spin loops mixed with isolated down
spins [see Fig. 1(b)]. Although the electronic structure was
previously studied by assuming similar loop liquids,11 our
results provide convincing evidence of the thermodynamic
stability of the loop liquid. The obtained phase diagram
includes FM, partially FM, q = 0, and

√
3 × √

3 FR states in
addition to the loop liquid; the phase transitions and crossover
are interpreted as crystallization and cohesion in terms of
the loops, respectively. We also demonstrate that the optical
conductivity develops characteristic peaks corresponding to
the formation of the self-avoiding loops.

We consider a single-band Kondo lattice model on a kagome
lattice with localized Ising-spin moments. The Hamiltonian is
given by

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) + J

∑

i

σ z
i Si . (1)

The first term represents hopping of itinerant electrons, where
ciσ (c†iσ ) is the annihilation (creation) operator of an itinerant
electron with spin σ = ↑,↓ at the ith site, and t is the transfer
integral. The sum 〈i,j 〉 is taken over nearest-neighbor (NN)
sites on the kagome lattice. The second term is the on-site
interaction between localized spins and itinerant electrons,
where σ z

i = c
†
i↑ci↑ − c

†
i↓ci↓ represents the z component of the

itinerant electron spin and Si = ±1 denotes the localized Ising
spin at the ith site; J is the coupling constant (the sign of J

does not matter in the present model). Hereafter, we take t = 1
as the unit of energy, the lattice constant a = 1, the Boltzmann
constant kB = 1, and e2/h as the unit of conductance.

Thermodynamic properties of the model in Eq. (1) are
studied by a MC simulation which is widely used for similar
models.16 The calculations were conducted up to the system
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FIG. 1. (Color online) (a) Phase diagram of the model in Eq. (1)
at J = 6 obtained by Monte Carlo simulation. The symbols show
the critical temperatures Tc for magnetic states: ferromagnetic (FM),
partially ferromagnetic (PFM), loop liquid (LL), q = 0 ferrimag-
netic (q = 0), and

√
3 × √

3 ferrimagnetic (
√

3 × √
3) states. Tc

for the
√

3 × √
3 state at n = 8/9 is shown by the diamond, while

the upper limit for Tc for the q = 0 state n = 0.83 is shown by the
downward triangle, which is given by the temperature we reached
with Ns = 82 calculations. The squares (circles) show Tc determined
from the Binder analysis of m (P ), and the upward triangles show Tc

determined by the system-size extrapolation of the peak of χm. The
curve connecting the symbols is a guide for the eyes. The strip at the
bottom is the ground state phase diagram obtained by the variational
calculation for three magnetic orders: FM, q = 0, and

√
3 × √

3.
PS is the phase separation between the neighboring two phases.
The schematic pictures of the magnetic states are given for (b) LL,
(c) q = 0, and (d)

√
3 × √

3. The bold lines denote the loops
connecting up-spin sites and the dots show down-spin sites.

size N = 3 × Ns with Ns = 92 under the periodic boundary
conditions (Ns is the number of three-site unit cells). To deal
with the freezing of MC sampling, some of the low-T data
were calculated starting from a mixed initial spin configuration
of low-T ordered and high-T disordered states.17 The thermal
averages were calculated for typically 15 000–80 000 MC steps
after 5000–18 000 MC steps for thermalization. In addition, the
ground state phase diagram is also obtained by comparing the
energy of the dominant phases found in the MC simulation.18

Figure 1(a) shows the phase diagram obtained by the
MC simulation at J = 6 while varying electron density
n = ∑

iσ 〈c†iσ ciσ 〉/N . As T is lowered, the system exhibits
a phase transition developing a net magnetization m =√〈(∑i Si/N )2〉. T dependence of m is shown in Fig. 2(a). In
the low density region for n � 0.56, m approaches its saturated
value 1 in the low-T limit, namely, the system exhibits a fully
polarized FM order. This phase is connected to the FM phase in

the large J region, which is induced by the DE mechanism.4,5

While increasing n, the low-T value of m decreases from
1 and continuously becomes smaller as n becomes larger,
as shown in Figs. 2(a) and 2(b). At the same time, the
probability to find a two-up one-down spin configuration in
each triangle, P = √〈(∑ν 3pν/2N )2〉, increases continuously
from zero [Fig. 2(b)]; here, pν = 1 (−1) for two-up one-down
(one-up two-down) and otherwise pν = 0, and the sum is
over all triangles. The spin structure factor S(k) for the same
sublattice is featureless except for the peak at k = 0, as shown
in Fig. 2(c); here, S(k) = 1

Ns

∑
i,j∈α〈SiSj 〉 exp(ik · rij ), where

rij is the vector from ith to j th site, and the sum is taken for
the sites i,j in the same sublattice α. We call this region with
the reduced m the partially ferromagnetic (PFM) phase.19

In the region of 0.8 � n < 8/9, however, the low-T value
of m becomes almost independent of n, and saturates to a
fractional value m = 1/3, as shown in Fig. 2(a). In this region,
most of the triangles on the kagome lattice are in two-up
one-down spin configurations, namely, P � 1 [Fig. 2(b)].
As shown in Fig. 2(d), S(k) does not show any sharp peak
except for the one at k = 0, indicating that this state has no
superstructure. Hence, this FR state is a peculiar Coulombic
state subject to the two-up one-down local constraint, in a
similar sense to the two-in two-out state in spin ice.20,21

The spin state is composed of the emergent degrees of
freedom, self-avoiding up-spin loops and isolated down-spins,
as schematically shown in Fig. 1(b). Hence, we call this
Coulombic state the loop liquid (LL).

An interesting observation here is that the change between
the FM, PFM, and LL states is smooth and there is no sign of
phase transition. Both m and P change continuously without
showing any singularity, and the magnetic susceptibility χm

shows only a broad hump, as shown in Fig. 2(b). This indicates
that the change from FM to LL is a crossover and not a phase
transition. Such behavior is understood from the symmetry
point of view. In the LL state, though m is nonzero, the system
remains disordered and preserves all the symmetries of the
lattice; the situation is unchanged from the FM and PFM states.
As a consequence, these phases are smoothly connected by the
crossover.

On the other hand, with decreasing T or with further
increasing n, the LL state exhibits phase transitions showing
a magnetic long-range order (LRO). In our MC simulation,
we identify two different transitions: one is the transition
to the state with q = 0 LRO of the two-up one-down spin
configurations [Fig. 1(c)], and the other to the state with√

3 × √
3 LRO [Fig. 1(d)]. The former is observed while

decreasing T at n ∼ 0.83, and the latter is found by increasing
n to a commensurate filling n = 8/9. S(k) for the latter state
is shown in Fig. 2(e). In the corresponding density regions,
the two phases are obtained in the variational calculation
for the ground state, as shown in Fig. 1(a). These two LRO
states can be viewed as crystal phases of the emergent loops
in the two extreme cases; the former is a periodic array of
one-dimensional chains, while the latter is the shortest six-site
hexagons. Interestingly, the peculiar LL state extends in the
density region between these two crystal phases.

Let us closely look at the formation of LL and the
crystallization of loops. Figure 3 shows the MC results of T

dependence of magnetic properties at n = 0.83. The result
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FIG. 2. (Color online) (a) MC results for T dependence of m at different n. The data at n = 8/9 are calculated for Ns = 92, while the others
are calculated for Ns = 82. (b) n dependence of m, χm, and P at T = 0.03 for Ns = 62, 72, 82, and 92. The MC results of S(k)/Ns are shown
for (c) n = 0.65, (d) n = 0.84, and (e) n = 8/9 at T = 0.03 and Ns = 92.

in Fig. 3(a) shows the increase of m with saturation to
1/3 and a divergent peak of χm at T ∼ 0.05. At the same
time, as shown in Fig. 3(b), P shows saturation to 1 and

its susceptibility χP shows a peak, indicating that most of
the triangles become two-up one-down below T ∼ 0.05. The
Binder parameters22 for m and P (gm and gP , respectively),

FIG. 3. (Color online) MC results for (a) m and χm, (b) P and χP , (c) S(k = 0)/Ns, and (d) gm and gP for Ns = 42, 52, 62, 72, and 82 and
at n = 0.83.
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are shown in Fig. 3(d). Both show a crossing of the results
for different sizes, indicating the transition is of second order.
The critical temperatures determined from the two independent
Binder analyses show good accordance; Tc = 0.051(4). On the
other hand, a rapid increase of S(k = 0)/Ns to 1 is observed in
Ns = 42 and 62, as shown in Fig. 3(c); the onset T decreases
for larger Ns although the results show strong finite size
effects with different behavior for even and odd Ns. This
suggests a phase transition to the q = 0 ordered state at a
lower T than 0.028; this is consistent with the ground state
obtained by the variational calculation, as shown in Fig. 1(a).
Although the precise estimate of the critical temperature is
difficult within the present calculation, these results indicate
that successive phase transitions from PM to LL and LL
to the q = 0 FR state take place at n = 0.83. The former
corresponds to the formation of loops, and the latter to their
crystallization.

Now we discuss the electronic and transport properties of
the itinerant electrons. Figure 4 shows the result of optical
conductivity σ (ω). First, to extract the effect of characteristic
spin correlations in the LL state, we calculate σ (ω) by taking
a simple average over different spin patterns in the ideal LL
manifold (all the triangles satisfy the two-up one-down local
constraint). The calculations were done by using the Kubo
formula for 24 different spin patterns. Figure 4(a) is the result

FIG. 4. (Color online) Optical conductivity σ (ω) calculated (a) by
simple average over LL configurations while varying J at n = 0.843
for a 22 supercell of N = 3 × 122 sites, and (b) by MC simulation
while varying n at J = 6 for a 42 supercell of N = 3 × 62 sites
at T = 0.04. The scattering rate in the Kubo formula is taken as
τ−1 = 0.01. The typical error bars are shown at ω = 0.5. The inset in
(a) shows the peak position of σ (ω) at ω ∼ 1. The dotted line shows
the fitting by ω = 0.995 + 0.558/J − 0.155/J 2. The inset in (b) is
DOS at n = 0.862. The Fermi level is set at ε = 0.

of σ (ω) calculated at n = 0.843 for various J . All the results
show a sharp peak at ω = ωp ∼ 1.0–1.2, which shifts to lower
ω for larger J .

The characteristic peak comes from the transition process
between two localized states in the six-site loops. In the limit
of J → ∞, the electrons are confined in the loops or at
isolated sites;11 the contribution to σ (ω) comes only from
the transition process between the electronic states in the same
loop. Hence, sharp peaks appear in σ (ω) corresponding to the
discrete energy levels in the finite length loops. In the current
kagome case, the most dominant loops are the shortest ones
with a length of six sites. In the six-site loops, the energy
difference between the unoccupied and occupied levels at this
filling (the highest and second highest levels) is 1. Hence, we
expect a sharp peak at ωp = 1 in the limit of J → ∞. For
large but finite J , the second-order perturbation in terms of
the hopping between up and down spin sites shifts the second
highest eigenenergy to a lower energy. On the other hand, this
perturbation process does not affect the highest eigenenergy.
Hence, it is expected that the peak shifts to a higher ω with
decreasing J ; the asymptotic behavior at J → ∞ is expected
to be ωp = 1 + O(1/J ). This is confirmed by the fitting shown
in the inset of Fig. 4(a).

Interestingly, the peak persists in the weak J region where
the exchange splitting 2J is comparable or smaller than
the bare bandwidth 6t and the above perturbative argument
appears to be no longer valid. In a recent study on a metal-
insulator transition caused by correlated potentials, a LL-type
local correlation induces a metal-insulator transition at a
considerably smaller potential than the bandwidth by confining
the electrons in the loops.10 The persisting resonant peak in
σ (ω) is likely to be the consequence of this confinement.

Emergence of the characteristic peak is also observed in
the thermodynamic average obtained by the MC simulation.
Figure 4(b) shows the MC result of σ (ω) while varying n at
T = 0.04 and J = 6. With increasing n from the FM region,
the peak at ω ∼ 1 develops in the LL state for n � 0.8. The
inset in Fig. 4(b) shows the density of states (DOS) for itinerant
electrons (lower half of two split bands) at n = 0.862. The
result clearly shows the presence of two sharp peaks below
and above the Fermi level set at ε = 0; the energy difference
is about 1.1, which well corresponds to the peak in σ (ω) in the
main panel of Fig. 4(b).

To summarize, we studied an Ising-spin Kondo lattice
model on a kagome lattice focusing on the emergent magnetic
states and their electronic properties. By using an unbiased
Monte Carlo simulation, we showed that the loop-liquid state
emerges in the finite temperature region, in addition to ferro-
magnetic, q = 0 ferrimagnetic, and

√
3 × √

3 ferrimagnetic
states. The loop liquid is a Coulombic ferrimagnetic state,
characterized by the emergent up-spin loops originating from
the two-up one-down local spin configurations. The phase
diagram is understood in terms of the emergent loops as
crystallization and cohesion of the dense liquid of the loops.
We also showed that the loop-liquid formation is observed
in characteristic peaks in the optical conductivity. Recently,
the spin-charge coupling in frustrated magnets has been
revealed to exhibit rich physics, both in magnetic and transport
properties. We hope that our finding of yet another emergent
state will further stimulate the study of these systems.
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