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Effects of nonequilibrium noise on a quantum memory encoded in Majorana zero modes
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In order to increase the coherence time of topological quantum memories in systems with Majorana zero
modes, it has recently been proposed to encode the logical qubit states in nonlocal Majorana operators which
are immune to localized excitations involving the unpaired Majorana modes. In this encoding, a logical error
only happens when the quasiparticles, subsequent to their excitation, travel a distance of the order of the spacing
between the Majorana modes. Here, we study the decay time of a quantum memory encoded in a clean topological
nanowire interacting with an environment with a particular emphasis on the propagation of the quasiparticles
above the gap. We show that the nonlocal encoding does not provide a significantly longer coherence time than
the local encoding. In particular, the characteristic speed of propagation is of the order of the Fermi velocity of
the nanowire and not given by the much slower group velocity of quasiparticles which are excited just above the
gap.
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Since their introduction to condensed matter about a decade
ago, Majorana zero modes have attracted a lot of interest, es-
pecially regarding their quantum information perspectives.1–3

On the one hand, their non-Abelian statistics can be used
to manipulate the quantum states,2,4–6 opening interesting
possibilities in the recently proposed scheme of topological
quantum computation.3 On the other hand, the possibility to
efficiently store quantum information encoded in Majorana
zero modes seems very promising.7

A Majorana zero mode is described by a self-adjoint
operator γi = γ

†
i . Distinct Majorana modes obey the fermionic

anticommutation relations {γi,γj } = 2δij .7,8 Since they break
the U(1) symmetry of electric charge conservation down toZ2,
it is natural to search for them emerging in superconducting
systems where they appear as boundary states in chiral p-
wave nanowires.1 Even so there is no occupation operator
associated with a single Majorana mode due to the fact that
γ †γ = γ 2 = 1; two Majorana modes can be combined into a
single conventional fermionic mode c = 1

2 (γ1 + iγ2) with the
corresponding number operator c†c = 1

2 (1 + iγ1γ2). This fact
in turn indicates that in electronic systems emergent Majorana
modes will always appear in pairs. Surprisingly, a situation is
possible where the two Majorana modes γ1 and γ2 belonging
to a single fermionic mode c are spatially separated from each
other (unpaired); more precisely, they are totally delocalized
at the two ends of a superconducting nanowire. The two
delocalized modes γ1 and γ2, when taken together, represent a
fermionic mode at zero energy which encodes the parity of the
total number of fermions in the system. Because the fermion
parity is a conserved quantity for an isolated superconductor,
a quantum state encoded in a wire hosting Majorana modes
is, in principle, immune to decoherence and thus serves as an
interesting implementation of a quantum memory. On the other
hand, if the superconductor exchanges (quasi-)particles with
its environment, e.g., when in proximity to a gapless metal, the
parity is not conserved and there is no topological protection
of the memory (see, e.g., Refs. 9 and 10).

Due to the superselection rule, superpositions of different
parity states are unphysical. Thus, in order to encode a qubit
of information in the Majorana modes of a topological wire,

the previous picture has to be slightly modified: In fact, due
to the conservation of the total fermion parity, four Majorana
modes γ1, . . . ,γ4 at the edges of two wires are needed to
encode a single qubit (see Fig. 1). As the total fermion parity
operator P ≡ −γ1γ2γ3γ4 = ±1 is a conserved quantity, the
relative parity between the two wires encodes the qubit state
Z = iγ1γ2 = iP γ3γ4.7

Since there is no known example of a natural topological
(chiral p-wave) superconductor at the moment, Majorana
modes have been proposed to emerge in a closely related
realization: a semiconducting nanowire with strong spin-orbit
effect, in a magnetic field, and proximity coupled to a
conventional (s-wave) superconductor.11–13 For this geometry,
the presence of Majorana modes may have already been
observed last year14–18 (see Ref. 19 for a discussion).

Nevertheless, the presence of a rather small proximity-
induced gap alters the robustness of the quantum memory en-
coding: The zero-energy ground state is not isolated enough to
be efficiently protected, and the excitations of the zero-energy
modes above the energy gap destroy the quantum memory.20,21

The failure of the encoding comes from the absence of a
topological protection for any local one-dimensional system
at nonvanishing temperatures.22 If a perturbation is strong
enough to excite one of the localized zero-energy modes
(say γ1, for instance) into an excited quasiparticle above the
energy gap, the sign of the corresponding Majorana mode flips
resulting in a qubit sign error.

To overcome this problem, Akhmerov recently proposed a
nonlocal qubit encoding, hereafter called a macro-Majorana
encoding, which is, in principle, robust to local excitations.23

The robustness originates from the localization of the exci-
tations in a portion of space containing one of the unpaired
Majorana modes (see Fig. 1 for a schematic picture). Then,
the total system can formally be cut into distinct sections Si ,
each of them having only one Majorana mode γi . As long
as the excitation quasiparticles do not enter into an adjacent
region, a nonlocal Majorana operator �i = γi

∏
x∈Si

(−1)c
†
xcx

can be defined as the product of the Majorana mode γi and the
fermion parity of the neighboring cloud of the conventional
electronic states cx which is unaffected by this process. With
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FIG. 1. The different options to encode a qubit into Majorana
modes: The most basic choice is to encode the qubit in the localized
Majorana modes γi , represented by gray disks at the end of the two
light gray wires which are located on top of a superconductor. A
local interaction pumping the energy � into the system decoheres
the qubit when the Majorana wave function excites a quasiparticle
above the superconducting gap. In the macro-Majorana encoding,
the Majorana modes are replaced by nonlocal operators �i which
involve the localized Majorana mode γi and the parity of the number
of fermions (quasiparticles) in the area Si surrounded by the dashed
curves. In this encoding the qubit only decoheres when a Majorana
mode excites a quasiparticle mode above the gap which subsequently
travels the distance L/2 (with L the wire’s length) where it crosses
into the next dashed region.

these macro-Majorana operators, the logical qubit states can be
defined by the logical Pauli operators Z̃ = i�1�2 = iP̃ �3�4

and X̃ = i�2�3 = iP̃ �1�4 with P̃ = −�1�2�3�4 the total
fermion parity of the system. Then, the eigenstates associated
with these parity operators are robust quantum states as long
as only the interaction with the environment only generates
localized quasiparticles. Thus, the macro-Majorana proposal
is particularly efficient to encode the quantum memory into
a topological vortex, as e.g., in Ref. 24. In this setup, one
usually suffers from the presence of an extremely small
minigap, allowing for excitations at very low energies thereby
rendering the Majorana modes very fragile. By introducing the
macro-Majorana operator �i encapsulating both the Majorana
mode γi plus the surrounding cloud of excited states, the
Majorana modes �i become immune to localized excitations
inside the vortex cores thus solving the minigap problem.23

For the topological nanowire proposal we want to con-
sider here, a similar macro-Majorana encoding has not been
analyzed so far. The macro-Majorana modes (take �1, for
example) are dephased only when the quasiparticle after
being excited close to γ1 travels to the other half of the
nanowire, crossing from S1 to S2. As long as the quasipar-
ticle remains localized, the quantum information encoded in
the macro-Majorana mode is intact. If the quasiparticle, on
the other hand, crosses the virtual line, the logical X̃ flips
resulting in a sign flip error. The naive guess for the coherence
time tcoh ≈ tFGR + L/2vg of the macro-Majorana encoding in
a clean nanowire is thus just the sum of the time tFGR needed to
excite the quasiparticle above the superconducting gap (given
by a Fermi golden rule) plus the time L/2vg needed to travel
the distance L/2 corresponding to half the length of the wire;
here, vg denotes the particles group velocity. As vg → 0 when
the energy of the quasiparticle approaches the superconducting
gap, one would expect tcoh ≈ L/2vg , i.e., proportional to the
length of the wire L with a possible large prefactor due to
the small vg . Moreover, including disorder in the wire which
renders the propagation of the quasiparticle diffusive or even
localizes the state and even longer coherence time tcoh might
be expected.

In this paper, we address the question of the decoherence
of a topological superconductor wire hosting two Majorana
modes at its boundaries. We shall show that the zero-energy
modes are only protected by the presence of the gap. In
particular, the length of the wire does not help to obtain longer
coherence time of the quantum memory construction. This
is because—at least for a clean system—the quasiparticles
responsible for the decoherence of the qubit propagate at
a velocity of the order of the Fermi velocity vF . As the
Fermi velocity is usually rather large, the coherence time of
a Majorana wire memory is limited by the probability for an
extra quasiparticle to be excited above the gap. We illustrate
this idea in the case of the macro-Majorana construction (see
Fig. 1) for the special case of thermal noise.

The specific setup for which we obtain our results is a
system initially prepared at zero temperature (no quasiparticles
present). We then study excitations generated by coupling the
system to an environment during the time t . The coherence
time of the qubit tcoh is at low temperatures dominated
by processes which involve the local excitation of a single
quasiparticle above the proximity-induced gap in the nanowire.
We neglect effects due to breaking up Cooper pairs as well as
the generation of quasiparticles in the bulk superconductor as
this involves higher energy excitations. We study a toy model
of a clean, single band, spinless, chiral p-wave Bogoliubov–de
Gennes Hamiltonian. We calculate the Fermi golden rule result
for the creation of an extra excited quasiparticle above the
superconducting gap in Sec. II, for an environment with a
noise spectrum corresponding to thermal noise, Lorentzian
noise spectrum, or nonequilibrium noise due to the coupling to
a nearby quantum point contact. We show that generically the
excited quasiparticles propagate at the Fermi velocity and that
almost no effects of the group velocity vg � vF are visible (see
Sec. III). We shortly discuss the effect of disorder in Sec. IV.

I. MODEL AND HYPOTHESIS

Originally, Kitaev’s model involved a p-wave
superconductor.1 This state is characterized by a spinless
Cooper-pair condensate, which satisfies Pauli’s exclusion
principle thanks to the odd parity symmetry of the gap.25

A chiral p-wave superconductor can be emulated with a
conventional (s-wave) superconductor with strong spin-orbit
effect and broken time-reversal symmetry. Indeed, the
spin-orbit effect is known to lift the inversion symmetry
constraint, allowing the superconducting gap to possess
both singlet and triplet components.26 Additionally, breaking
time-reversal symmetry will destroy Kramers degeneracy and
allows the Majorana modes to appear unpaired.27,28 Thus,
the combination of strong spin-orbit plus Zeeman effects
in a conventional superconductor in the right parameter
regime implements an effective topological superconductor
hosting Majorana modes at its ends.11–13 In practice, the
superconductivity is induced by proximity effect to a strong
spin-orbit semiconducting wire, whereas the Zeeman effect is
induced by applying a magnetic field along the wire.19

To simplify the calculations, we start with the simplest
model exhibiting Majorana modes: a spinless p-wave su-
perconducting wire. This model is particularly useful in the
clean case, when it is formally equivalent to the experimental
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situation.8 In this section, we discuss the coupling between the
zero-energy modes and the excited modes above the gap due
to the interaction with an environment.

A p-wave superconductor is described by the Bogoliubov–
de Gennes (BdG) Hamiltonian in the so-called Andreev or
quasiclassical approximation,

H0 = vF p̂σ z − vF pF τ z + �xτ
yσ y − �yτ

xσ y, (1)

where 1
2vF pF = μ0 denotes the chemical potential, the mo-

mentum operator p̂ = −ih̄∂x in space representation, and the
complex superconducting gap �0 = �x + i�y (�x and �y

are real) is supposed to be space independent—hereafter we
denote � = �0e

iϕ , �0 > 0 and choose ϕ = 0 because the
phase of the superconducting order parameter is unimportant
as we have only a single superconductor in our setup and thus
coherence effects are absent. The σ i and τ i are Pauli matrices
and act in the propagating (right/left moving particles) and
particle-hole spaces, respectively.

The BdG Hamiltonian equation (1) exhibits a topological
phase with two zero-energy modes located at the two ends of
the wire.1,29 In the situation when the wire is much longer than
the coherence length L � ξ = h̄vF /�, the eigenstates of the
BdG Hamiltonian H0 are approximately given by

〈x|0〉 =
√

2

ξ

(
eiπ/4

e−iπ/4

)
e−x/ξ sin(kF x) (2)

for the zero-energy state located on the left of the wire, with
h̄kF = pF and H0 |0〉 = 0, and

〈x|q〉 =
√

2

L

(−1

1

)
sin(qx) sin(kF x) (3)

for the quasiparticle at energies above the gap �, satisfying
the relativistic dispersion relation (ε/�)2 − (ξq)2 = 1.

Note that |q〉 is an approximate eigenstate of H0 at energy
ε ≈ � with H0 |q〉 = � |q〉 + O(
−1), where we have used

 = L/ξ � 1 as a large parameter.30 The eigenstate |0〉
is located at the left of the wire, whereas the excited states
|q〉 are fully delocalized along the wire. The excited modes
given above are written in a quasicontinuum fashion, whereas
the wire geometry would exhibit some discrete modes. (See
Appendix A for more details, in particular, for the exact
solutions of H0 |q〉 = ε |q〉 satisfying the boundary conditions
〈x = 0|q〉 = 〈x = L|q〉 = 0 of a finite-length wire.) In addi-
tion to the exact solution of the quasiparticle state, we have
also included the expression for the second unpaired Majorana
mode wave function located at the right end of the wire with
x ≈ L, which we do not need for the following discussion.

Starting with the wire at zero temperature, there are no
quasiparticles present and the system is characterized by the
occupation of the Majorana zero modes. We prepare the system
in a specific state of the two-level system spanned by the
logical operators Z̃ and X̃. Initializing the system in a specific
eigenstate of X̃ (e.g., the state to the eigenvalue +1), and
turning on the interaction with the environment it is possible
that a local interaction involving γ1 generates a quasiparticle
located near x ≈ 0 at energy ε ≈ � just above the proximity-
induced gap. A qubit sign error happens as soon as this mobile
quasiparticle crosses from the region S1 to S2 (see Fig. 1).

Alternative processes which dephase the qubit are given by
breaking up a Cooper pair and one of the generated particles
crossing from S1 to S2 which involves at least an energy 2�

and the generation of quasiparticles in the bulk superconductor
which are at even higher energies. Both of these processes
are neglected in the following as we want to concentrate on
those processes which need the least energy input from the
environment and thus are dominant at very low temperatures.

Let us discuss the possible interaction mechanisms of
the environment with the nanowire: In practice, the p-wave
superconductivity is induced by proximity of a strong spin-
orbit semiconductor with a conventional (nontopological)
superconductor.12 The noise might originate from variations
in the applied magnetic field along the semiconductor wire
generating fluctuations in the induced Zeeman effect inside
the wire, or even influencing the proximity effect. This latter
effect may introduce fluctuations in the induced gap parameter.
Possible other sources acting on the superconducting gap are
local magnetic impurities, or local Josephson vortices resulting
from imperfect deposition of the two materials during the
sample preparation. In the following, we disregard these effects
which lead to variations of the superconducting order param-
eters as we believe that they are of minor importance. On the
other hand, an imperfect contact between the superconductor
and the semiconductor and nearby fluctuating gates or mobile
charge impurities can lead to local fluctuations of the chemical
potential. A time-dependent chemical potential μ(t) = μ0 +
V (t) can be incorporated in the model Hamiltonian (1) via

H = H0 + V (t)τ z (4)

with a generic time-dependent potential V (t).
In the following, we need the interaction matrix element

M(q) = 〈q| τ z |0〉. Evaluation in the limit of long wire gives

M(q) =
√

2




ξq

1 + (ξq)2
(5)

as the probability amplitude for the zero-energy mode to scatter
to an excited state slightly above the gap. For convenience,
we define the wave vector ξq = sinh η and the energy ε =
� cosh η in terms of the rapidity η, such that

M(q) =
√

2




sinh η

cosh2 η
(6)

in this parametrization. The reparametrization has advantages
when manipulating the integrals of the following sections,
since it makes the relativistic dispersion relation of the
quasiparticles explicit (see, in particular, Appendix B).

It might be unclear whether Eq. (5) represents the genuine
matrix element coupling the states |0〉 and |q〉, or not. This is
because the excited states |q〉 are not exact eigenstates of H0. In
particular, using the notations of Eqs. (2) and (3), we easily find
that 〈q|0〉 ∝ 〈q| τ z |0〉 �= 0. The exact excited states found in
Appendix A 2 are nevertheless orthogonal to the zero-energy
mode |0〉, and the interaction element can be shown to be
exactly the one above in the long wire limit 
 → ∞. More
explicitly, one can show that 〈0|q〉 ∝ e−
, whereas 〈0| τ z |q〉 ∝

−1/2 as in Eq. (5), using the exact excited states |q〉 found in
Appendix A 2. To remedy the use of the approximate excited
states (3) in the following calculations, we will keep the τ z
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matrix, and use the exact algebra 〈0| τ z |0〉 = 0, 〈q| τ z |0〉 =
M(q), and 〈q|0〉 = 0.

We note that the interaction element M(q) does not couple
the zero-energy mode to the mode exactly at the energy gap
(corresponding to η = 0 in our parametrization). This helps
for the stability of the quantum memory since the density of
state ρ = ∂q/∂ε = (h̄vF tanh η)−1 diverges at the gap.31

II. INTERACTION WITH THE ENVIRONMENT: A FERMI
GOLDEN RULE APPROACH FOR THE LOCAL

MAJORANA ENCODING

In this section, we study the evolution operator associated
to our model Hamiltonian (4) in order to obtain the probability
transition of the zero-energy mode to the quasicontinuum,
according to the Fermi golden rule.32 Note that the Fermi
golden rule gives the coherence time tcoh of the local qubit
encoding with γi but not of the macro-Majorana encoding
with �i as it does not take into account the time it takes
for the excited quasiparticle to travel the distance L/2. The
Fermi golden rule is the relevant result if one can suppose
instantaneous propagation along the wire or when the quantum
memory is encoded in terms of the local Majorana modes γi

instead of the macro-Majorana �i .21 We will first start with
the results using the Fermi golden rule approach before we
will introduce the effects of the propagation in the following
section.

First, we suppose that the interaction potential is so weak
that the truncation at first order of the evolution operator

U (t) ≈ U0(t) + 1

ih̄

∫ t

0
U

†
0(τ )V (τ )τ zU0(τ )dτ (7)

is valid, with U0(t) = e−itH0/h̄.
Then, we define the noise spectrum S(ω) in terms of the

interaction potential as

〈V (t1)V (t2)〉noise =
∫

dω

2π
eiω(t2−t1)S(ω) (8)

where the average is over all configurations of the noise.32 We
also assume that 〈V (t)〉noise = 0 as a nonzero average simply
leads to a redefinition of the chemical potential μ0.

The probability Pγ (t) to excite a zero-energy mode |0〉 to
an arbitrary state in the quasicontinuum states |q〉 is defined as

Pγ (t) =
∫

Ldq

π
〈|〈q|U (t)|0〉|2〉noise

= 1

h̄2

∫
Ldq

π

∫
dω

2π
S(ω) |gFGR(ω,t)|2 (9)

with

gFGR(ω,t) =
∫ t/2

−t/2
dτ e−iωτ 〈q| e(iτ/h̄)H0τ z |0〉 . (10)

For large time we can replace |gFGR(ω,t)|2 by
2πtδ (ω − ω� cosh η) |M(q)|2,33 where we have introduced
h̄ω� = � and neglected the contribution 〈q|0〉 ∝ e−
 valid in
the limit of large 
.

The probability per unit time for a zero-energy mode to get
excited in any state of energy above the energy gap is given by

�FGR = dPγ /dt , where

�FGR = 2

πh̄2

∫ ∞

0

sinh2 η

cosh3 η
S (ω� cosh η) dη; (11)

a result known as the Fermi golden rule.32

We are interested in the three particular forms of noise
spectrum

S(ω) =

⎧⎪⎨
⎪⎩

S0 exp[−h̄ω/kBT ], thermal

S0[1 + (ω − ω0)2/α2]−1, Lorentzian

S0(1 − h̄βω); h̄ωβ � 1, QPC,

(12)

with S0 a characteristic amplitude for the noise spectrum. The
first line corresponds to the equilibrium noise spectrum for a
contact with a bath at temperature T . The second line of (12)
corresponds to the case of a Lorentzian shape noise power with
a center frequency ω0 and a bandwidth α. In the Lorentzian
model, the transition between a quasimonochromatic noise
spectrum when α → 0 and a quasi white noise with all
frequencies equally excited when α → ∞ can be described.
The last model we discuss is the case of the excess noise of a
quantum point contact (QPC). In that case, S0 = ∑

n Tn(1 −
Tn)e3V/πh̄ with Tn the nth transmission eigenvalue of the
barrier between the wire and an electronic reservoir at zero
temperature, V the voltage drop of the barrier, and β = 1/eV
(see, e.g., Ref. 34).

We start with thermal noise. Since we are interested in the
regime when the Majorana modes are well defined, we focus on
the low temperature regime T � � as otherwise quasiparticles
destroying the quantum memory are ubiquitous (see Ref. 35
for a more general discussion of the superconducting qubit
systems). In the low temperature limit, the integral in Eq. (11)
is dominated at small wave vectors and we obtain

�FGR ≈ 2S0

πh̄2 e−�/kBT

∫ ∞

0
z2e−(z2/2)(�/kBT )dz

=
√

2

π

S0

h̄2

(
kBT

�

)3/2

e−�/kBT (13)

as found in the appendix of Ref. 21. The opposite (experi-
mentally not relevant) limit �/kBT � 1 gives a logarithmic
correction

�FGR ≈ 2S0

πh̄2

[
π

4
− �

kBT
ln

�

kBT

]
(14)

of the decay rate.
Next, we discuss the Lorentzian noise model. The Fermi

golden rule associated to the Lorentzian spectral density can
be calculated exactly, and gives

πh̄2�FGR

2S0
= α

ω�

Im

{
1

z2
0

+ π

4z2
0

(
2 − z2

0

)

− 2

z2
0

√
z2

0 − 1 artanh

√
z0 + 1

z0 − 1

}
(15)

with z0 = (ω0 + iα)/ω�.
The decay time �FGR is plotted in Fig. 2 for different

values of α with respect to the resonance frequency ω0 of
the noise spectrum. The superconducting gap is well visible in
this plot. For small enough α, i.e., for quasimonochromatic
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FIG. 2. Decay rate �FGR of the qubit encoded in the zero modes
of a topological superconducting wire in an environment having a
Lorentzian noise spectrum, Eq. (15), as a function of the center
frequency ω0. The different curves correspond to different values
of the broadening α/ω� = 0.1,0.5,1 as indicated in the plot. The
condition ω0 = ω� corresponds to a Lorentzian noise spectrum with
its maximum amplitude at the energy gap.

noise, the decay time �FGR is negligible as long as the
noise resonance frequency ω0 is smaller than the frequency
associated with the superconducting gap ω�, and then it has
a peak a little bit above the ω0/ω� = 1 angular frequency. It
then decays first exponentially when ω0 > ω�, then as a power
law for ω0/ω� � 1. For broader spectrum, the decay rate no
longer vanishes for frequencies below the gap, but rather it
becomes flatter over larger frequencies: The gap frequency is
no longer a characteristic frequency since one can pump a lot of
frequencies with approximately the same amplitude. For even
larger bandwidths, i.e., in the white noise limit, one pumps all
the frequencies at an approximately equal amplitude, so the
amplitude to switch to any high-energy level is almost flat.
It is noteworthy that a broad enough noise spectrum can by
itself poison the system with quasiparticles. We believe this
poisoning is not intimately related to our topological model
for the superconducting wire, and may be a more general issue
valid for any kind of superconducting system. Of course, our
model predicts the first excited states to be at energy � since
the zero-energy mode is populated in our system, whereas
the conventional superconductivity would have an excitation
energy above 2�.

Finally, the Fermi golden rule for a QPC leads to the result

πh̄2�FGR

4S0
= arctan

1 +
√

1 − β2

β
− β

2
ln

√
1 − β2 + 1√
1 − β2 − 1

+ β

2

√
1 − β2 − π

4
, (16)

which is plotted in Fig. 3 as a function of β. For large voltage
difference between the wire and the environment (small β), the
transition amplitude is high, then decays and goes algebraically
to zero for smaller voltages. When eV � 1, the barrier is no
longer transmitting, and the excitation probability � goes to
zero.

0
0

0.2 0.4
β

0.6 0.8 1

0.2

0.4

0.6

π 2ΓFGR
S0

FIG. 3. Fermi golden rule decay rate �FGR of the quantum
memory in proximity to a quantum point contact, Eq. (16), as a
function of β = (eV)−1 representing the inverse voltage drop across
the contact.

III. PROPAGATION ALONG THE WIRE AND
DECOHERENCE IN THE MACRO-MAJORANA

ENCODING

In this section, we evaluate the probability for a quasipar-
ticle to be excited by an environment and to propagate to the
second half of a clean wire. This mechanism is responsible
for a qubit flip, then destroying the quantum memory in
the macro-Majorana encoding of Fig. 1. Our goal is to calculate
the expression

P�(t) =
∫ L

L/2
〈|〈x|U (t)|0〉|2〉noisedx, (17)

which is the macro-Majorana equivalent of the corresponding
expression Pγ (t) for the local encoding. We will show that
the excited wave packet propagates at an effective velocity
close to the Fermi velocity. This section also shows how the
Fermi golden rule is recovered when more microscopic details
are taken into account. Indeed, we will explain that the Fermi
golden rule is a valid result at intermediate times (at infinite
times, the probability saturates, at small times it goes like
t2).36,37 Although the excited quasiparticle should propagate
at a group velocity corresponding to the energy h̄ω (Fig. 4),
we will find that the vanishing of the matrix element M(q)
close to the gap only allows excitation of quasiparticles whose
group velocity essentially is given by the Fermi velocity.

Starting from Eq. (17), we arrive after some algebra at

P�(t) = 1

h̄2

∫ L

L/2
dx

∫
dω

2π
S(ω)g2(ω,x,t) (18)

with38

g(ω,x,t) =
∫ t/2

−t/2
dτ [e−iωτ 〈x| eiH0τ/h̄τ z |0〉] (19)

a generalization of gFGR of the last section. The evaluation of
Eq. (19) is rather involved and we have moved the details to
Appendix B. As a result, the two following asymptotic regimes
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g2(ω, x, t)ω2
Δξ

ωΔt

v g
t
=

2x

v F
t
=

2x

500 1000 1500

16

100

2.4

FIG. 4. Comparison between the asymptotic evaluation of
g2(ω,x,t) and the exact numerical results for a given ω and x, as a
function of time t for x/ξ = 12 and ω/ω� = 1.01. The plots represent
the probability distribution for a quasiparticle excited at an energy h̄ω

to reach the point x in the time t . We compare the exact result (solid
line) with the asymptotic expansions Eqs. (20) (dashed curve in the
main panel) and (21) (dashed curve in the inset). We have indicated the
two relevant time scales: 2x/vg corresponding to the group velocity
and 2x/vF corresponding to the Fermi velocity.

are found written with the dimensionless variables x̃ = x/ξ ,
t̃ = ω�t , and ω̃ = ω/ω�, representing position and time, and
the noise spectrum frequency rescaled by the superconducting
characteristic length and frequency, respectively:

g[(ω − ω�)t � 1]ω� ≈ 4√
ξ

[
sin(x̃

√
ω̃2 − 1)

ω̃

− 4√
π

x̃

t̃3/2

sin
(
(ω̃ − 1) t̃

2 + π
4

)
ω̃ − 1

]
(20)

for large time (ω − ω�)t � 1 and

g(vF t � x � vgt)ω� ≈ 8√
πξ

x̃

t̃3/2

√
(t̃/2)2 − x̃2

ω̃
√

(t̃/2)2 − x̃2 − t̃/2

× cos

(√
(t̃/2)2 − x̃2 − ω̃

t̃

2
+ π

4

)
(21)

when vF t � x and ωx � vF t
√
ω2 − ω2

�. The velocity vg =
vF

√
1 − ω2

�/ω2 represents a group velocity corresponding to
the excitation at the frequency ω. Note that for ω � 1, we have
vg � vF , whereas for ω � 1, vg ≈ vF .

We discuss the results of g(ω,x,t) for a specific position x

and frequency ω as a function of t (see Fig. 4): Initially, i.e.,
for t � x/vF , no quasiparticle propagation has taken place
and g(ω,x,t) ≈ 0. At intermediary times x/vF � t � x/vg

Eq. (21) is valid and the probability density to have an
extra quasiparticle at position x oscillates and grows as
time is passing up to an (apparent) divergence at the group
velocity vg . For large times t � x/vg Eq. (20) is valid and the
probability density saturates to a finite value, establishing a
totally delocalized quasiparticle probability distribution [first
term of Eq. (20)] when t → ∞. In between these two regimes,

(a)

(b)

(c)

16

2000 x/ξ

g2(ω, x, t)ω2
Δξ

x
=

v g
t/

2

x
=

v g
t/

2

x
=

v g
t/

2

16

0 100

4

0 100

x/ξ

g2(ω, x, t)ω2
Δξ

x/ξ

g2(ω, x, t)ω2
Δξ

FIG. 5. Plot of g2(ω,x,t) as a function of x with vF t = 1200ξ

for different frequencies ω̃ = ω/ω�. (a) ω̃ = 1.1, vgt/2 ≈ 500ξ ;
(b) ω̃ = 1.01, vgt/2 ≈ 85ξ ; and (c) ω̃ = 1.001, vgt/2 ≈ 25ξ . The
two first plots are well approximated by a sine function, according
to Eq. (20) up to the group velocity vgt/2 [see the discussion below
Eq. (21)]. The position vgt/2 is represented by the dot-dashed vertical
line in each plot. The bottom plot (c) corresponds to a frequency very
close to the superconducting gap, when Eq. (20) is not valid.

there is a monotonous increase of the probability amplitude
which we will discuss in more detail below.

Alternatively, we can understand the function g2(ω,x,t) at
a fixed time t as a function of position x (see Fig. 5). For not
too small energies h̄ω, Figs. 5(a) and 5(b), the main part of
quasiparticle probability distribution is situated at x � vgt/2
where the result (20) is valid. This suggests one to approximate
g2(ω,x,t) as

g2(ω,x,t) ≈ 16 sin2(x̃
√

ω̃2 − 1)

ω2
�ξω̃2

�(tvg/2 − x), (22)

i.e., using the first contribution of Eq. (20) which encapsulates
the position and frequency dependency of the quasiparticles
delocalization, and to neglect space contributions above
distance vgt/2; here, �(x) denotes the unit-step function.

075431-6



EFFECTS OF NONEQUILIBRIUM NOISE ON A QUANTUM . . . PHYSICAL REVIEW B 88, 075431 (2013)

ω2
Δ

L

L/2

g2(ω, x, t)dx ω2
Δ

L

L/2

g2(ω, x, t)dx
(v

g
t
−

L
)/

ξ

(v
g
t
−

L
)/

ξ

(a) (b)

0 ωΔtωΔt 10000 100
0

80

160

0

80

FIG. 6. Integrated probability amplitude
∫ L

L/2 g2(ω,x,t)dx as a
function of time t for a fixed length of the wire L = 40ξ and for
an environment exciting at frequencies ω = 1.2ω� (left panel), and
ω = 1.01ω� (right panel). A comparison with the linear slope of
(vgt − L)/ξ of Eq. (24) is provided. The approximation is rather
good for large frequencies (left panel), whereas it fails for small
frequencies (right panel).

As a consistency check of this approximation, let us
now discuss how to recover the Fermi golden rule (11) in
the long-time limit. Since the Fermi golden rule does not
take into account the space dependency of the probability,
we have to define Pγ (t) = ∫ L

0 〈|〈x| U (t) |0〉|2〉noisedx as the
probability for an extra quasiparticle to be found anywhere in
the wire. In comparison with the definition (17) corresponding
to the macro-Majorana encoding, Pγ corresponds to the local
Majorana encoding. Using the result Eq. (22), we obtain

Pγ (t) ≈ 8

πh̄2

∫
dω

S(ω)

ω2

∫ vg t̃/2vF

0
sin2(x̃

√
ω̃2 − 1)dx̃. (23)

For vgt̃/vF � (ω̃2 − 1)−1/2, the sine function in the integral
can be approximated by its mean value sin2(x̃

√
ω̃2 − 1) ≈

1/2, and we end up with exactly the Fermi golden rule (11),
provided we use the definitions ω = ω� cosh η and vg =
vF tanh η.

Returning to the task to evaluate P� using the approxima-
tion (22) for g2(ω,x,t), the result is (neglecting fast oscillatory
terms)

P�(t) ≈ 4

πh̄2ξ

∫
dω

S(ω)

ω2
(vgt − L)�(vgt − L). (24)

For a comparison of the exact result with the approximation
given above, see Fig. 6. This result seems to indicate that
the qubit starts to dephase at a characteristic time L/vg .
Note, however, that the last equation is only correct away
from the regime with ω ≈ ω� where vg ≈ vF since the
approximation (22) is not valid in this limit. In fact for
energies close to the gap with ω ≈ ω� there is no sharp feature
visible in P� associated with the group velocity; instead P�

monotonously grows starting at a time L/vF . In Appendix B
this result is associated to the fact that the saddle point giving
the contribution at L/vg becomes broad right in the regime
where vg � vF . In conclusion, we find that there is only a
sharp feature at the group velocity visible in the case where
vF ≈ vg and for the case vg � vF where we would expect an

ωΔt0 200 400
0

2

PΓ(t) × π 2ωΔeΔ/kBT

S0

t
=

L
/v

F

FIG. 7. Plot of P�(t) in units of S0 exp(−�/kBT )/πh̄2ω� from
Eq. (17), with respect to time t̃ = ω�t , for a thermal noise, when
�/kBT = 20 and 
 = 50. We also represented the characteristic time
L/vF corresponding to the propagation with the Fermi velocity vF

(see the discussion in the main text).

increase of the coherence of the quantum memory due to the
slow motion of the quasiparticle the corresponding feature is
washed out. As an example, we have numerically calculated P�

for a thermal environment in Fig. 7 at temperature � = 20kBT .
From the plot, it is clear that the characteristic time for the
decoherence of the quantum memory is given L/vF which
corresponds to a characteristic speed vF of the involved
quasiparticles even though in a naive picture only particles
close to the gap with vg � vF are excited. The example of
the thermal noise shows that we can approximate coherence
time of the macro-Majorana encoding as tcoh ≈ tFGR + L/vF

even for low temperatures. We estimate a propagation time
L/vF � 1 fs for a wire with a length of a few micrometers
length and vF � 108 cm/s.14 For experiments at sufficiently
low temperatures, we expect tFGR � L/vF and thus the
macro-Majorana encoding will generically not provide a better
stability than the local encoding via γi . Concluding, the
quantum memory encoded in the Majorana modes is only
protected due to the gap. In particular, any kind of local
interaction at frequencies ω � ω� in the proximity of the
location of the Majorana mode is sufficient to immediately (up
to a small correction of magnitude L/vF ) destroy the quantum
memory.

IV. DISCUSSION: DOES DISORDER HELP TO LOCALIZE
THE QUASIPARTICLES?

Since we have found that the length of the wire does not
increase the coherence time of the quantum memory in the
clean limit studied so far, one might wonder if disorder which
decreases the speed of propagation of the quasiparticles might
help to increase the coherence time. For the toric code in two
dimensions, it has been shown that disorder helps to localize
the quasiparticles and thus increases the storage time of the
quantum memory39,40 and similar results have been obtained
for a one-dimensional (1D) setting very similar to the one
studied here.41

It is quite clear that it is not possible to enter the
regime where the motion of the quasiparticles is diffusive or
where they are even localized as p-wave superconductivity
is known to be fragile to impurities.42,43 Indeed, p-wave
superconductivity has only a particle-hole symmetry, in
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contrast to the conventional s-wave superconductivity, which
also is time-reversal symmetric and is therefore immune to
nonmagnetic impurities. Thus, having a Majorana wire which
is strongly disordered does not help increase the robustness
of the Majorana mode wire encoding as the p-wave proximity
effect is suppressed when increasing the disorder strength. The
case of a moderate disorder requires more careful attention.
As the physics is not universal in this case, it is necessary
to study a more realistic model of the nanowire including
multiple modes, s-wave pairing, spin orbit, and a Zeeman
field in this case.12,43,44 For the moderately dirty system, a
quasiclassical approach superconducting transport in the form
of the Eilenberger equations can be employed which can be
perturbatively expanded for a small amount of impurities.45,46

A study using the quasi-two-dimensional version of the s-wave
Eilenberger equation in the presence of strong spin-orbit effect,
moderate Zeeman interaction and a small amount of disorder
is outside the scope of the present paper and thus postponed
for further studies.

V. CONCLUSION

We have discussed in detail the interaction of a clean topo-
logical superconductor wire with an environment, with partic-
ular emphasis on the propagation of the excited quasiparticles
above the energy gap. The propagation of the quasiparticles
becomes important when one considers the macro-Majorana
encoding of the quantum memory. In particular, one would
expect that in this encoding a longer wire would increase the
coherence time of the memory. Calculating the coherence time
using the system-environment coupling as a perturbation, we
found that the quasiparticle excitations generically propagate
at the Fermi velocity (Sec. III) and that no sharp feature
associated with a possible slower group velocity is present. As
the Fermi velocity is typically rather large, this result implies
that the macro-Majorana encoding is not more robust than the
local encoding for the case of 1D nanowires. In particular,
we have shown that the probability to excite the zero-energy
mode into excited quasiparticles above the superconducting
gap is the principal mechanism of decay of the quantum
memory encoded in a Majorana clean wire. This work puts
strong constraints on the usefulness of Majorana fermions as a
quantum memory as the coherence time is only dictated by the
size of the gap without an additional benefit due to the length
of the wire.
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APPENDIX A: p-WAVE SUPERCONDUCTING
WIRE OF LENGTH L

In this Appendix, we discuss the general solutions of
the Bogoliubov–de Gennes Hamiltonian associated with a
superconducting system in the p-wave state. Then we calculate

the midgap states associated with the boundary of a semi-
infinite p-wave wire in contact with a topologically trivial
vacuum of particle. Finally, we discuss the finite length
wire system embedded in vacuum. We calculate both the
zero-energy Majorana modes located at the two ends of the
wire, in addition to the full spectrum of excited quasiparticle
states. We also briefly discuss the limiting case of a wire longer
than the superconducting coherence length, the regime studied
in the main paper.

The model at hand is a spinless p-wave BdG Hamiltonian

HBdG =
(

p2

2m
− μ0

)
τ z + �x

p

pF

τx − �y

p

pF

τy (A1)

with p the momentum, m the effective mass of the elec-
trons, μ0 = p2

F /2m the chemical potential, pF the Fermi
momentum, and �0 = �x + i�y the superconducting order
parameter. The Pauli matrices τ i act on the particle-hole space,
and are useful to describe the symmetries of the system.
The p-wave model is used for exotic phase of superfluid
and superconductors (see Refs. 25 and 47, for instance), and
exhibits two topological sectors in one dimension, being in
the class D, with only a particle-hole (P-type) symmetry P =
Kτ x such that {H,P} = 0 with K the complex conjugation
operator (see e.g., Refs. 48 and 49).

When the gap is small with respect to the Fermi level
� � μ0, one can describe the physics of superconductivity
in the linear approximation of the spectrum close to the Fermi
level, the so-called Andreev or quasiclassic approximation. It
supposes the chemical potential μ0 = vF pF /2 to be the Fermi
level, and then to expand the band structure (p2 − p2

F ) close
to the Fermi level, where we must specify the direction of
propagation. We can in practice do that in a 4 × 4 Hamiltonian
constructed from HBdG. Then, the linearization approximation
also requires one to specify the direction of propagation
p/pF ≈ sgn(p) for the gap. We then obtain H0 of the full text
[see Eq. (1)]. Note that due to the projection in the propagation
basis, both HBdG and H0 have the same P-type symmetry with
P = Kτ x . In short, the Andreev approximation must preserve
the topological classification, at the expense of doubling the
number of degrees of freedom. This doubling in the degrees of
freedom is nevertheless compensated by the degeneracy of H0,
since [H0,τ

zσ z] = 0. Defining the Hamiltonians (using �x =
� cos ϕ and �y = � sin ϕ with ϕ the superconducting phase)

Hpσ =
(

σvF (p − σpF ) σ�eiϕ

σ�e−iϕ −σvF (p − σpF )

)
(A2)

with σ = ±1 representing the two sectors (i.e., the eigenval-
ues) of τ zσ z. One mixes these sectors when showing that

�± = α1

(±eiϕ

eiγ

)
eipF x/h̄e±(x/ξ ) sin γ

+α2

(±eiϕ

e−iγ

)
eipF x/h̄e∓(x/ξ ) sin γ

+α3

(∓eiϕ

eiγ

)
e−ipF x/h̄e∓(x/ξ ) sin γ

+α4

(∓eiϕ

e−iγ

)
e−ipF x/h̄e±(x/ξ ) sin γ (A3)
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is a superposition of the solutions of Hp+ and Hp− at the
same energy. The index notation in �± represents the two
different energies ±� cos γ , and the αi are constants. We
parametrized ε/� = cos γ for the energies below the gap.
The solutions above the gap are found by the substitution
γ �→ −iη such that the real exponential becomes some plane
wave with the wave vector parametrized as qξ = sinh η and
ε/� = cosh η, and thus (ε/�)2 − (qξ )2 = 1 corresponds to
a relativistic dispersion relation above the gap. Below the gap
the dispersion relation parametrizes a circle.

1. Midgap states for a semi-infinite wire

We calculate the midgap state at the interface of a semi-
infinite wire in the half-line x > 0 with a vacuum located
at x < 0 for ϕ = 0. We essentially follow Ref. 29. This
simple example of the Andreev scattering formalism allows
us to explicitly construct the second quantized version of the
Majorana mode, as is usually discussed in literature. This
might be useful for some readers, since the pure wave-function
formalism is not so widely used when discussing Majorana
mode physics.

We can concentrate on the positive energy eigenstates �+
only from Eq. (A3). Only the exponential decaying waves
must be considered in the semi-infinite geometry. At the x = 0
interface, the wave function going to the left must be equal to
the right moving wave, since there is a particle vacuum in the
x < 0 space. Then, we impose �(x = 0) = 0. This leads to
the wave function

�0 = 2αi

(
1

−i

)
e−x/ξ sin(kF x), (A4)

where the amplitude of the normalization constant α = Neiφ

is determined by the normalization condition as N = (2ξ )−1/2

(we separate the scales L � ξ � 2πk−1
F ), whereas the phase

convention is given by the necessity for the spinor �0 to
describe a real (self-adjoint) solution of the particle-field
operator (second quantized version of the Bogoliubov–de
Gennes formalism) for symmetry reasons, in particular, since
{H0,P} = 0. Then, we choose φ = −π/4. This leads to

�0 =
√

2

ξ

(
eiπ/4

e−iπ/4

)
e−x/ξ sin(kF x) (A5)

such that the second-quantized operator representation is (the
second-quantized versions of the spinor are represented by
hats, and c and c† are the usual annihilation and creation
operators for fermionic particles)

�̂0(x) = 1√
ξ

∫
dx{e−x/ξ sin(kF x)[eiπ/4c(x) + e−iπ/4c†(x)]}

(A6)

and we clearly have �̂
†
0 = �̂0. We also remark that �0 =

Kτ x�0, and is thus invariant under the particle-hole symmetry
of the model. Finally, note that the mode we have found is a
zero energy mode ε = � cos γ = 0.

As a final remark for this section, note that the presence
of the Fermi scale kF x is mandatory for the function �(x) to
be an explicit wave function satisfying the proper boundary
condition �(0) = 0. When sin(kF x) is neglected in the above
expressions, it is not possible to attribute a momentum to the

wave function. Said differently, omitting the sin(kF x) factor
leads to unphysical imaginary eigenvalues of the momentum
operator [which is not Hermitian for wave functions with
�(0) �= 0]. Here, it is easy to show that the wave function
�(x) minimizes the Heisenberg uncertainty relation.

2. Wire of finite length L

We now discuss the situation of a finite length supercon-
ducting wire in the region 0 � x � L surrounded by a vacuum.
We will calculate the midgap states in addition to the excited
states at energies ε � � above the gap. Then, we simplify the
problem in the case of a long wire 
 = L/ξ � 1, when one
can focus on only half of the Majorana states and when the
excited states reduce to sinelike wave functions.

Since we discuss a finite wire geometry, the full solu-
tion (A3) must be used. The geometry imposes �(x = 0) =
�(x = L) = 0. One obtains

(� − 1)(� + 1) = 0; � = sinh(
 sin γ ) cos γ

sin(kF L) sin γ
(A7)

for the dispersion relation. For a given wire length 
 and a given
Fermi momentum kF , the dispersion relation gives two modes
γ± corresponding to � = ±1, respectively. The associated αi

are

α1 = −(�e−ikF L + e−
 sin γ ),

α2 = �e−ikF L + e
 sin γ ,
(A8)

α3 = �eikF L + e
 sin γ ,

α4 = −(�eikF L + e−
 sin γ ).

We obtain then

� = 1

N

∑
±

(
u±
v±

)
(A9)

for the eigenmodes with

u±
i

= ± sinh

(
x − L

ξ
sin γ±

)
sin(kF x)

− sinh

(
x

ξ
sin γ±

)
sin [kF (x − L)] (A10)

and

v± = cosh

(
x − L

ξ
sin γ±

)
sin(kF x) sin γ±

± cosh

(
x

ξ
sin γ±

)
sin [kF (x − L)] sin γ±

− sinh

(
x − L

ξ
sin γ±

)
cos(kF x) cos γ±

∓ sinh

(
x

ξ
sin γ±

)
cos [kF (x − L)] cos γ± (A11)

and the total wave function is a superposition of the two
spinor with indices ±. The functions u+ ± u− are represented
in Fig. 8. The other functions are similar, and are thus not
represented.

For a long wire, the dispersion relation gives γ± ∼ π/2 ±
e−
, corresponding to a zero-energy mode up to the exponential
correction describing a pair of solutions. This leads to two
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L

0 x

L = 25ξ

L

0 x

L = 6ξ

FIG. 8. Plot of the wave functions u+(x/L) ± u−(x/L) given
in Eq. (A12) for different lengths of the p-wave superconductivity
wire: The left figure is for 
 = L/ξ = 6, whereas the right figure
corresponds to 
 = 25. The two modes, located on the left and right
edges of the wire, are clearly separated in the second picture. The wave
functions v+ ± v− look the same, and are therefore not represented.
We choose kF L = 180 for both plots.

spinors

�L,R = 1

NL,R

(
u+ ± u−
v+ ± v−

)
(A12)

localized on the left and on the right of the wire, respectively.
Adjusting the norm and the phase of the spinor exponentially
decaying to the right, �L ≈ �0 as found in Eq. (A5).

We now discuss the excited states in the real space
representation. They are given by the substitution γ �→ −iη in
all the previous expressions. It consists essentially in changing
all hyperbolic functions to trigonometric ones for the functions
with γ argument; the functions with kF L are obviously not
changed. The dispersion relation reads (X − 1)(X + 1) = 0
with

X = �(γ = −iη) = sin(
 sinh η) cosh η

sin(kF L) sinh η
, (A13)

for instance; and the amplitudes follow from Eq. (A8)
replacing � by X.

The function X(η) is a cardinal sine for short η (when
cosh η ≈ 1), whereas it has accelerating oscillations at large η

as sin(
 sinh η) [when cosh η/ sinh η = (tanh η)−1 ≈ 1]. So
we can approximate the first solutions for long wire 
 � 1 as

sinh η± ≈ nπ



± (−1)n sin(kF L)

nπ


2
(A14)

with n = 1,2, . . . . The precision increases with a power law

−1 only, but it is still sufficient. The term 
−2 shows how the
solutions come in pairs. We can thus combine u+ ± u− and
i(v+ ± v−) (the factor i is added in front of the v’s such that
the corresponding wave function is real; it corresponds to a
global phase factor), where u± and v± are the up (u) and down
(v) components of the spinor corresponding to the solutions
η±, respectively. The first excited states are plotted in Fig. 9.

In the long wire limit, a good approximation for the excited
mode is just

�n(x) = N

(−1

1

)
sin(kF x) sin

(
πx

L

)
+ O(
−1) (A15)

with N = √
2/L the norm of the spinor. This is the one used

in the main text [see (3)]. Note that in the main text, we
replace πx/L ≈ nπx/L = q such that the previous pure sine

(a)

L0 x

(b) (c)

FIG. 9. Plot of the wave functions u+ + u− for the first excited
modes n = 1 (a), n = 2 (b), and n = 3 (c) computed from Eqs. (A14)
and (A3) with the coefficients (A8) for a wire of length 
 = L/ξ = 55.
The limit as the sine function is clearly demonstrated. The wave
functions u+ − u− and i(v+ ± v−) look the same, and are therefore
not represented. We choose kF L = 180 for all these plots.

functions are valid only for long wires and for energies close
to the gap. We numerically checked the difference between
the approximate solution (3) and the exact ones (A8) [with
proper replacement �(γ ) �→ X(η) of course] in terms of the
interaction matrix element (5) without finding discrepancy in
the long wire limit 
 → ∞.

More explicitly, one can show that the complete so-
lutions �(x) for the excited states from Eq. (A9) (after
replacement of γ �→ −iη of course) and the solution �0(x)
from Eq. (A5) satisfies

∫ L

0 dx[�†
0(x)�(x)] ≈ e−
, whereas∫ L

0 dx[�†
0(x)τ z�(x)] ≈ 
−1/2 in the long wire limit. When

calculating the overlap of the zero-energy mode and the
excited ones, the exponential decay comes from the neglect
in the expression of �0(x) of the zero-energy mode situated
at the right-end edge of the wire, this latter scaling as e−
.
The calculation can be done straightforwardly in the scale
separation limit when sin2(kF x) ≈ 1/2, but this calculation has
no specific interest to be written here, since the manipulation
of the expression (A9) is rather cumbersome. It nevertheless
justifies the use of the interaction element (5) in the main text,
in addition to the use of the approximate excited states (3).

APPENDIX B:EVALUATION OF EQ. (19)

In this section, we give some details about the evaluation
of Eq. (19). In particular, we note the absence of a specific
propagating mode at a velocity well below the Fermi velocity.

We start by rewriting Eq. (19) in the form50

g(ω,x,t) = 2

π
√

ξ

∫ t/2

−t/2
dτ

∫ ∞

0
dη

×
[
e−i(ω−ω� cosh η)τ tanh η sin

(
x

ξ
sinh η

)]
.

(B1)

Then we follow asymptotic methods evaluation of
integrals.51 We first evaluate the integral over η,
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defining

I (x < vF τ ) =
∫ ∞

0
dη tanh η sin(x̃ sinh η)eiτ̃ cosh η

= 1

2i

∫ ∞

−∞
dη tanh ηei[τ̃

√
1−ṽ2 cosh(artanh ṽ+η)]

(B2)

with x̃ = x/ξ , τ̃ = ω�τ , and ṽ = x̃/τ̃ = x/vF τ . The above
expression is valid for ṽ < 1. One needs to use

I (x > vF τ ) = 1

2i

∫ ∞

−∞
dη tanh ηei[τ̃

√
ṽ2−1 sinh(artanh ṽ−1+η)]

(B3)

when ṽ > 1. These two limits are incompatible in the sense that
I ∼ − ln

√
x̃2 − τ̃ 2 when ṽ → 1. So we have a first indication

that (one of) the dominant contributions for the complete
integral appears in the limit of Fermi velocity propagation
x ≈ vF t .

For vF τ � x, one can deform the integral contour to
η = z − artanh ṽ + i arcsin(tanh z) with z the new integration
variable. This path goes through the saddle point at η0 =
i
√

τ̃ 2 − x̃2. There is obviously no other complication in the
I (x,τ ) integral. Conventional evaluation then leads to

I (x � vF τ ) ≈
√

π

2
e3iπ/4ei

√
τ̃ 2−x̃2 x̃

τ̃ 3/2
(B4)

for this integral limit.
The second limit vF τ � x has a stationary point at η0 =

− artanh ṽ−1 + iπ/2 and its asymptotic

I (x � vF τ ) ≈ − π√
2
e−x̃ + i

√
π

2
e−x̃

(
τ̃√
x̃

+ τ̃ 2

x̃

)
(B5)

is easily obtained. For the moment we obtained a propagating
wavelike behavior at velocity vF for large time τ and a
Majorana localized wave packet at a position larger than
vF τ . In other words, if an observer sits at the position x,
the probability amplitude to find an extra quasiparticle is
exponentially weak for times τ < x/vF and has a power law
decay on time for longer times.

To calculate the time integral, one uses that
∫ t/2
−t/2 eiωτ dτ =

2 Re{∫ t/2
0 eiωτ dτ } such that one can convert J (x,t) =∫ t/2

−t/2 dτ [e−iωτ I (x,τ )] into an integral over positive τ only,
since this is the only regime we calculated before. Note that
J = π

√
ξg/2 is just proportional to the g(ω,x,t) integral

for which the above trick applies. The integral J (x,t) =
2 Re {j (x,t)} must be split in two parts j (x,t) = j1(x,t) +
j2(x,t) with

j1(x,t) =
∫ x/vF

0
I (x � vF τ )e−iωτ dτ ∝ e−x/ξ (B6)

which disappears when one integrates g2 for long wire, in
the calculation of the P�(t). We will no longer discuss this
regime, which can be exactly calculated if required, but it is
not relevant in the limit 
 � 1. The second contribution reads

j2(x,t) =
∫ t/2

x/vF

I (x � vF τ )e−iωτ dτ (B7)

for the propagating wavelike integral. This latter integral
can be evaluated by integration by part, since the dominant

contributions arise at the boundaries. It gives

ω�j2 ≈ −
√

π

2
e3iπ/4x̃

[
e−iω̃x̃

x̃5/2

− ei
√

(t̃/2)2−x̃2
e−iω̃t̃/2

(t̃/2)3/2

i
√

(t̃/2)2 − x̃2

ω̃
√

(t̃/2)2 − x̃2 − t̃/2

]
(B8)

with t̃ = ω�t , x̃ = x/ξ , and ω̃ = ω/ω�. The expression is
valid when x/vF t �

√
ω2 − ω2

�/ω = vg/vF , i.e., when the
Fermi velocity is larger than the effective group velocity vg

associated to the noise spectrum density at frequency ω. In
the following we neglect the last contribution of j2, since it is
time independent. Equation (B8) leads to Eq. (21) of the main
text, after taking twice the real part and neglecting the first line
contribution, which is not time dependent.

In the opposite limit of a large effective group velocity, the
integral j2 has a saddle point. To take into account this saddle
point one is obliged to consider the regime

(ω̃2 − 1)3/2

t̃
� x̃

t̃
�

√
ω̃2 − 1

ω̃
, (B9)

which in practice imposes the effective group velocity to be
close to its maximum value vg ≈ vF , since ω/ω� is bounded
to 1 in order to make all the results valid, which means that
there are no excitation frequencies below the gap. In that case,
the integral equals

j2(vg ≈ vF ) ≈ i
π√
2ω�

e−ix̃
√

ω̃2−1

ω̃3/2x̃
(B10)

and thus corresponds to an effective wave traveling at the
effective group velocity vg only when vg ≈ vF in order for the
condition (B9) to be verified, so this regime never dominates
in the final integral.

We carefully checked this point numerically as well. We
never found a situation when the contribution j2(vg) is relevant,
except when vg ≈ vF , in which case the contribution (B10) is
much weaker than the dominant contribution (B8) and can be
safely discarded, as we do in the main text.

One still has to know the long-time behavior of the full
integral g(ω,x,t), when time is the largest parameter of the
integral. This can be done by rewriting

g(ω,x,t) = 4

πω�

√
ξ

∫ ∞

1
dz

× sin(x̃
√

z2 − 1)

z

sin[t̃ (ω̃ − z) /2]

ω̃ − z
(B11)

after the time integration is performed. When t̃ → ∞, the
integral is peaked at z = ω̃, so the first quotient can be ejected
from the integral for the dominant contribution and the lower
boundary can then be replaced by −∞, and the remaining
integral gives π . The latter argument is equivalent to saying
that sin(ωt)/πω behaves like a delta function δ(ω) when t →
∞. One then obtains

lim
τ→∞ g(ω,x,τ ) = 4

ω
√

ξ
sin(x̃

√
ω̃2 − 1) (B12)

for the leading term. The next correction term is ob-
tained by an expansion at z = 1 − iε for small ε. It gives
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finally

g(x,(ω − ω�)t � 1) ≈ 4

ω
√

ξ
sin(x̃

√
ω̃2 − 1)

− 8

ω�

√
πξ

x̃

t̃3/2

sin
(
(ω̃ − 1) t̃

2 + π
4

)
ω̃ − 1

(B13)

for large time. Thus the integral goes to a finite value at
infinite time, oscillating in space with a small wave vector√
ω2 − ω2

�/vF when the noise frequency approaches the gap

frequency. On top of these spatial oscillations, there is some
wiggling time behavior with long waves, too. Equation (B13)
leads to Eq. (20) in the main text.

It is pretty difficult to compare our asymptotic expansions at
each step of the calculation, since all the integrals are difficult
to integrate even numerically. Nevertheless, to compare our
asymptotic results with the exact integral J (x,t), we neglect
the j1 contribution as it is exponentially small; i.e., we compare
(twice the real part of) Eq. (B8) in the short-time limit and
Eq. (B13) valid for long time with the numerical evaluation of
the complete integral Eq. (19). Some characteristic curves are
given in Fig. 4.
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