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We study the consequences of nonequilibrium heating and inverse proximity effect in normal metal–insulator–
superconductor–insulator–normal metal (NISIN) junctions with a simple quasi-one-dimensional model. We
especially focus on observables and parameter regions that are of interest in the design of SINIS coolers with
quasiparticle traps. We present numerical results calculated by solving the Usadel equation and also present
analytical approximations in two limiting cases: a short junction with a non-negligible resistance in both ends
and a long junction with a transparent contact at one end.
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I. INTRODUCTION

Electronic on-chip coolers offer a promising method for
reaching below-100-mK temperatures in a variety of applica-
tions including the final stage of cooling in low temperature
physics experiments as well as extremely sensitive radiation
detectors used in space applications. A promising way to
realize this type of cooler is by using a superconductor (S)
weakly coupled to the normal metal (N) which is to be cooled.1

The operational principle of these NIS coolers is based on
the presence of the energy gap in the superconductor density
of states. When the bias voltage applied across the junction
is adjusted correctly, only the hot quasiparticles can tunnel
into the superconductor, thus cooling the normal metal. A
comprehensive review of the theory of NIS junctions can be
found from Refs. 1 and 2.

The history of (SI)NIS coolers dates back to the nineties.2

While the understanding of these systems has progressed,
it has been understood that the main limitation to the
cooling is often due to the nonequilibrium heating of the
superconductor.3 A popular solution to bypass this limitation is
to use another normal metal, a “quasiparticle trap,” in contact
with the superconductor to allow thermalization of the hot
nonequilibrium quasiparticles in the superconductor.3,4 The
same effect has also been achieved by using magnetic fields,5

where the mechanism is essentially the same with normal
metallic vortex cores acting as quasiparticle traps. Recently
it has also been demonstrated that making the superconductor
wide close to the contact reduces the nonequilibrium heating.6

However, this approach is not applicable in systems with wide
junctions aiming at large cooling powers.

So far the nonideal characteristics of NIS coolers
has been analyzed with simplified thermal models, which
assume the presence of a quasiequilibrium distribution inside
the superconductor, and do not include for example the inverse
proximity effect, the introduction of subgap states in the
superconductor due to the presence of a normal metal. In
this paper, our aim is to provide a microscopic description
of the role of nonequilibrium effects in NIS coolers in the
presence of a quasiparticle trap. We base our description on a
quasi-one-dimensional model and take into account the inverse
proximity effect, which also affects the cooling process in
setups with well-coupled traps. Effects we do not take into
account since they have been discussed elsewhere include

the effect of the environment on the density of states7 and
coherent8 and incoherent9 Andreev effects. We discuss these
effects in the conclusions.

II. THE MODEL

We model the NIS cooler with a quasi-one-dimensional
model shown in Fig. 1. The model consists of a normal metal
island which is to be cooled (on the left) in equilibrium with
some temperature TL, the normal metallic quasiparticle trap
(on the right) in equilibrium with some temperature TR , and
the superconducting layer of length L between the two. The
superconducting layer is coupled to the two normal metals
by insulating barriers with resistances RL and RR , similar
to the geometry in Ref. 10. The system is then biased with
some voltage V that blows off the hot quasiparticles from
the left island into the superconductor and eventually into the
quasiparticle trap. This model can also be used to study the
NIS junction in the absence of the quasiparticle trap. In that
case the length of the superconductor L must be set equal to
the energy relaxation length of the superconductor.

In the model, ideally only the hot quasiparticles with energy
larger than the gap in the superconductor can tunnel out. Due
to this, the heat current away from the normal metal is positive
and the normal metal cools down. The inverse proximity effect
and the nonequilibrium heating of the superconductor inhibit
this behavior. The equilibrium temperature of the island is
achieved when the total heat current from the island is zero. In
principle, the quasiparticle trap (i.e., the right normal metal)
also heats up due to the heat current from the left island,
but we assume here that the trap is large enough so that its
heat conductance to the phonon bath far exceeds the heat
conductance through the NISIN system, so that this can be
neglected.

The effects we take into account in our calculations are
(i) the inverse proximity effect from the normal metals to the
superconductor, which opens subgap states in the supercon-
ductor and thus inhibits the cooling effect, (ii) the nonequilib-
rium heating of the superconducting wire, which also inhibits
the cooling, and (iii) the electron-phonon interaction in the
normal metal island, which also adds two parameters to our
theory: the electron-phonon coupling strength � multiplied
by the volume � of the island and the phonon temperature
Tph. Since the phonon temperature in the cooler is larger than
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FIG. 1. (Color online) Schematic picture of the quasi-one-
dimensional model. fFD,L/R are the Fermi-Dirac distribution func-
tions in the left/right normal metals.

the electron temperature, the effect of the electron-phonon
interaction is to heat up the island.

To make the calculations tractable, we consider two type
of coolers separately. The first type is one with a sufficiently
long wire (in practice L > 3 − 4ξ , where ξ is the coherence
length of the superconductor) and a good contact between
the quasiparticle trap and the superconductor, i.e., RR = 0.
The second case is a short superconducting wire (L < ξ ) and
arbitrary resistances on the two interfaces.

Below, we switch to units where lengths are in the units
of the superconductor coherence length at zero temperature
ξ , energies are in the units of the superconducting gap �0

at zero temperature, and the resistances are in the units of
the resistance of one coherence length long superconductor in
the normal state Rξ . We also set kB = h̄ = e = 1 so that the
temperatures and voltages are also expressed in the units of
energy. We retain SI units in the most important results.

The starting point of our analysis is the Usadel equation11

which gives the quasiclassical Keldysh Green’s functions
of a superconductor in the dirty limit. The matrix Usadel
equation can be further divided into two separate equations:12

the kinetic part which gives the distribution functions in the
superconductor and the spectral part which gives the spectral
coefficients needed to solve the first one. The kinetic Usadel
equation for the distribution functions of the superconductor
reads

∂x[DL(x)∂xfL(x)] = 0
(1)

∂x[DT ∂xfT (x)] = 2fT (x)R,

where we have divided the full distribution function of the
superconductor into its symmetric and antisymmetric (or
transversal and longitudinal) parts in energy, fT and fL,
respectively. The full distribution function can be obtained
from these by f = 1

2 (1 − fL − fT ). The coordinate and
energy dependent spectral coefficients appearing in Eq. (2)
are the energy dependent spectral energy and charge diffusion
coefficients, DL = cos2(Im θ ), DT = cosh2(Re θ ), and charge
recombination coefficient, R = − Im sinh(θ ). These can be
parametrized in terms of the pairing angle θ (ε,x), which can
be solved from the spectral Usadel equation

∂2θ

∂x2
= 2i� cosh(θ ) − 2iε sinh(θ ), (2)

where ε is the energy and � is the superconducting gap.
Generally, Eq. (2) should also contain, and be accompanied
with another equation containing, gradients of the phase of the
superconducting pair amplitude, but for simplicity, we assume

that the supercurrent flowing through the superconductor is
negligible so that the phase gradient can be disregarded.13 The
presence of the phase gradient would also add extra terms
to the kinetic equation. The three Usadel equations, two for
the distribution functions and one for the pairing angle, are
accompanied by six boundary conditions, which read14

RLDi(0)(∂xfi(0)) = [
fi(0) − f 0

i (ε,μL,TL)
]
Ns(0)

RRDi(L)(∂xfi(L)) = [
f 0

i (ε,μR,TR) − fi(L)
]
Ns(L) (3)

Rj∂xθ |x=0,L = sinh[θ (x = 0,L)],

where NS is the reduced density of states of the superconductor,
i.e., the real density of states divided by the normal-state
density of states, and i ∈ {L,T }. The reservoir distribution
functions f 0

i are given by the symmetric and antisymmetric
parts of the Fermi-Dirac distributions. It should be noted that
due to the inverse proximity effect, the reduced density of
states in general differs from the bulk value calculated from
the BCS theory, i.e.,

NS0 = Re
ε√

ε2 − �2
. (4)

After solving Eqs. (1)–(3) either numerically or analytically
after some approximations, we can calculate the energy and
charge current densities from the normal metal island by

jE =
∫ ∞

−∞
dεεjL(x = 0)

(5)

jc =
∫ ∞

−∞
dεjT (x = 0),

where ji = Di∂xfi is the spectral current. The heat current
from the island is then given by

jQ = jE − μLjc. (6)

In what follows, we disregard the self-consistency of the
superconducting gap and assume � = �0. The temperature
dependence of the gap can be safely neglected since we are
considering only temperatures TL,TR � �. Also it has been
shown15 that when RR � RL, the nonequilibrium effects are
not expected to change the gap considerably. This is also the
limit at which the cooling is expected to work best and we may
safely limit the calculations below to this limit. The effect of
the proximity effect would be to make the gap smaller close to
the interfaces. In short junctions with high interface resistance
at both sides, we can approximate the gap as a constant as
we do with θ . In long junctions with a transparent barrier at
the right interface the proximity effect kills the gap close to the
interface. This affects the heat transport of the superconductor
by enhancing the thermal conductance of the superconductor.
However, in Ref. 16 it was found that for an NSN junction
with transparent contacts at both ends this effect is negligible
for L � 4ξ .

Here and below, we also neglect the proximity effect to the
normal metal. Since we are considering the normal metals as
reservoirs, the only effect of the proximity effect would be to
slightly renormalize the effective length of the superconductor
about the order of one coherence length.
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III. DENSITY OF STATES

As stated above, the most important effect from the
proximity of the normal metal is to induce subgap states in the
superconductor. To this end, we give an analytic expression
for the proximity modified density of states in the two cases
described above.

A. Long wire, direct trap cooler

In this case, we have two contributions to the density of
states that can be separated. The first is the modification due
to the right (good) interface and the second is the modification
due to the left (high resistance) interface. To calculate the
former one, we solve the spectral Usadel equation (2) in the
limit of a long wire and RL � 1, RR = 0. The result is

θ (x) ≈ θS − 4 arctanh[exp(−(L − x)
√

2α) tanh(θS/4)],

(7)

where θS = arctanh (�/ε) is the pairing angle of a bulk
superconductor and α = √

�2 − ε2. This solution describes
a semi-infinite wire with a good contact to a normal metal
reservoir at x = L. The density of states can now be calculated
from NS = Re cosh θ . With the pairing angle (7) this becomes
at the interface x = 0

NS = NS0 + Re
ε(1 + 6β2 + β4) − 4�(β + β3)√

ε2 − �2(1 − β2)2
, (8)

where β = exp(−L
√

2α) tanh(θS/4). By expanding the sec-
ond term for small β, we get outside the region |� − ε| <

1/(2�L4)

NS = NS0 − Re
4�e−L

√
2α tanh(θS/4)√
ε2 − �2

. (9)

For the subgap states ε < �, the denominator is imaginary and
the exponential is real while tanh(θS/4) is complex so that its
imaginary part gives the relevant contribution to the expression
(9). At zero energy, this becomes NS(ε = 0) ≈ 1.7e−L

√
2�.

The latter contribution, i.e., the contribution due to the finite
(but large) resistance in the left interface can be calculated by
expanding θ around its bulk value and then solving the spectral
Usadel equation. The density of states from this becomes

NS(x = 0) ≈ NS0 + Re
�2

√
2RL(�2 − ε2)5/4

. (10)

When the deviation of the pairing angle from the bulk value
is small, these two contributions can be added to give the
total density of states in this geometry. The rounding of the
density of states for different lengths of the wire using an
exact numerical solution for some parameter values is shown
in Fig. 2.

B. Short wire, arbitrary resistances

When L � 1, we can calculate the pairing angle as
follows. We approximate the derivative in Eq. (2) with a
difference, ∂2

x θ ≈ [∂xθ (x = L) − ∂xθ (x = 0)]/L. Then we
use the boundary conditions and assume that θ does not depend

FIG. 2. (Color online) Density of states at the left end of the wire
as a function of energy with RL = 10 000 and RR = 0. Note that here
the x-axis is scaled with the self-consistent �.

on x. The solution becomes

θ = arctanh

(
�

ε + i

2LR̃

)
≡ arctanh

(
�

ε + iγ

)
, (11)

where R̃ = RLRR/(RL + RR) is the parallel resistance of the
two barriers and γ ≡ �ξRξ/(2LR̃) is the Dynes factor. The
density of states from this becomes of the Dynes form

NS = Re
(ε + iγ )2√

(ε + iγ )2 − �2
. (12)

It is worth noting that in this limit, the Dynes parameter is
independent of energy.

IV. HEAT CURRENT

The heat current from the normal metal in an ideal NIS
junction (i.e., without taking into account the nonequilibrium
heating or the proximity effect), assuming the superconductor
and the normal metal are both in equilibrium with some
temperatures TL, TR and distribution functions given by
Fermi-Dirac distributions fFD reads17

jNIS
Q = 1

RL

∫
dε(ε − V )NS0[fFD(ε,V ,TL) − fFD(ε,0,TR)]

≈ �2

RL

√
πT 3

L

2�3

[
1

2
g3/2

(
� − V

TL

)

+ � − V

TL

g1/2

(
� − V

TL

)]
− �2

RL

√
2TRπ

�
e−�/TR ,

(13)

where the approximation holds when V + TL < �. Here
gn(x) = Lin(−e−x) and Lin denotes the polylogarithm. We
now proceed to considering the two additional modifications
to this—nonequilibrium and proximity effect—separately as
corrections to this formula in the two geometries described
above.
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A. Inverse proximity effect

For a moment we forget the nonequilibrium effects and
write the heat current as in the ideal NIS case, but with the
proximity modified density of states, i.e.,

jPE
Q = 1

R

∫
dε(ε − μL)NS[fFD(ε,μL,TL) − fFD(ε,μR,TR)],

(14)

where R = RL + RR and μL − μR = V . For voltages satis-
fying V + TL � �, we can expand the density of states at
ε ≈ 0 and calculate the integral. Formally the heat current
density can be written as

jPE
Q = jNIS

Q + δjPE
Q , (15)

where the first term is the ideal NIS current given above and
the second term is a correction to this.

In the first type of a geometry with a direct trap and a long
wire using the zero-energy expansion yields the correction

δjPE
Q ≈ 2�2

e2RL

tan
(π

8

)
e
− L

ξ

√
2

×
[

k2
Bπ2

3�2

(
T 2

L − T 2
R

) −
(

eV

�

)2
]

. (16)

In the second type of a geometry, i.e., L � 1, we get after
identical considerations, in the relevant limit RL � RR ,

δjPE
Q ≈ �γ

e2R

[
π2k2

B

6�2

(
T 2

L − T 2
R

) − 1

2

(
eV

�

)2
]

. (17)

Next we proceed to consider the effect of the nonequilibrium
heating.

B. Nonequilibrium heating

Now we need the nonequilibrium expressions for the heat
current that can be solved from Eq. (2). First we calculate them
in the first type of a geometry with a long wire and RR = 0. We
approximate the spectral coefficients Di and R by their bulk
values and solve Eq. (2). For the longitudinal spectral current
density at the interface of the island and the superconductor
we get

RLjL = NS0δfL(ε)

1 + L
RL

DLNS

, (18)

and for the transversal current density

RLjT = − NS0fT (ε,V )

1 + NS tanh(
√
R/DT L)

DT RL

. (19)

Analysis of these shows that the modification to the transversal
current density vanishes when ε = � and is proportional to
∼L/RL otherwise and can thus be neglected since L/RL � 1
for a typical setup. The correction to jL in expression (18),
however, while also proportional to ∼L/RL, diverges when
ε ≈ � and thus needs to be taken into account. To calculate
the correction, we expand the energy mode of the heat current,
i.e., integral of ε times Eq. (18), in the limit of small L/RL.
The result becomes in the first order

RLjE ≈ RLjNIS
E + RLδj

NEQ
E , (20)

where

RLδj
NEQ
E = −LRξ

RLξ

∫ ∞

�+ν

ε3

ε2 − �2
�fL(ε). (21)

Here we have also introduced a cutoff energy ν to cut off
the logarithmic divergence of the integral at ε → � which is
due to the fact that the small L/RL expansion breaks down
in this limit. Analysis shows that the remaining part of the
integral without the expansion gives a term of the order of
O(ν3) and can thus be neglected. In the limit V + 2TL/R < �

we can approximate the distribution functions with exponential
functions and get as a result

δj
NEQ
E ≈ −�2

e2

LRξ

2R2
Lξ

e
− �−eV

kB TL log

(
kBTL

νeγ

)
, (22)

where γ ≈ 1.78 is Euler’s constant. The cutoff is cho-
sen from the condition (L/RL)NS ≈ 1, which gives ν ∼
�L2R2

ξ /(2R2
Lξ 2). As for the second type of geometry, i.e.,

L � 1 and RR > 0, the same expression (22) holds, provided
that RL � RR .

C. Total heat current

In the limit where the two corrections to the ideal NIS
current are both small, we can get the total current from the
NIS current by adding the two corrections together, i.e.,

jQ = jNIS
Q + δjPE

Q + δj
NEQ
Q . (23)

We first consider the total heat current for the setup with
a long wire and a good contact between the trap and the
superconductor. Since the proximity effect inhibits the cooling
in short superconductors and nonequilibrium effect inhibits it
in long superconductors, there exists a local maximum of the
cooling as a function of the length of the superconductor.
This behavior is shown in Fig. 3. Along with this analytic
approximation we have plotted the heat current calculated by

FIG. 3. (Color online) Heat current as a function of the length
of the superconductor with eV = 0.7�0 and kBTL = kBTR = 0.1�0.
The dashed line is the exact numerical result and the solid line is
the approximation (23). The black solid line is the ideal NIS current.
The upper lines closer to the ideal NIS current (red) are for RL/Rξ =
10 000 and the lower lines (blue) are for RL/Rξ = 1000.
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FIG. 4. (Color online) Numerically calculated optimal length
(upper figure) and the heat current at that length (lower figure)
as a function of the interface resistance at the optimal voltage
eV = � − 0.66kBT and TL = TR ≡ T . In the upper figure, we have
also plotted the analytic approximation (24) (dashed line) shifted by
a constant ∼1 in the vertical direction to account for the discrepancy
discussed in the text. Note that for low RL Q̇optim < 0, i.e., there is
no cooling.

numerically solving the Usadel equation. The main deviations
from the numerical data are due to the breakdown of the semi-
infinite approximation at small lengths of the superconductor.

The optimal length of the wire is found from expression
(23). It is

Lopt ≈ ξ√
2

log

⎡
⎣4

√
2 tan

(
π
8

)(
π2

3

(
T 2

L − T 2
R

) − V 2
)
RL

e
− �−V

TL log
(

δeγ

TL

)
Rξ

⎤
⎦ .

(24)

This expression is expected to work when the assumptions
made in the calculation of the heat current corrections above
hold. The optimal length and the heat current at that length
as calculated from the full numerics are shown in Fig. 4. For
large RL, the behavior corresponds roughly to Eq. (24), albeit
there is a difference of L ∼ ξ between the two, which results
from our approximation to use the bulk values for the spectral
quantities DL/T and R.

D. Temperature of the island

Next we consider the minimum temperature the normal
metal can be cooled into. This temperature minimum can be
found by solving for TL the heat balance equation

jQ = 0. (25)

For an ideal NIS junction, the limit is found to be T min
L ≈

1.42�(2πTR/�)1/3 exp(−2�/3TR). In practice, however, the
nonidealities limit the minimum temperature. We now consider
these limitations.

First we consider the long-wire setup. If the wire is much
longer than the optimal length discussed above, the proximity
effect does not matter and we can take into the heat current only
terms jNIS

Q and δj
NEQ
Q . We also assume that the electron-phonon

FIG. 5. (Color online) Minimum temperature of the normal metal
island as a function of the temperature of the trap with L = 13ξ and
optimal bias voltage eV = � − 0.66kBTL. For large TR , it is limited
by the first term in Eq. (26) whereas for low TR it saturates to the
value given by the second term.

coupling is negligible and instead analyze it separately below.
The minimum temperature becomes

TL ≈ �

kB

[
A

√
kBTR

�
e
− �

kB TR + LRξ

RLξ
B log

(
kBTLR2

Lξ 2

�L2R2
ξ

)]2/3

,

(26)

where A and B are approximately constants at the optimal
bias voltage when the ratio (� − eV )/kBTL is fixed. A comes
from the NIS current expression and is A ≈ 4.25 at the optimal
bias voltage. B is given by the nonequilibrium correction
to the current and its numerically found value is B ≈ 1.7
at the optimal bias voltage. From expression (26) we can
see that at very low environment temperatures TR , the
minimum temperature is limited by ∼(L log(RL/L)/RL)2/3.
Numerical simulations showing this behavior are shown in
Fig. 5.

In the case of a large resistance RL, the limitations to the
temperature are no longer due to the nonequilibrium heating
but due to the electron-phonon coupling inside the normal
metal island and thus this effect must be added to the heat
current. The electron-acoustic phonon heat current is given
by1

j
e−ph

Q = σ
(
T 5

L − T 5
ph

)
, (27)

where σ ≡ ��e2Rξ�
3/k5

B is the dimensionless electron-
phonon coupling constant and Tph is the phonon temperature.
In this case, as TR → 0, the minimum temperature is given by

T min
L ≈ �

kB

(
2R2

L�2�2e4�6

πA2k10
B

)1/3 (
kBTph

�

)10/3

. (28)

In the short-junction setup there is a different kind of a
competition between the nonequilibrium and the inverse
proximity effect. In the relevant limit RL � RR the proximity
effect always dominates the nonequilibrium term in the heat
current. This can be seen by comparing the prefactors of the
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FIG. 6. (Color online) Equilibrium temperature of the normal
island as a function of RL/RR . Blue, red, and green lines are for
L/ξ = 0.5,1,2 respectively. Solid lines are for RL/Rξ = 10 000 and
dashed lines are for RL/Rξ = 1000. The temperature of the trap is
kBTR/�0 = 0.1.

two and noticing that

RLδjPE
Q ∝ γ ≈ 1

2LRR

� L

2RL

∝ RLδj
NEQ
Q . (29)

The minimum temperature with Dynes parameter limited
cooling is analyzed in Ref. 9. However, if we make the right
resistance larger, at some point the nonequilibrium heating
starts to matter and then it limits the cooling. Thus there must
be an optimum value of RL/RR which maximizes the cooling.
We show this behavior in Fig. 6. These considerations are valid
until we increase the total resistance of the junction enough so
that the electron-phonon coupling starts to dominate. In this
case, the minimum temperature is again given by Eq. (28).

V. CHARGE CURRENT

We repeat a similar analysis as above for the charge current.
For an ideal NIS junction the charge current is given by

RINIS =
∫

dεNS0[fFD(ε,V ,TL) − fFD(ε,0,TR)]. (30)

For bias voltages V � � this becomes

RINIS eV ��≈
√

2π�kBTL

e
e−�/kBTL sinh

(
eV

kBTL

)
. (31)

For bias voltages V � � the NIS charge current reduces to
the Ohm’s law plus a correction that vanishes at high voltages:

RINIS eV ��≈ V − 1

2

�2

e2V
. (32)

Using similar methods as above to calculate the heat current,
we can calculate the corrections to the NIS current due to
nonequilibrium effects and the inverse proximity effects. We
first calculate the long junction case. The nonequilibrium

correction becomes (to the first order in L/RL)

RLδINEQ ≈
⎧⎨
⎩

kBTL

e
e−(�−eV )/kBTL

LRξ

RLξ
, eV � �

V
LRξ

Rξ
, eV � �

. (33)

For V � � the correction due to the proximity effect is
negligible, but for V � � it becomes

RLδIPE ≈ 4 tan
(π

8

)
e−L

√
2/ξV . (34)

For the short junction setup, we calculate only the proximity
correction. For V � � it is given by

RLδIPE ≈ V ξR2
ξ

LRLRR

. (35)

We note that unlike the heat current (22), the nonequilibrium
correction to the charge current at low bias voltages is
proportional to the temperature, making it less important than
in the case of the heat current. This can be traced back to the
fact that the charge current is given by only the transversal
part of the spectral current in which, as we noted above, the
coefficient in front of the small parameter L/RL does not
diverge at ε = �.

VI. CONCLUSIONS

We have considered the heat and charge transport in NISIN
junctions. We have derived analytical estimates for the currents
and temperatures of the normal metal island in two types of se-
tups relevant for NIS cooler experiments: a short junction with
nontransparent contacts and a long junction with a transparent
contact between the superconductor and the quasiparticle
trap. We have discussed three different effects on the heat
current: the inverse proximity effect to the superconductor,
the nonequilibrium heating of the superconductor, and the
electron-phonon coupling.

Other effects that contribute to the heat transport in NISIN
junctions are, as mentioned in the introduction, the Andreev
reflection and high-temperature environment. The effect of
the environment is the same as that of subgap states in the
superconductor. For example at ε = 0, the number of these
states is given by γenv/� = e2lBTenvRenv/(h̄2�), where Tenv is
the temperature of the environment and Renv is its effective
resistance. This should be compared to our results in Sec.
III which show that, for example in the case of a short
superconducting wire, the density of states at ε = 0 is given by
γ /� = ξRξ/(2LR̃), where L is the length of the superconduc-
tor, Rξ/ξ is the resistance per unit length of the superconductor
at the normal state, and R̃ is the parallel resistance of the
two junctions in the setup. The Andreev reflection can be
neglected when the Andreev heat current, jA

Q ∼ eV �gA/h̄, is
smaller than the proximity or nonequilibrium corrections that
we consider above. Here gA is the Andreev conductance of
one junction divided by the conductance quantum.
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