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In this joint experimental and theoretical work, we investigate collective electronic excitations (plasmons)
in free-standing, single-layer graphene. The energy- and momentum-dependent electron energy-loss function
was measured up to 50 eV along two independent in-plane symmetry directions (�M and �K) over the first
Brillouin zone by momentum-resolved electron energy-loss spectroscopy in a transmission electron microscope.
We compare our experimental results with corresponding time-dependent density-functional theory calculations.
For finite momentum transfers, good agreement with experiments is found if crystal local-field effects are taken
into account. In the limit of small and vanishing momentum transfers, we discuss differences between calculations
and the experimentally obtained electron energy-loss functions of graphene due to a finite momentum resolution
and out-of-plane excitations.
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I. INTRODUCTION

Graphene, with its unique structural and electronic prop-
erties, continues to be interesting for fundamental research,
while at the same time promising a wide range of applications
in fields such as optoelectronics and plasmonics.1 The promise
of graphene-based plasmonic devices2 has led to increasing
interest in the study of plasmons in graphene and their
behavior. In general, they can be understood as oscillations
of the electron density with a given wavelength (momentum)
and frequency (energy). In (doped) graphene, several of these
collective electronic excitations exist at different energies:
charge-carrier plasmons below 3 eV, the so-called π plasmon
at around 5 eV and the π+σ plasmon at 15 eV.

Experimentally, these excitations and their dispersion, i.e.,
the relation between energy and momentum, can be probed by
electron energy-loss spectroscopy (EELS) or inelastic x-ray
scattering (IXS). High-resolution EELS was used extensively
to study the plasmon dispersion of epitaxial single-layered
and multilayered graphene. The charge-carrier plasmon was
investigated for graphene on a variety of different substrates,
such as semiconducting SiC (0001),3–6 metallic Ir (111),7,8

Pt (111),9 Ni (111), and Au/Ni (111).10 Very few studies
have reported on the two plasmons at higher energies, e.g.,
for epitaxial graphene on SiC(0001) (Ref. 5) and Pt(111).11

IXS measurements of graphite were used to derive the energy-
loss function of graphene indirectly.12 However, in all these
cases the influence of the dielectric environment (substrate)
has to be taken into account in order to extract information on
the intrinsic excitations of graphene. High-energy plasmons
in free-standing graphene were first studied by scanning
transmission electron microscopy (STEM) EELS,13,14 which
has the advantage of a very high spatial resolution, but
is restricted to vanishing momentum transfer. So far, ex-
perimental results on the momentum-dependent response of
free-standing graphene are still incomplete. Our previous
work15 has reported on the dispersion of the π plasmon in
free-standing graphene along the �M direction up to 0.5 Å−1 .

Theoretically, the dielectric response of graphene has
been studied extensively by various methods: ranging

from simple tight-binding models for the π bands,16–21

over time-dependent density-functional theory (TDDFT)
calculations,13,22–25 to first-principles calculations that solve
the Bethe-Salpeter equation.26–29 So far, a detailed comparison
of the different calculations with experiments is still missing
due to the lack of experiments with sufficient energy and mo-
mentum resolution: to our knowledge, no direct measurements
of the π + σ -plasmon dispersion in free-standing single-layer
graphene or the anisotropy of the dielectric response for
different in-plane momentum transfers exists.

In this paper, we present direct measurements of the
energy-loss function of free-standing, single-layer graphene
obtained by momentum-resolved EELS in a transmission
electron microscope (TEM). We have measured the electronic
response along two nonequivalent symmetry directions (�M

and �K) over the entire first Brillouin zone (see Sec. III A). We
compared our results to TDDFT calculations using different
approximations (see Sec. III B), specifically the independent-
particle approximation (2D-IPA), the random-phase approxi-
mation (RPA), and the adiabatic local-density approximation
(ALDA) in order to assess the importance of crystal local-field
effects and exchange-correlation effects in the loss function
of a prototype two-dimensional (2D) material. Significant
differences between RPA calculations and experiments are
only observed in the limit of vanishing momentum transfers
and partially explained by the experimental setup. In particular,
we discuss the consequences of a finite momentum resolution
(see Sec. III C) as well as contributions of out-of-plane
excitations (see Sec. III D).

II. METHODS

A. TEM-EELS experiments

Free-standing, single-layer graphene films were prepared
by mechanical exfoliation30 and transferred to holey carbon
grids. We have confirmed the thickness and the absence
of contamination by standard high-resolution TEM. EELS
investigations were performed on the SALVE I (sub-Angstrom
low-voltage electron microscopy) prototype, which is based
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FIG. 1. (Color online) Experimental momentum-dependent energy-loss function of free-standing single-layer graphene along the two
nonequivalent symmetry directions �M (a) and �K (b). The experimental setup is sketched on the right: (c) inelastic scattering geometry in a
TEM; (d) electron diffraction pattern of graphene with an illustration of the used (virtual) off-axis aperture geometry; (e) false-color image of
a recorded ω-q-map for single-layer graphene. Each line spectrum at position q was extracted by binning (shaded area) over the binning width
�qx , which corresponds to a (virtual) off-axis aperture �qx × �qy indicated in (d).

on a ZEISS Libra200 TEM and equipped with an in-column
� filter and monochromator.31 All spectra in this work
were recorded at 40 kV to minimize beam-induced damage.
Graphene samples were mounted in a rotation holder.

Intensities measured by TEM-EELS are adequately de-
scribed by the double-differential scattering cross section,32

which is directly related to the energy-loss function
−Imε−1(q̄,E) of the sample by

∂2σ

∂� ∂E
∝ −1

q̄2 + q2
E

Im ε−1(q tot,E). (1)

Here, E is the energy loss of the inelastically scattered
electrons and qtot = (qx,qy,qE) is the total momentum transfer,
which can be decomposed into an in-plane component q̄ =
(qx,qy,0) and an out-of-plane component qE = E/h̄v0. The
latter is associated with the energy loss of the electron and
directed along the incident beam, where v0 is the velocity
of the incident electrons (≈ 0.37c at 40 kV). For momentum
transfers and energies probed in our experiments, we generally
have qE � qtot and therefore qtot ≈ q̄.

We have used the parallel-acquisition EELS mode of the
� filter33,34 to record momentum-resolved energy-loss (ω-q)
maps as shown Fig. 1(e). For this, the TEM is operated in
diffraction mode, where a diffraction pattern is formed in the
entrance plane of the � filter. Placing a narrow rectangular
slit with a slit width �qy = 0.25 Å−1 in this plane, we can
select electrons that have been scattered along a specific
crystallographic direction. The filter disperses these electrons
according to their energy perpendicular to the slit axis qx . Line
scans were extracted from these recorded maps by integrating
the measured intensity over a binning width �qx = 0.1 Å−1 ,

where the center q of the integrated momentum range indicates
the approximate in-plane momentum transfer.

Finally, the experimental energy-loss function
−Imε−1(q̄,E) was extracted from our raw data by accounting
for the Lorentzian scaling factor (q̄2 + q2

E)−1 in Eq. (1).
For this, we have adapted the angular correction for a
standard EELS geometry32 to our case of a (virtual) off-axis
aperture of size �qy × �qx at position q (for further details,
see Supplemental Material35,36). The experimental energy
resolution was �E = 0.2 eV.

B. TDDFT calculations

In order to calculate the energy-loss function −Imε−1(q̄,E)
of isolated graphene, we have performed first-principles calcu-
lations in the framework of time-dependent density-functional
theory (TDDFT) using the following four steps (see Ref. 37 for
details): (i) First, the Kohn-Sham energies and wave functions
are obtained from a self-consistent ground-state calculation
with ABINIT.38 We use the local-density approximation, norm-
conserving pseudopotentials,39 and a plane-wave basis set with
energies up to 30 Ha on a 59 × 59 × 1 k-point grid. (ii) Using
the DP code,40 we calculate the Kohn-Sham polarizability χ0

within linear response. This quantity is found to be converged
for small supercells with an interlayer distance d of about
7 Å. (iii) The response of the interacting electrons to an
external potential is obtained by solving the Dyson equation
χ = χ0 + χ0(v + fXC)χ , where v is the Coulomb potential
and fXC denotes the exchange-correlation kernel. (iv) Finally,
the inverse dielectric function, normalized to the unit area,
is given by ε−1 = 1 + dvχ , where d denotes the height
of the supercell. (For a stack of repeated graphene layers,
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the susceptibility vanishes with increasing interlayer distance
χGG′ ∝ 1/d.)

In contrast to a standard calculation for a three-dimensional
crystal, two numerical difficulties arise due to the localization
of the 2D system in the z direction: First, a discrete plane-wave
basis set introduces artificial replicas of the sheet which may
interact via the long-range Coulomb interaction in step (iii). To
avoid this problem, we solve the Dyson equation in a different
basis using plane waves ei q̄ r̄ for the in-plane direction and
a real-space grid along the z direction.41,42 In these mixed
coordinates, the Coulomb interaction becomes

v(q̄,z − z′) = 2π

q̄
e−|q̄||z−z′ |. (2)

Second, the ALDA kernel fXC
[
n(r)

]
diverges for vanishing

density n(r), i.e., at large distances from the sheet where χ0 →
0. To minimize numerical instabilities for the product χ0fXC,
we use the same real-space grid along z in the ground-state
calculation (i) and for the solution of the Dyson equation (iii)
to prevent errors from the Fourier interpolation of n(r) on
noncompatible grids.

III. RESULTS AND DISCUSSION

A. Experiments

We have measured the energy-loss function of a single,
free-standing layer of graphene along the two nonequivalent
in-plane momentum directions �M and �K . The results are
plotted in Fig. 1. Looking at q → 0 (bottom), the energy-loss
function is dominated by two distinct peaks, located at 4.9 and
15.3 eV. In sp2-bonded systems, such as graphene or graphite,
these peaks are usually associated with collective excitations
of the π electrons as well as all (π and σ ) valence electrons13,43

and are labeled π and π + σ plasmon, respectively. Both
plasmon peaks in graphene are significantly red-shifted when
compared to the three-dimensional counterpart graphite, where
these peaks are found at 7 and 28 eV.44 Considering peak
positions and overall line shape, our experimental findings
for q → 0 are in good agreement with reported STEM-EELS
measurements.13,14 With increasing but still small q, both
plasmons shift to higher energies. The π plasmon disperses
quasilinearly as described in our previous work for �M

(Ref. 15) and slowly broadens, indicating an increase of
Landau damping. This particular plasmon dispersion is a result
of strong crystal local-field effects in graphene which mix tran-
sitions over a wide range of energies.22 At q = 0.4 Å−1 , a weak
shoulder between 3 and 5 eV becomes visible. The π + σ

plasmon undergoes similar but more significant changes: With
increasing q, the initial triangular-shaped intensity distribution
disperses into a much broader and symmetrical peak and
the spectral weights are redistributed, changing from a more
intense π peak to a stronger π + σ peak at higher q.

Up to a momentum transfer of q = 0.5 Å−1 , the loss
function of graphene is independent of the crystallographic
direction, but becomes anisotropic for larger momentum
transfers. For q along �M , the observed shoulder between
3 and 5 eV gets more pronounced, eventually developing
into a broad feature between 5 and 13 eV, with two distinct
peaks. Over the entire measured momentum range, this

structure gradually decreases in intensity, almost completely
disappearing in spectra above 1.2 Å−1 . In contrast, along
�K we only observe a single dispersing peak, visible up to
1.4 Å−1 . In addition, above q = 0.8 Å−1 we find a pronounced
shoulder around 12 eV, not present along �M . The shape
of the π + σ plasmon also starts to differ and we observe
a splitting of the π + σ peak into a double-peak structure
along �K .

Most of the features observed in the loss function of
graphene are well known from the study of other sp2 materials
like graphite,44 carbon nanotubes,22 as well as hexagonal
boron nitride (hBN).45 In all these materials, the in-plane
anisotropy becomes only apparent for excitations with short
wavelength (large q). In particular, comparing our experiments
on graphene with the loss function of graphite, we find
very similar spectra for large momentum transfers q > 1 Å−1 .
Indeed, with decreasing wavelength of the excitations, the
Coulomb interaction between neighboring layers in graphite
gets smaller [see Eq. (2)] and the graphene layers become
almost independent (no screening). It has been shown for
graphite that peaks in the loss function at large q are mainly due
to interband transitions instead of collective excitations.43,44

The q-dependent splitting of the π peak has been traced
back to the anisotropy of Imε (Ref. 43) and explained by
the occurrence of different saddle points in the transition
energy between the π and π∗ bands depending on the in-
plane direction of q.44 Also, the double-peak structure of
the π + σ peak in the �K direction has been observed in
graphite.

B. Ab initio calculations

The energy-loss function measured in EELS is directly
related to the density response function χ = δn/δV ext which
describes the density variation δn of interacting target electrons
upon an external perturbation δV ext. In the framework of
TDDFT, this quantity can be calculated from the Kohn-
Sham polarizability χ0 = δn/δV KS, which describes the linear
response of independent Kohn-Sham (KS) particles to changes
in the effective potential

δV KS = δV ext + δV H + δV XC, (3)

i.e., to the external perturbation plus the induced variations
in the Hartree and exchange-correlation (XC) potential. A
relation between χ0 and χ is obtained by differentiating V KS

with respect to n. Several approximations exist for the last two
terms in Eq. (3).37 Here, we consider three common choices
with increasing complexity:

2D-IPA. Within the independent-particle approximation,
only the macroscopic part of the induced Hartree potential δV H

0
is taken into account in addition to the external perturbation.
This term represents the Coulomb interaction of electrons
in a homogeneous electron gas and gives rise to plasmon
excitations. Neglecting also the extension of the charge density
perpendicular to the sheet, one can introduce 2D response
functions χ̄ (0) which are related by the Dyson equation
χ̄ = χ̄0 + χ̄0v2Dχ̄ , where v2D = 2π

q
is the effective Coulomb

potential in two dimensions.41 This model of a homoge-
neous, infinitely thin dielectric layer is generally applied in
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FIG. 2. (Color online) Ab initio calculations of the energy-loss
function in graphene for different momentum transfers q in the �K

direction. We compare theoretical results for different approximations
(lines, see text for details) with corresponding experimental spectra
(shaded area, normalized by a common factor).

tight-binding calculations19,21,46 or the hydrodynamic descrip-
tion of graphene.47

RPA. Within the random-phase approximation, variations
in V XC are again neglected, but the layer is now treated as
inhomogeneous 3D system, i.e., the induced Hartree potential
is fully taken into account including all microscopic contribu-
tions δV H

G . These are the crystal local fields originating from
charge fluctuations with high spatial frequency corresponding
to a reciprocal lattice vector G.48,49 The Dyson equation then
reads as χ = χ0 + χ0vχ , where χ (0) ≡ χ

(0)
GG′ are matrices in

reciprocal lattice vectors and v = 4π
|q+G|2 is the 3D Coulomb

potential. We include all G up to Gcut = 8 Å−1 to obtain
converged energy-loss spectra.

ALDA + LT. The simplest approximation which partially
includes exchange-correlation effects is the adiabatic local-
density approximation, where δV XC(r,t) is taken from the
homogeneous electron gas with density n(r,t). Lifetime effects
have been included in the calculation of χ0 following a
procedure that was proposed by Mukhopadhyay et al.50 and
discussed by others.51,52 To this end, the quasiparticle lifetime
τk,n has been calculated within the GW approximation for a
small set of k points and then roughly fitted in dependence of
the energy ELDA

k,n for the corresponding KS state of band n (see
Supplemental Material35 for details).

Using our experimental results as a benchmark, we can
now assess the importance of crystal local-field effects and
exchange-correlation effects for the energy-loss function for
this prototype 2D material. Figure 2 shows our TDDFT calcu-
lations (lines) in comparison to the normalized measurements
(shaded area) for selected in-plane momentum transfers q

along the �K direction.
In the limit of vanishing momentum transfer q → 0,

almost no difference between the three approximations is
found (lowest spectra). As in the case of graphite, crystal
local-field effects are negligible.43 However, the energy of
the π and π + σ plasmon at 4.0 and 14.2 eV deviates from

the measured peak positions by about 1 eV. It is known
from 3D systems that ALDA does not correctly account for
exchange-correlation effects for vanishing q and therefore
often fails for absorption spectra of extended systems.37 In 2D
systems, where absorption and energy-loss function coincide,
we find a similar behavior. Bethe-Salpeter calculations for
graphene have shown that XC effects indeed shift the π peak
from 4.0 to 4.55 eV.26 We demonstrate in Sec. III C that also
the finite-momentum resolution in the experiment can lead to
an apparent energy shift in the loss function.

For finite-momentum transfers q > 0.2 Å−1 , we obtain very
good agreement between RPA calculations (solid lines) and
experiment for the momentum-dependent position, width,
and intensity of the experimental peaks. Differences at small
energies E < 4 eV are most probably due to an incomplete
subtraction of the zero-loss peak (background from unscattered
electrons) in the experimental spectra. Exchange-correlation
effects are thus much less important for the loss function of
graphene at finite q, which indicates that self-energy effects
and the electron-hole interaction just cancel each other like in
many 3D systems.52,53 We also find only very small differences
between RPA and ALDA calculations. In contrast, 2D-IPA
calculations (dotted lines) strongly deviate with increasing
momentum transfer. Two reasons can be given for the failure
of 2D-IPA: First, one neglects microscopic inhomogeneities
of the charge density, i.e., crystal local-field effects, within the
layer. In 3D systems, they influence the loss function only at
large q � 1 Å−1 (short wavelength) and shift spectral weight
to higher energies.54 Second, the exponential decay of the
Coulomb potential in out-of-plane direction [see Eq. (2)] is
ignored in the 2D model of an infinitely thin, homogeneous
layer. As a consequence, the effective Coulomb interaction
v2D between electrons and thus the plasmon energies are
overestimated. The combination of these two points explains
the strong difference between 2D-IPA and RPA in graphene
when q > 0.3 Å−1 and the shift of spectral weight to lower
energies if microscopic components of the induced Hartree
potential are taken into account.

At large q > 1 Å−1 , the double-peak structure of the π + σ

plasmon in the �K direction is reproduced qualitatively within
the RPA (see top of Fig. 2). However, the exact line shape and
intensity deviate from our experimental results. Exchange-
correlation effects within the ALDA (dashed lines) shift both
plasmon peaks to lower energies and eventually improve the
line shape. Lifetime effects, which have been also included in
our calculations, remain very small and become only visible
at high-energy loss E > 20 eV.

For momentum transfers q along the �M direction, a very
similar behavior is found (see Supplemental Material35). The
experiments shown in Fig. 1 are in good agreement with our
RPA calculations, in particular, we reproduce the isotropy
of the dielectric response of graphene for q < 0.5 Å−1 , the
splitting of the π peak at large q > 0.7 Å−1 , and a single-peak
structure for the π + σ peak. In our ALDA calculations,
the line shape is slightly improved, but the peak position is
again shifted to energies that are too low by about 0.2 eV.
This suggests that exchange-correlation effects beyond the
ALDA can be important for a complete understanding of the
energy-loss function of graphene at small, finite momentum
transfers.
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C. Effects of a finite collection aperture

For finite momentum transfers, our calculations reproduce
our experimental observations very accurately. The most
important differences are found in the limit of q → 0 and can
partially be explained by the poor description of XC effects in
our calculations. We will demonstrate in the following that a
finite width of the collection aperture can also influence peak
positions and line shapes in the measured loss function.

The experimental momentum resolution is given by the
size of the (virtual) off-axis collection aperture and defined
by the slit width �qy and binning width �qx . This limits the
achievable momentum resolution by superimposing the loss
functions of adjacent in-plane momentum transfers q̄, where
two factors influence the weights of the superimposed spectra:
(i) The range of contributing momentum transfers and (ii) the
Lorentzian intensity distribution of inelastic scattering [pref-
actor in Eq. (1)], which is relatively steep for small values of q̄.

Figure 3 shows the weighted distribution of contributing
|q̄| for the present case of a small rectangular (virtual) off-axis
collection aperture at three positions q along the slit axis qx .
The weights for a specific |q̄| are given by the product of the arc
length of a circle with radius |q̄| truncated by the aperture and
the Lorentzian scaling factor (q̄2 + q2

E)−1 (see Supplemental
Material35,36). We have plotted the distributions for apertures
with a binning width �qx of 0.1 and 0.01 Å−1 . A slit width
�qy of 0.25 Å−1 was used and qE was set to 0.006 Å−1 , which
corresponds to an energy loss of 5 eV for incident electrons
with an energy of 40 keV.

For an aperture at position q = 0 Å−1 , the weighted distri-
butions of |q̄| for both apertures are strongly asymmetric with
vanishing contributions at q̄ = 0 Å−1 and a sharp maximum
at a finite q̄ ≈ 0.008 Å−1 . The asymmetry gradually decreases
with increasing q. This behavior is similar for both apertures,
however, a smaller binning width �qx results in a significantly
narrower distribution and therefore an effectively higher
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momentum resolution, even though the slit width �qy is the
same in both cases.

The effect of this finite-momentum resolution on the ex-
perimental loss function of graphene is illustrated in Fig. 4(a).
Dashed lines correspond to spectra extracted with a binning
width �qx of 0.1 Å−1 and solid lines to 0.01 Å−1 . We have
focused on the energy-loss region of the π -plasmon peak
around 5 eV. At q = 0 Å−1 a smaller binning width �qx

results in a marginally reduced plasmon peak width and small
changes in intensity, whereas the peak position does not show
any significant changes. However, at q = 0.1 Å−1 , a significant
peak shift can be observed. Using a smaller binning width �qx ,
the π -plasmon peak shifts by about 0.2 eV. With increasing q,
this shift becomes gradually smaller and vanishes for apertures
at positions q > 0.3 Å−1 .

These findings can be reproduced by including the effect
of a finite collection aperture in our TDDFT calculations
[see Fig. 4(b) and Supplemental Material35). Shown are the
corresponding RPA calculations for exact in-plane momentum
transfers (dots) as well as the effect of a small (dashed line) and
large (solid lines) collection aperture, using the same values
for the binning width �qx and the slit width �qy as before.
Comparing the peak positions between the corrected RPA loss
functions at q = 0.1 Å−1 , we observe the same shift of 0.2 eV
between the π -plasmon peaks, as seen in the experimental loss
function on the left. At q = 0.2 Å−1 , this shift becomes smaller
and vanishes at larger q values. Most notably, at q = 0 Å−1 , the
uncorrected RPA calculations experience a strong blue-shift of
0.25 eV once the effect of a finite collection aperture is taken
into account. The observed differences between experiments
and RPA calculations of 0.9 eV for the π -plasmon energy
at q = 0 Å−1 can thus be explained as a combination of
exchange-correlation effects (0.55 eV) and the effect of the
finite collection aperture (0.25 eV).
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axis qx . (c) Line profile extracted from (b) at position q = 0 Å−1 for
an aperture with a binning width �qx of 0.01 Å−1 . The majority of
contributing momentum transfers qtot are associated with an angle α

smaller than 45◦.

D. Out-of-plane contributions

We have demonstrated above that the effective momentum
resolution strongly depends on the binning width �qx . This
allows us to investigate the loss function of graphene at
very small momentum transfers using a binning width �qx

of 0.01 Å−1 , which corresponds to an effective momentum
resolution of approximately 0.03 Å−1 . The resulting energy-
loss spectra for momentum transfers up to 0.1 Å−1 are shown in
Fig. 5(a). Apart from small shifts of the π and π + σ plasmons,
we observe an additional feature at 30–45 eV, present along
both symmetry directions �M and �K (not shown). No
dispersive behavior is observed and the peak disappears around
q = 0.1 Å−1 . Given an energy loss of 35 eV, the momentum
transfer qE along the incident beam is about 0.05 Å−1 and
therefore comparable to the in-plane momentum transfers q̄

considered here. For values of q̄ < qE , the total momentum
transfer qtot is mostly directed out of plane, while for q̄ > qE ,
qtot quickly becomes orientated parallel to the surface. As the
peak at 35 eV is only observed for q̄ < qE , we conclude that
it is related to the out-of-plane polarization of graphene.

This is further verified by looking at the weighted distri-
bution of angles α (defined in Fig. 1). Figure 5(b) illustrates
how the contributions of α change with increasing in-plane

momentum transfer q and Fig. 5(c) shows the weighted
distributions of α for an aperture placed around q = 0 Å−1 . For
q = 0 Å−1 the majority of contributing momentum transfers
are smaller than qE . Shifting q away from zero quickly
increases the majority of contributing q above qE . For an
aperture placed at q = 0.1 Å−1 , the main contributions stem
from angles between α = 67◦ and 74◦, at q = 0.2 Å−1 only
angles between 78◦ and 79◦ contribute.

IV. CONCLUSION

We have presented momentum-resolved electron energy-
loss measurements of free-standing, single-layer graphene for
momentum transfers along two independent in-plane direc-
tions up to the Brillouin-zone boundary. For large q > 0.5 Å−1 ,
an anisotropic dielectric response is observed: the π plasmon
splits into two peaks along the �M direction, while the π + σ

plasmon shows a double-peak structure along �K . The high
energy and momentum resolution of our experiments made
it possible to perform a detailed comparison of experiments
with corresponding ab initio calculations for this prototype
2D material. At finite momentum transfers, the energy-loss
function is found to be very well described within the random-
phase approximation, suggesting a cancellation of self-energy
effects and electron-hole interaction. Corrections within the
adiabatic local-density approximation remain very small as in
the case of 3D systems. By contrast, crystal local-field effects
become very important due to the finite extension of the charge
density along the out-of-plane direction. For q → 0, a very
different behavior is observed. Crystal local-field effects and
ALDA corrections vanish in this limit, and we find a difference
of about 1 eV between calculated and measured plasmon
energies. On the one hand, this can be partially understood
in terms of strong exchange-correlation effects which already
have been discussed for the optical absorption of graphene.
On the other hand, we show that the measured plasmon-peak
positions can change significantly (by about 0.2 eV) with the
size of the applied collection aperture. Further differences
between calculations and experiments are observed in the form
of an additional feature at higher energy loss and interpreted
as out-of-plane excitations of the graphene monolayer.
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