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Full counting statistics of a single-molecule quantum dot

Bing Dong, G. H. Ding, and X. L. Lei
Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics, Shanghai Jiaotong University,

800 Dongchuan Road, Shanghai 200240, China
(Received 26 February 2013; revised manuscript received 19 June 2013; published 12 August 2013)

We investigate the full counting statistics of a single quantum dot strongly coupled to a local phonon and
weakly tunnel connected to two metallic electrodes. By employing the generalized nonequilibrium Green-function
method and the Lang-Firsov transformation, we derive an explicit analytical formula for the cumulant generating
function, which makes one able to identify distinctly the elastic and inelastic contributions to the current and
zero-frequency shot noise. We find that at zero temperature, the inelastic effect causes upward steps in the current
and downward jumps in the noise at the bias voltages corresponding to the opening of the inelastic channels,
which are ascribed to the vibration-induced complex dependencies of electronic self-energies on the energy and
bias voltage. More interestingly, the Fano factor exhibits oscillatory behavior with increasing bias voltage and its
minimum value is observed to be smaller than one-half.
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I. INTRODUCTION

Recent progress in nanotechnology has facilitated the
fabrication of single-electron tunneling devices using organic
molecules. A variety of intriguing effects has been observed
in the transport properties of the single-molecule transistors
(SMTs) due to the couplings between the intrinsic mechanical
degree of freedom (phonon, vibron) in molecules and electrons
during tunneling.1–8 For instance, the obvious phonon-assisted
current steps have been measured in the current-bias-voltage
characteristic of a variety of individual molecules connected to
metal electrodes.1–6 More interesting transport properties, e.g.,
the Franck-Condon blockade in the current steps and negative
differential conductance due to nonequilibrated phonon exci-
tation, have been experimentally demonstrated in the device
of a suspended single-wall carbon nanotube.7,8

These experimental observations have stimulated great
interest in the theoretical investigations. In recent years, a
variety of different approaches have been developed to study
the transport properties and current fluctuation characteristics
in the electron-phonon coupled systems, mainly containing
the kinetic-equation approach (master equations),9–18 the
nonequilibrium Green function (NGF) techniques,19–37 and the
diagrammatic Monte Carlo simulation.38 It is well known that
the NGF is a most powerful method to study nonequilibrium
behavior of a many-body system. Within the NGF theoretical
formulation, various self-consistent second-order perturbation
calculations have been carried out, on the weak electron-
phonon interaction (EPI) strength, to examine the inelastic
correction to the nonlinear conductance of the SMTs.19–25 On
the other hand, in order to study the strong EPI effects, two
authors of this paper proposed a nonperturbative analysis of
the inelastic effects on current26–30 and its fluctuations30 by
mapping of the many-body EPI problem onto a multichannel
single-electron scattering problem.39 This mapping technique
is only valid in the limit of weak electronic tunnel couplings
between the molecular quantum dot (QD) and electrodes
since the so-called Fermi sea effect is neglected in the
mapping procedure. To circumvent this drawback and to
cover more wide ranges of system parameters, e.g., the
EPI and tunnel-coupling strengths, another nonperturbative

scheme has been recently developed based on the NGF in the
polaron representation.31–34,36,37 In particular, Galperin et al.
formulated a fully self-consistent solution of both electronic
and phononic GFs by employing the equation-of-motion
method to establish the Dyson-type coupled equations.34

Later on, he further developed this approach to study the
zero-frequency noise spectrum of SMTs.35 Because the Wick
theorem cannot be applied to calculate the current-current
correlation function of the EPI system, he instead made
use of the noise formula of the noninteracting system and
simply replaced the electronic GFs in the noninteracting noise
formula with the self-consistently calculated ones. Moreover,
this approach was extended to consider the inelastic effect of
multimode vibrational dynamics.36

Nowadays, there is continually increasing interest in the full
counting statistics (FCS) of charge transport in the nanocale
system.40,41 This remarkable concept was first proposed
by Levitov and Lesovik to describe the whole probability
distribution of transmitted charge during a fixed time interval
in a mesoscopic conductor.42 It is therefore an intriguing task to
examine the FCS of electronic tunneling in the presence of EPI.
Employing the master equations, the inelastic effect on the FCS
has been studied in the resonant tunneling regime.13,17,18 For
the phase-coherent transport through an interacting system,
the NGF is required. Recently, Gogolin and Komnik have
generalized the Meir-Wingreen NGF formulation for the
quantum transport in the mesoscopic system to the FCS issue,
and derived a generic expression for the generating function of
the cumulants expressed only in terms of the local Keldysh GFs
of the central region, which is valid in any type of the central
region, noninteracting or interacting.43 In this theory, there is
no need to directly calculate the current-current correlation
functions by employing the Feynman diagram technique.
Instead a Schwinger external source, i.e., here a fictitious
measuring field λ in the tunneling Hamiltonian, is introduced
to count the numbers of transmitted electrons and a functional
derivative is provoked at the end of calculation to generate the
cumulants of charge current distribution.44 Another advantage
of this Hamiltonian approach is that it can automatically
contain the vertex corrections in the current-current correlation
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functions. With help of the generalized Schwinger-Keldysh
GF technique, inelastic effects on the FCS in SMTs have been
recently investigated, in which a compact analytic expression
for the FCS was derived under the assumption that the vibration
mode is at an equilibriated state.45 These authors focused their
studies on the concrete behaviors of the current and shot-noise
jumps, upward or downward, due to phonon excitation when
the first inelastic channel is opening. Remarkably, the negative
contribution to noise due to vibration excitation has been
experimentally observed by recent shot-noise measurements
on Au atomic contact,46 and has been further confirmed by a
subsequent calculation of the inelastic shot-noise signals in Au
and Pt atomic point contacts from first principles.47 Moreover,
the effect of vibrational heating on FCS has been further
considered,48,49 and analytical results on FCS accounting for
nonequilibrium phonon distributions have been obtained.50

Nevertheless, all these studies employed the second-order
perturbation expansion to evaluate the electronic and phononic
self-energies, and consequently they are valid for the regime
of weak EPI. The full knowledge of the inelastic effects on
FCS in the regime of strong EPI is still less studied.51 This
constitutes the purpose of the present paper.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model Hamiltonian of a molecular QD. In
Sec. III, we present the theoretical formulation for the FCS
calculation in the presence of EPI. In particular, the explicit
expressions of the FCS, current, and zero-frequency shot noise
are derived. In Sec. IV, we carry out numerical calculations of
differential conductance, shot noise, and Fano factor, and dis-
cuss these results. Finally, a brief summary is given in Sec. V.

II. MODEL

In this paper, we consider a simple model for a molecular
QD with one spinless level (electronic energy εd ) coupled to
two electrodes left (L) and right (R) (each a free-electron
reservoir at its own equilibrium), and also linearly coupled
to a single vibrational mode (phonon) of the molecule
having frequency ω0 with coupling strength gep. The model
Hamiltonian is

H = Hleads + Hmol + HT , (1a)

with

Hleads =
∑
η,k

εηkc
†
ηkcηk, (1b)

Hmol = εdd
†d + ω0a

†a + gepd†d (a† + a), (1c)

HT =
∑
η,k

(γηe
−iλη(t)/2c

†
ηkd + H.c.), (1d)

where c
†
ηk (cηk) is the creation (annihilation) operator of an

electron with momentum k, and energy εηk in lead η (η =
L,R), and d† (d) is the corresponding operator for a spinless
electron in the QD. a† (a) is phonon creation (annihilation)
operators for the vibrational mode (energy quanta ω0). γη

describes the tunnel-coupling matrix element between the
QD and lead η. The corresponding coupling strength is
defined as �η = 2π

∑
k |γη|2δ(ω − εηk), which is assumed to

be independent of energy in the wide band limit. In order
to investigate the full counting statistics (FCS), an artificially

measuring field λη(t) is introduced with respect to the lead η on
the Keldysh contour: λη(t) = λη−θ (t)θ (T − t) on the forward
path and λη(t) = λη+θ (t)θ (T − t) on the backward path (T
is the measuring time during which the counting fields are
nonzero and the counting fields will be set to be opposite
constants on the forward and backward Keldysh contour as
λη− = −λη+ = λη in the final derivation).43,44 Throughout we
will use natural units e = h̄ = kB = 1.

For dealing with the problem involving strong electron-
phonon interaction, it is very convenient to apply a stan-
dard Lang-Firsov canonical transformation, S = gd†d(a† −
a) (g = gep/ω0), to the Hamiltonian Eq. (1a),52 leading to a
transformed Hamiltonian

H̃ = eSHe−S = Hleads + H̃mol + H̃T , (2a)

H̃mol = ε̃d d̃
†d̃ + ω0a

†a = ε̃dd
†d + ω0a

†a, (2b)

H̃T =
∑
η,k

(γηe
−iλη(t)/2c

†
ηkd̃ + H.c.)

=
∑
η,k

(γηe
−iλη(t)/2c

†
ηkdX + H.c.). (2c)

Here ε̃d = εd − g2
ep

ω0
is the renormalized energy level of the QD

and d̃ = dX denotes the new Fermionic operator dressed by
the phononic shift operator X,

X = eg(a−a†). (2d)
Therefore, the transformed Hamiltonian is equivalent to a
noninteracting resonant-level model with a vibration modified
dot-lead tunneling described by the shift operator X in
Eq. (2c), which is responsible for the observation of the
Franck-Condon steps in the current-voltage characteristics of
the single molecular transistor. This noninteracting effective
Hamiltonian H̃ Eq. (2a) is our starting point for the FCS
investigation in the following section.

III. THEORETICAL METHODS

A. Adiabatic potential for FCS

To investigate the probability distribution PqL,qR
of the

charge qη to be transferred through the QD to lead η

during the measuring time, we should calculate the so-called
cumulant generating function (CGF) χ (λ) ≡ χ (λL,λR) =∑

qL,qR
PqL,qR

ei
∑

η qηλη for the two-terminal QD, which can
be determined as a Keldysh partition function:44

χ (λ) = 〈TCe
−i

∫
C H̃T (t)dt 〉λ, (3)

where TC denotes time ordering along the Schwinger-Keldysh
contour C and the expectation value is written in the in-
teraction picture with respect to the effective Hamiltonian,
Hleads + H̃mol. According to Ref. 43, to calculate the CGF
χ (λ) it is technically more convenient to employ the adiabatic
potential method: ln χ (λ) = −iT U(λ−,λ+) = −iT U(λ,−λ),
where the adiabatic potential U(λ−,λ+) is defined due to the
nonequilibrium Feynman-Hellmann theorem as

∂U(λ−,λ+)

∂λη−
=

〈
∂H̃T (t)

∂λη−

〉
λ

= − i

2

∑
k

〈γηe
−iλη−/2c

†
ηkd̃ − H.c.〉λ, (4)
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with the notation

〈· · ·〉λ = 1

χ (λ−,λ+)
〈TC · · · e−i

∫
C H̃T (t)dt 〉0. (5)

The further evaluation of the adiabatic potential amounts to cal-
culations of the mixed GFs, Gdηk(t,t ′) = −i〈TC d̃(t)c†ηk(t ′)〉λ
and Gηkd (t,t ′) = −i〈TCcηk(t)d̃†(t ′)〉λ, as (t+ = t + 0+)

∂U(λ−,λ+)

∂λη−
= γη

2

∑
k

[e−iλη−/2G−−
dηk(t,t+)

− eiλη−/2G−−
ηkd (t,t+)]. (6)

Bearing in mind the facts that the transformed Hamiltonian is
a noninteracting one and the canonical transformations do not
alter the canonical commutation relations between Fermionic
operators, these mixed GFs can be cast into combinations of the
contour-ordered GFs of the QD involving dressed electronic
operators, Gd (t,t ′), and bare lead GFs, gηk(t,t ′),

Gdηk(t,t ′) =
∫
C
dt ′′Gd (t,t ′′)γηe

iλη(t ′′)/2gηk(t ′′,t ′),

Gηkd (t,t ′) =
∫
C
dt ′′gηk(t,t ′′)γηe

−iλη(t ′′)/2Gd (t ′′,t ′),

with

Gd (t,t ′) = −i〈TC d̃(t)d̃†(t ′)〉λ
= −i〈TCd(t)X(t)X†(t ′)d†(t ′)〉λ, (7)

gηk(t,t ′) = −i〈TCcηk(t)c†ηk(t ′)〉λ. (8)

Performing the Keldysh disentanglement and substituting the
results back into Eq. (6) one obtains

∂U(λ−,λ+)

∂λη−
=

∑
k

γ 2
η

2

∫
dt1[e−iλ̄η/2G−+

d (t,t1)g+−
ηk (t1,t

+)

− eiλ̄η/2g−+
ηk (t,t1)G+−

d (t1,t
+)], (9)

with λ̄η = λη− − λη+. It is noticed that the adiabatic potential
Eq. (9) is exactly equivalent to that given by Maier in Ref. 51.
Until now, all derivations are exact and what is done next is to
calculate the dressed electronic GF G

αβ

d (t,t ′) (α,β = +,−).

B. Nonequilibrium GF approach for electron-phonon
coupled system

Following Galperin et al.,34 we can use the usual Born-
Oppenheimer adiabatic approximation to decouple electron
and phonon dynamics, which leads to a factorized form of
the GF Gd (t,t ′) as a product of a pure electronic part and a
phononic part,32

G
αβ

d (t,t ′) ≈ Gαβ
c (t,t ′)Kαβ(t,t ′), (10)

where

Gc(t,t ′) = −i〈TCd(t)d†(t ′)〉λ, (11)

K(t,t ′) = 〈TCX(t)X†(t ′)〉λ. (12)

The corresponding Feynman diagram in perturbation theory is
shown schematically in Fig. 1(a). This decoupling is valid in
the limit of a weak molecule-lead tunnel coupling implying a

(a)

Gc
t t′

K

(b) Gc

t t′
=

gc

t t′
+

gηt t1 t2 t′

K

+
t t1 t2 t3 t4 t′

+ ...

=
gc

t t′
+

gηt t1 t2 t′
gc Gc

K

FIG. 1. (Color online) The Feynman diagrams taken into account
in our calculations for the EPI system. (a) The diagram for the
factorized GF Gd (t,t ′). The thick solid line denotes the pure electronic
GF Gc(t,t ′) and the wiggly line represents the phonon cloud
propagator K(t,t ′). (b) The set of Feynman diagrams and Dyson
equation for the pure electronic GF Gc(t,t ′). The thin solid line is the
bare dot GF gc, and the dashed line denotes the GF gη (η = L,R) of
the leads.

relatively long residence time of the electron on the molecule,
i.e., �η � ω0.

Furthermore, we assume a extremely strong dissipation of
the primary phonon mode to a thermal bath, e.g., to a substrate
or a backgate. This means that the oscillator restores to its
equilibrium state so quickly that it has no time to play a
reaction to the electronic system when it is stimulated to an
unequilibrated state by external-bias-voltage-driven tunneling
electrons. In this situation, the oscillator can be described by
an equilibrium Bose distribution nB = (eω0/T − 1)−1 at the
temperature T and the phonon shift generator GF K(t,t ′) can
be replaced by its equilibrium correlation function,52

K(t,t ′) =
(

e−φ(|τ |) e−φ(τ )

e−φ(−τ ) e−φ(−|τ |)

)
, (13)

where φ(τ ) is defined as (τ = t − t ′)

φ(τ ) = g2[nB(1 − eiω0τ ) + (nB + 1)(1 − e−iω0τ )]. (14)

It is noted that in this approximation, the phononic GF K(t,t ′)
becomes irrespective of the counting field λ.

Therefore, the next step is to calculate the contour-ordered
electronic GF of the QD, G

αβ
c (t,t ′), based on the transformed

Hamiltonian H̃ Eq. (2a). Nevertheless, since the transformed
tunneling Hamiltonian Eq. (2c) involves the exponential
operators X and X†, one cannot apply Wick’s theorem to derive
the Dyson-like equation of the pure electronic GF Gc. As an
alternative method, an equation-of-motion (EOM) procedure
has been usually used as approximations in literature.32,34,53

Here, using the transformed Hamiltonian H̃ , we derive the
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EOM for the contour-ordered electronic GF Gc(t,t ′) as(
i

∂

∂t
− ε̃d

)
Gc(t,t ′)

= δC(t − t ′) −
∑
ηk

iγηe
iλη(t)/2〈TCX

†(t)cηk(t)d†(t ′)〉λ. (15)

Then we consider the EOM for the three-point GF
〈TCX

†(t)cηk(t1)d†(t ′)〉λ. It gives(
i

∂

∂t1
− ε̃ηk

)
〈TCX

†(t)cηk(t1)d†(t ′)〉λ
= γηe

−iλη(t1)/2〈TCX
†(t)X(t1)d(t1)d†(t ′)〉λ , (16)

or in the integration form as

〈TCX
†(t)cηk(t1)d†(t ′)〉λ

= γη

∫
C

dt2e
−iλη(t2)/2gηk(t1,t2)〈TCX

†(t)X(t2)d(t2)d†(t ′)〉λ.
(17)

By taking the time limit t1 → t in the above equation, and
substitute it to Eq. (15), one can obtain the EOM for GF Gc

exactly as follows:(
i

∂

∂t
− ε̃d

)
Gc(t,t ′)

= δC(t − t ′) −
∑
ηk

∫
C

dt1iγ
2
η ei[λη(t)−λη(t1)]/2

× gηk(t,t1)〈TCX
†(t)X(t1)d(t1)d†(t ′)〉λ. (18)

Then we will make an approximation the same as in Eq. (10)
to decompose the dressed propagator:

〈TCX
†(t)X(t1)d(t1)d†(t ′)〉λ ≈ iK(t1,t)Gc(t1,t

′), (19)

and consequently obtain the Dyson equation for Gc(
i

∂

∂t
− ε̃d

)
Gc(t,t ′) = δC(t − t ′) +

∫
C

�cλ(t,t1)Gc(t1,t
′),

(20)

in which �cλ(t,t1) is the contour-ordered electronic self-
energies in the time domain, which includes all couplings of
the electronic degrees of freedom on the QD with those in the
electrodes and the vibrational mode, and the counting fields as
well,

�
αβ

cλ (t,t1) =
∑
ηk

ei(ληα−ληβ )/2γ 2
η g

αβ

ηk (t,t1)Kβα(t1,t). (21)

The Dyson equation can also be written as an integration in
terms of the pure electronic GF Gc,

Gc(t,t ′) = gc(t,t ′) +
∫
C
dt1dt2gc(t,t1)�cλ(t1,t2)Gc(t2,t

′).

(22)

where gc(t,t ′) denotes the free-electron GF for the dot without
tunneling coupling. It is clear that the ensuring GF Gc(t,t ′)
corresponds to summing over all the diagrams as shown in
Fig. 1(b). This means that the present method accounts for
the vibration-modified effect on electronic tunneling processes
by embedding the phononic propagator into the tunneling
self-energies. While the polaron tunneling approximation
(PTA) scheme developed in Ref. 51 considers the vibrational
effect only in the bare electronic GF, gc, it retains the
tunneling self-energies unmodified by the phonon cloud (see
the corresponding Feynman diagram, Fig. 3 in Ref. 51). On
the other hand, our Dyson series for Gc is also different from
those of single-particle approximation,31,32 which performs
the same factorization for the full GF Gd as ours but
takes no account of the phonon cloud in the Dyson series
for Gc.

Now we accomplish our calculation for the pure electronic
GF Gc. Projecting Eq. (22) onto the real time axis according
to Langreth analytical continuation rules and then performing
Fourier transformation of the resulting equations gives an
explicit expression for the electronic GF Gc(ω) [note that the
counting fields λη(t) are taken to be opposite constants in time
on the forward and backward Keldysh contour]:

Gc(ω) = 1

Dλ(ω)

(
ω − ε̃d + �+−

c0 (ω) − �r
c (ω) �−+

cλ (ω)

�+−
cλ (ω) −[ω − ε̃d − �−+

c0 (ω) − �r
c (ω)]

)
, (23)

with

Dλ(ω) = [
ω − ε̃d − �r

c (ω)
][

ω − ε̃d − �a
c (ω)

] + �L�R

∑
nm

wnwm{fL(ω + nω0)[1 − fR(ω − mω0)][ei(λ̄L−λ̄R )/2 − 1]

+ fR(ω + nω0)[1 − fL(ω − mω0)][e−i(λ̄L−λ̄R )/2 − 1]}, (24)

where the lesser and greater self-energies of the electron can
be expressed in frequency domain as

�−+
cλ (ω) =

∞∑
n=−∞

wn�
(0),−+
cλ (ω + nω0), (25)

�+−
cλ (ω) =

∞∑
n=−∞

wn�
(0),+−
cλ (ω − nω0), (26)

�±∓
c0 (ω) = �±∓

cλ (ω) |λ=0 , (27)

and

�
(0),−+
cλ (ω) = i

∑
η

eiλ̄η/2�ηfη(ω), (28)

�
(0),+−
cλ (ω) = −i

∑
η

e−iλ̄η/2�η[1 − fη(ω)]. (29)

Here fη = [1 + exp(ω − μη)/T ]−1 is the Fermi distribution
function at temperature T and chemical potential μη =
EF + Vη of lead η (EF is the Fermi energy and Vη is
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FIG. 2. (Color online) The real part (red line) and imaginary
part (black line) of the vibration-modified retarded self-energies are
plotted for different bias voltages, V = 0 (a), 0.5ω0 (b), 1.0ω0 (c),
and 2.0ω0 (d), respectively, at zero temperature. The parameters used
for calculation are taken as �L = �R = 0.1ω0, g = 1.0.

the bias voltage applied to lead η). The factor wn is
the weighting factor describing the electronic tunneling in-
volving absorption or emission of n phonons. At a finite
temperature,

wn = e−g2(2NB+1)enω0/2T In[2g2
√

nB(nB + 1)], (30)

where In(x) is the nth Bessel function of complex argument.
Moreover, the retarded self-energy in time domain can be de-
fined in the usual way from the lesser and greater counterparts,
�r

c (τ ) = θ (τ )[�+−
c0 (τ ) − �−+

c0 (τ )], and thus its expression in
frequency domain is

�r
c (ω) =

∑
ηn

wn

∫
dω′

2π

{
�ηfη(ω′)

ω + nω0 − ω′ + i0+

+ �η[1 − fη(ω′)]
ω − nω0 − ω′ + i0+

}
. (31)

It is observed that the vibration-modified electronic self-energy
due to tunneling is highly dependent on the applied bias
voltage as shown in Fig. 2 in the following section, in
contrast to the noninteracting QD-lead system where the
tunneling induced self-energy is assumed to be a constant,
�r (ω) = −i(�L + �R)/2, in the wide band limit. Finally, for
the purpose of analyzing the nonlinear transport properties,
one needs calculate the local spectral function of the central
region, which can be defined as

A(ω) = −i[G+−
d (ω) − G−+

d (ω)]|λ=0

= −i
∑

n

wn[G+−
c (ω − nω0) − G−+

c (ω + nω0)]|λ=0.

(32)

C. Expressions for FCS, current, and shot noise

Inserting all the results derived in the above subsection into
Eq. (9) and integrating over λη− and setting λη− = −λη+ = λη,
we can yield an explicit analytical formula for the CGF of the
electronic transport through a single molecular QD in presence

of strong electron-phonon interaction,

ln χ (λ) = T
∫

dω

2π
ln

{
1 +

∑
nm

Tnm(ω)[fL+n(1 − fR−m)

× (eiλ − 1) + fR+m(1 − fL−n)(e−iλ − 1)]

}
, (33)

where Tnm(ω) is the transmission coefficient of electron
between the left and right electrodes involving vibrational
quanta n and m:

Tnm(ω) = �L�Rwnwm

D0(ω)
, (34)

with λ ≡ λL − λR ,D0(ω) = Dλ(ω)|λ=0, and fη±n is shorthand
for fη(ω ± nω0).

It is known that one of the advantages of the FCS conception
in quantum transport is that the FCS expression can be used to
distinguish the elementary events of electronic tunneling, thus
providing some insight into the relevant transport properties.54

Therefore, we can conclude from Eq. (33) that under the
condition of weak tunneling and strong EPI, electronic
transport through a molecular QD can still be regarded as
three distinct independent processes: (i) electrons transmitted
from the left electrode to the right with probability P+ =∑

nm TnmfL+n(1 − fR−m); (ii) transmission from right to left
with P− = ∑

nm TmnfR+n(1 − fL−m); (iii) no transmission
with P0 = 1 − P+ − P−. Accordingly, the generating function
for each process is χ = ∑

ξ=+,−,0 PξXξ with Xξ = eiξλ. It
is worthwhile to notice that these transmission processes
involve all possible phonon-assisted events. For example,
the independent process (i) describes the specific electronic
tunneling that an electron with energy ω in the left lead absorbs
n (if n � 0) or emits n (if n < 0) phonon in the left bridge,
and tunnels through the central region, and eventually enters
into the right lead with emitting m (if m � 0) or absorbing
m (if m < 0) phonon in the right bridge. Bearing in mind
these considerations, it can be addressed that the present
FCS formula Eq. (33) is a direct extension of the original
Levitov-Lesovik formula,42

ln χ (λ) = T
∫

dω

2π
ln{1 + T (ω)[fL(1 − fR)(eiλ − 1)

+ fR(1 − fL)(e−iλ − 1)]}, (35)

to the inelastic electron transfer processes with either absorp-
tion or emission of phonon.

Noticing the relation w−n = e−nω0/T wn, we can further
deduce from Eq. (33) that in the present approximation, the
FCS cumulants obey a universal relation

χ (V,λ) = χ (V,−λ + iV /T ), (36)

which means that the detailed balance condition between
the probabilities of opposite number of particles transferred
through the QD remain valid even in the presence of electron-
vibration interaction.54,55 The out-of-equilibrium fluctuation
relations relate current correlation functions at any order at
equilibrium to response coefficients of current cumulants of
lower order.54,55

Based on the explicit analytical expression Eq. (33) of CGF,
one can obtain all cumulants of charge-transfer distribution
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through the molecular QD. We will however focus on the
investigation of the first two cumulants, i.e., the average current
through the system and the zero-frequency shot noise, in this

paper, because they are the most easily accessible quantities
in the experimental measurements. In specific, the average
current I from the left lead to the QD is evaluated as follows:

I = 2e

h̄

1

T
∂ ln χ (λ)

∂(iλL)

∣∣∣∣
λ=0

= 2e

h

∫
dω

∑
nm

Tnm(ω)[fL+n(1 − fR−m) − fR+m(1 − fL−n)]. (37)

From Eq. (37) the current can be separated as two contributions of elastic and inelastic parts, I = Iel + Iin, where the elastic
current is

Iel = 2e�L�R

h

∫
dω

w2
0

D0(ω)
[fL(ω) − fR(ω)]. (38)

While the zero-frequency current fluctuation S is given by

S = 4e2

h̄

1

T
∂2 ln χ (λ)

∂(iλL)2

∣∣∣∣
λ=0

= 4e2

h

∫
dω

( ∑
nm

Tnm(ω)[fL+n(1 − fR−m) + fR+m(1 − fL−n)] −
{∑

nm

Tnm(ω)[fL+n(1 − fR−m) − fR+m(1 − fL−n)]

}2)
.

(39)

Before ending this section, we compare our CGF formula
Eq. (33) with the previous PTA result, Eq. (2) in Ref. 51,
which is obtained under the same limitation conditions, strong
EPI and weak tunnel coupling. As mentioned above, the
PTA scheme takes no account of vibrational effect in the
tunneling self-energy in its Dyson equation for calculating
the full electronic GF Gd . One can argue that the PTA
only considers virtual excitation of phonon in each electronic
tunneling process, i.e., when an electron tunnels onto the
molecule it excites the local phonon and fully de-excites the
phonon upon leaving the dot. Therefore the electron after
tunneling has the same energy as that before tunneling. This
is why the PTA CGF [Eq. (22) in Ref. 51] has a similar
form with the original Levitov-Lesovik formula Eq. (35).
While in the present approximation, after an electron tunnels
into the molecular QD and excites the phonon, a virtual
tunneling of electron into the leads is considered leading to
excitations of particle-hole pairs in the leads. Then the electron
tunnels out of the molecular QD and de-excites the phonon,
but some particle-hole pairs remain in the leads, therefore
energies of the electron before and after tunneling can be
different. Physically, our results seem more reasonable because
elastic and inelastic tunneling processes are both considered
while only elastic tunneling processes are considered in the
PTA scheme.

IV. RESULTS AND DISCUSSIONS

Here we carry out the numerical calculation of the current
and zero-frequency shot noise through a single-molecular
QD using Eqs. (37) and (39). For simplicity, we consider
the system with symmetric tunnel couplings to the leads,
�L = �R = 0.1ω0, � = �L + �R , and assume the bias voltage
is applied symmetrically, i.e., μL/R = μ ± V/2. Therefore
we can only consider positive bias voltage V � 0 in the
following calculations. We also set the phonon energy ω0 = 1

as the unit of energy throughout the rest of the paper and
choose the Fermi levels of the two leads as the reference
of energy μL = μR = μ = 0 at equilibrium. The normalized
EPI constant is set to be g = 1 to ensure the validate of the
approximation scheme involved in the present paper.

Below we mainly consider zero temperature, at which the
weighting factor becomes

wn =
{

e−g2
g2n/n!, n � 0,

0, n < 0,
(40)

meaning that only phonon emission processes are allowed.

A. Self-energy and spectral function

We first examine the dependence of the tunneling-induced
electronic self-energy, Eq. (31), on the bias voltage in Fig. 2
at zero temperature. We find that its imaginary part has
explicit stepwise structures in frequency domain related to
the opening of the inelastic channels, and the widths and
heights of these steps are controlled by external applied bias
voltage. Correspondingly, the real part of the self-energy
shows multipeaks with logarithmic singularities due to the
Kramers-Kronig relations, which can be traced back to a
previous work on the EPI system by Engelsberg and Schrieffer
for bulk Einstein phonons in 1963.56 It is observed that the real
parts of the self-energies, i.e., the values of the energy shift,
are relatively small in the case of weak tunnel coupling.

We then calculate the equilibrium spectral function Eq. (32)
for the systems with ε̃d = 0 and 0.5ω0. As shown in Fig. 3, one
can find that the main effects of the electron-phonon coupling is
the appearance of the phonon-assisted side peaks in the spectral
function. At the zero-temperature case and the renormalized
level ε̃d = 0, the main resonant peak at ω = 0 is Lorentzian in
shape, while the phonon side peaks exhibit a non-Lorentzian
form due to stepwise jumps in the imaginary part of the
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FIG. 3. (Color online) The equilibrium calculated spectral func-
tion of the QD as a function of the energy ω for (a) ε̃d = 0 and
(b) ε̃d = 0.5ω0 at different temperatures T = 0, 0.1ω0, and 0.2ω0,
respectively. The remaining parameters are the same as those in Fig. 2.

self-energy as depicted in Fig. 2(a). Peculiarly, these phonon
side peaks symmetrically distribute in both sides of the energy
axes at ω = ±|n|ω0 with gradually reduced heights. This
behavior can be understood from the local spectral function
Eq. (32).33 At zero temperature, the local spectral function has
two contributions, the lesser GF G−+

c (ω + nω0) and the greater
GF G+−

c (ω − nω0) at n � 0. These two GFs correspond to
the local electron and hole propagators, respectively, and thus
are proportional to the occupation number nd for the QD
electron or 1 − nd for the hole. For the system with ε̃d = 0
and symmetrical tunnel couplings to electrodes �L = �R , the
QD is partially occupied by electrons, nd = 1/2. One can
therefore interpret that the phonon side peaks at the negative
ω region result from the phonon emission by local electrons
while the phonon side peaks at positive ω region originate
from the phonon emission by local holes.

When ε̃d is far away from the chemical potentials μL =
μR = μ = 0, the side peaks become asymmetric on the two
sides of the main peak located at ω = ε̃d . For example, the
spectral function of the system with ε̃d = 0.5ω0 exhibits
Lorentzian-type phonon side peaks only at the positive ω

region, ω = ε̃d + |n|ω0, but no phonon side peak at the nega-
tive ω region, because no electron occupies the QD, nd � 0.
More interestingly, a small abrupt jump in the spectral function
survives at ω = ±|n|ω0 as depicted in Fig. 3(b), which is also
stemming from the stepwise jumps in the imaginary part of
the self-energy occurring at these frequencies corresponding
to the opening of inelastic scattering processes. It is not
a surprise that with raising temperature T , all these novel
features in the spectral function are gradually smoothed away.
Besides, several phonon side peaks re-emerge in negative
energy regions due to the opening of phonon-absorption
channels at higher temperature [Fig. 3(b)]. Furthermore,
application of external bias voltage will change the occupation
number of electrons at the QD, and will inevitably change
the spectral function. It will be shown below that it is the
complex dependencies of the self-energy on the bias voltage in
conjunction with the tiny features in the spectral function A(ω)
that determines exotic properties of the nonlinear conductance
and shot noise.
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FIG. 4. (Color online) (a),(b) The calculated total current (solid
line), elastic current (dashed line), inelastic current (dotted-dashed
line), and (c),(d) the corresponding differential conductances as
functions of bias voltage for a single-molecular QD with ε̃d = 0
(a),(c) and 0.5ω0 (b),(d), respectively, at zero temperature. The
remaining parameters are the same as those in Fig. 2. The inset shows
the enlarged tiny features of the respective differential conductances
(see text for details).

B. Current and differential conductance

Before investigating nonlinear transport, we consider the
zero-temperature linear conductance at first. It is easy from
Eq. (37) to yield

G = dI

dV

∣∣∣∣
V =0

= �L�Rw2
0[̃

εd + �r
cr (0)

]2 + ∣∣�r
ci(0)

∣∣2 , (41)

with �r
cr (0) = 0 and �r

ci(0) = −i(�L + �R)w0/2. Therefore,
in the linear transport regime, the effect of the strong electron-
phonon interaction is just to narrow the resonance peak of the
conductance due to the Franck-Condon blockade. Besides, the
linear conductance exhibits no phonon sidebands as a function
of the gate voltage. These two aspects of the linear conductance
are in good agreement with the previous results for weak
electron-phonon coupling systems based on the perturbative
calculation up to the second order of the electron-phonon
coupling constant g2.24

The situation is very different for the nonlinear transport
as shown in Fig. 4, in which we plot the currents I and
corresponding differential conductances dI/dV as functions
of bias voltage V > 0 for the systems with ε̃d = 0 and 0.5ω0

at zero temperature. For the purpose of analysis, we also plot
their corresponding elastic and inelastic parts. It is easy to
obtain from Eq. (37) that only when the bias voltage is larger
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than the phonon energy, V � ω0, are the inelastic current
channels opening, which leads to abrupt upward jumps of the
differential conductance at V = nω0 (n > 0). Nevertheless,
these upward jumps can be divided into two sorts, big jumps
and tiny jumps. To obtain a clear interpretation of these jumps,
we give an explicit expression of the main contributive terms
of the inelastic current at zero temperature as

Iin � 2e

h
�L�Rw0w1

∫ V/2

ω0−V/2
dω

[
1

D0(ω)
+ 1

D0(−ω)

]
. (42)

For the partially filled QD (̃εd = 0), the external bias voltage
V = ω0 causes only a tiny jump due to the nonzero value of
D0(±V/2) � (ω0/2)2 + |�r

ci(±ω0/2)|2, but the bias voltage
V = 2ω0 results in a big jump owing to the minimum
value in D0(±ω0 ∓ V/2) � |�r

ci(0)|2; while for the empty
QD (̃εd = 0.5ω0), big jumps will occur at V = ω0 and
3ω0 because of D0(ω) � (ω − ω0/2)2 + |�r

ci(ω)|2. The tiny
jumps at V = 2ω0 and 4ω0 are the remaining effect of
the small abrupt jump in the spectral function as shown
in Fig. 3(b).

Now we turn to discuss the elastic part of the tunneling
current. The elastic current formula Eq. (38) can be simplified
at zero temperature as

Iel = 2e

h
�L�Rw2

0

∫ V/2

−V/2
dω

1

D0(ω)
. (43)

As usual, the elastic current rises monotonously as the bias
voltage of the left lead is increasing up to the energy level of
the QD, V = 2̃εd = 0 or 1.0ω0, i.e., the resonant tunneling
condition is reached. It is quite a surprise, however, that the
elastic current exhibits decreased steps with increasing further
the bias voltages. To give an underlying interpretation of this
decrease, we examine the derivative of the elastic current
with respect to the bias voltage. Differentiating Eq. (43) with
respect to V , the nonlinear conductance can be written as
gel = dIel/dV = gel

1 + gel
2 , with

gel
1 = e2

h
�L�Rw2

0

[
1

D0(−V/2)
+ 1

D0(V/2)

]
, (44)

and

gel
2 � −2e2

h
�L�Rw2

0

∞∑
n=1

wn

∫ V/2

−V/2
dω

∣∣�r
ci(ω)

∣∣
D2

0(ω)

× [�Lδ(ω − nω0 + V/2) + �Rδ(ω + nω0 − V/2)].

(45)

The first term, gel
1 , is proportional to the transmission prob-

ability T00(V/2) and results in the first resonant peak at
V = 2̃εd ; while the second term, gel

2 , is stemming from
the bias-voltage-dependent self-energy and it always makes
negative contribution and becomes predominant over the first
term at V = 2nω0 + 2̃εd (n > 0) and at V = 2nω0 − 2̃εd

(n > 1), which is responsible for decrease steps in the elastic
current and the double-peak structure in the total differential
conductance at V = 2ω0, 4ω0 for the QD with ε̃d = 0 or at
V = 3ω0, 5ω0 for ε̃d = 0.5ω0.

It should be noted that the inelastic-scattering-induced
discontinuities, i.e., downward or upward steps, in the dif-
ferential conductance have been previously reported based on
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FIG. 5. (Color online) The calculated current as functions of bias
voltage for ε̃d = 0 at the temperature T = 0.2�. The thick-blue lines
denote the present calculations, the thin-red lines are those of the PTA,
and the discrete symbols represent the diagrammatic Monte Carlo
data. The Monte Carlo data are taken from Fig. 3 of Ref. 38. Circles
stand for the QD with g = 2/5, ω0/� = 5; squares for g = 4/5,
ω0/� = 5; downward triangles for g = 4/3, ω0/� = 3; and upward
triangles for g = 2, ω0/� = 5.

the self-consistent Born approximation and the second-order
perturbation calculations in the case of weak EPI.20,23,24

Our present nonperturbative calculations show more complex
behavior for the systems with strong EPI and hard phonon
ω0 � �: tiny upward steps and double-peak profiles.

All these tiny features in the differential conductance will
be inevitably smeared away with increasing temperature, but
those big jumps will survive (not shown here). Therefore, the
differential conductance will still reflect the main profile of
the spectral function of the molecular QD as shown in Fig. 3
at relatively high temperature. Besides, it is observed that
the magnitudes of these big jumps gradually decrease with
increasing bias voltage due to Franck-Condon blockade.

Before turning to discuss the shot noise, in order to estimate
the quality of the present approximation, we compare our
results with those of accurate diagrammatic Monte Carlo
simulation,38 by plotting the calculated I -V characteristics for
several different molecular QD systems at a finite temperature
T = 0.2�, as shown in Fig. 5. For comparison, we also plot
the results calculated using PTA. It is clear that in the regime
of moderate to large bias voltage V , our method exhibits
better consistency with the Monte Carlo simulation than
the PTA.

C. Zero-frequency shot noise

In what follows, we analyze the zero-frequency shot noise
at zero temperature, which can be calculated using a simplified
expression according to Eq. (39),

S = 2eI − 4e2

h
(�L�R)2

∑
nmn′m′

wnwmwn′wm′

×
∫ ω2

ω1

dω
1

D2
0(ω)

, (46)
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FIG. 6. (Color online) (a),(b) The zero-temperature shot noise
(solid line), and its elastic (dashed line) and inelastic (dotted-dashed
line) parts as functions of bias voltage for a single-molecular QD
with ε̃d = 0 (a) and 0.5ω0 (b), respectively. The electron-phonon
coupling constant is set to be g = 1.0. (c),(d) The corresponding
Fano factors for the two systems, ε̃d = 0 (c) and 0.5ω0 (d), with
different electron-phonon coupling constants g = 1.0 (solid line),
1.5 (dashed line), and 0.5 (dotted-dashed line). We set � = 0.1ω0 in
the calculations.

with ω1 = max(nω0 − V/2,n′ω0 − V/2) and ω2 =
min(V/2 − mω0,V/2 − m′ω0). We can also separate
the shot noise as two contributions of elastic and inelastic
parts, S = Sel + Sin, with the elastic part being

Sel = 2eIel − 4e2

h
(�L�R)2w4

0

∫ V/2

−V/2
dω

1

D2
0(ω)

. (47)

In Figs. 6(a) and 6(b), we plot the calculated shot noise and
its two contributive parts as functions of bias voltage V > 0
for the systems with ε̃d = 0 and ε̃d = 0.5ω0, respectively. It
is observed that for the empty QD (̃εd = 0.5ω0), the shot
noise of the elastic channel inherits the same behavior as
the elastic current with increasing bias voltage, continuous
increase up to the resonant point, and downward steps
at V = 3ω0 and 5ω0. On the contrary, the inelastic shot
noise exhibits abrupt downward jumps at V = ω0 and 3ω0,
instead of upward jumps in the inelastic current. At V = ω0,
we can evaluate approximately the correction to the shot
noise due to the inelastic tunneling for the system with

ε̃d = 0.5ω0 as

Sin � 2eIin − 4e2

h
(�L�R)2w2

0w1(2w0 + w1)

×
∫ V/2

ω0−V/2
dω

[
1

D2
0(ω)

+ 1

D2
0(−ω)

]

� 4e2

h

�L�Rw0w1∣∣�r
ci(0)

∣∣2

(�L − �R)2 − 4�L�R

(
1 + w1

w0

)
(�L + �R)2

.

For the symmetric tunnel-coupling case considered in this
paper, �L = �R , the opening of inelastic channel generates
a negative contribution to the shot noise. The same corrections
of the inelastic noise will be predicted at V = 3ω0 and 5ω0,
leading to downward jumps in the shot noise in association
with the elastic noise, while the situation is more complex
for the partially filled QD (̃εd = 0). At first, the inelastic noise
shows a tiny upward jump at V = ω0, i.e., a positive correction,
because of

Sin � 4e2

h

�L�Rw0w1[
(ω0/2)2 + ∣∣�r

ci(ω0/2)
∣∣2]2

×
[

(ω0/2)2 + ∣∣�r
ci(ω0/2)

∣∣2 − �L�Rw2
0

(
2 + w1

w0

)]
.

But the inelastic noise becomes downward jump at V = 2ω0

again. Actually, the inelastic noise contribution has been
examined for a QD with weak EPI, a soft phonon ω0 � �, and
arbitrary transmission based on the second-order perturbative
calculation at V = ω0 where the inelastic channel is just
opening.45 A sign change in the inelastic noise correction
at certain domains in parameter space of transmission and
energy level has been addressed and ascribed to the under-
lying competition between elastic and inelastic processes.
Very recently, the negative contribution to noise has been
experimentally observed on Au nanowires in the weak EPI
limit and has been ascribed to the coherent two-electron
tunneling processes assisted by phonon emission that reduce
electronic fluctuations due to Pauli principle.46 The present
investigation in this paper indicates indeed that the interplay of
elastic and inelastic scattering processes causes the following
properties of shot noise: (1) The elastic shot noise exhibits
a downward step at the bias voltages V = 2(nω0 ± ε̃d ) > 0
as the elastic current does. (2) Meanwhile, the opening of
inelastic channel at these bias voltages induces an abrupt
increase of the transmission probability of the inelastic channel
[i.e., the inelastic current as shown in the above subsection,
Figs. 4(a) and 4(b)] and consequentially results in an obvious
downward jump; otherwise the inelastic noise shows only a
tiny increase. (3) In particular, for the molecular QD with
an energy level of ε̃d = 0.5ω0, the inelastic noise becomes
negative at V = 2(ω0 − ε̃d ) = ω0, i.e., the sign change of the
inelastic correction to shot noise in the case of strong EPI
and a hard phonon. Nevertheless, no such negative correction
to noise was found in the PTA calculations.51 We argue that
this is because the PTA considers only the elastic-scattering
processes as pointed out above.

To analyze the relative strength of noise, a more useful
quantity is the so-called Fano factor F defined as the ratio of
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the shot noise to the Poisson value, F = S/2eI . It is obvious
from Eq. (46) that the present approximation exhibits no super-
Poissonian noise, being in agreement with the previous NGF
calculation in Ref. 51 under the same approximation, strong
electron-phonon interaction and thermal equilibrated phonon.
It is also worthwhile to point out that the present result is
in no conflict with that of the rate-equation calculations. Even
though a giant Fano factor has been predicted due to avalanche-
like transport of electrons by rate-equation calculations,11,12 it
has been subsequently clarified that a single-level molecular
QD will exhibit super-Poissonian noise only when both of
two conditions, external-bias-voltage-driven unequilibriated
phonon and asymmetric tunnel couplings between the QD
and two leads, are simultaneously satisfied.14,15 Otherwise, the
shot noise will decrease with increasing strength of dissipation
of the hot phonon to environment, and eventually become
sub-Poissonian noise and show steplike behavior.15,16 In this
paper, our NGF calculations predict more rich oscillatory
behavior of the Fano factor as a function of the bias voltage,
as shown in Figs. 6(c) and 6(d). It is interesting to observe
that the aforementioned downward jumps in the shot noise
in conjunction with the upward steps in the current induce
obvious dips in the Fano factor, whose values can be smaller
than 1/2. Since for a resonant tunneling model with a small
tunneling rate � the typical value of the Fano factor of a
symmetric tunnel junction at large bias voltage is equal to 1/2,
this unusual smaller-than-one-half Fano factor therefore can be
regarded as an unambiguous signature of vibronic participation
in electronic tunneling.

V. CONCLUSION

In conclusion, in this paper we have investigated inelastic
effects on the FCS of electronic tunneling through a single-
molecular QD in the presence of strong electron-phonon
interaction, weak tunnel couplings, and hard phonon mode. For
this purpose, we have performed the Lang-Firsov canonical
transformation for the local electron-phonon interaction and
made use of the noncrossing approximation to decouple the
electronic and phononic degrees of freedom. Then we have
employed the generalized nonequilbirium Green-function
technique for the FCS and derived an explicit analytical
Levitov-Lesovik formula for the cumulant generating function
under the approximation that the molecular vibration is
assumed to be always thermally equilibrated due to fast
dissipation to a thermal phonon bath, i.e., the environment.
This formula can not only provide fundamental knowledge
of how to clarify independent elementary processes in the
vibration-assisted charge transfer, but also give analytical

expressions for the tunneling current and its zero-frequency
shot noise. Subsequently, we have carried out numerical
calculations for the current and shot noise of a QD with
symmetric tunnel couplings at zero temperature and further
analyzed their bias-voltage dependence in detail.

Even though several of our formal results, for example,
the upward or downward jumps in the current and shot noise
only at V = ω0, were already addressed in previous papers
by the second-order perturbative calculations for weak EPI
system,11,23,24,45 there are still some debates in these issues in
the literature. The present paper has provided complementary
investigation for strong EPI system. We have found the
following: (i) The singularities in the electronic self-energy and
spectral function cause discontinuities in the zero-frequency
shot noise in the weak tunnel-coupling case, i.e., weak bare
elastic transparency of the molecular junction. The sign of the
discontinuity occurring at V = ω0 (single-phonon scattering
process) depends on the normalized energy level of the
molecular QD. For an empty QD, ε̃d = 0.5ω0, the inelastic
channel provides a negative contribution to noise at V = ω0;
otherwise, a positive contribution is observed. Moreover,
multiphonon scattering events will always induce downward
jumps. It is noticed that the opening of inelastic channel can
also affect the elastic channel, leading to downward steps in
the elastic part of the current and shot noise. (ii) Contrary to the
results of rate-equation calculations, our investigations predict
oscillatory structure and apparent dips in the Fano factor. The
small Fano factor, F < 1/2, can be considered as a typical
characteristic of phonon-assisted electronic tunneling through
a single molecular junction.

Noticeably, our approximative calculations for the strong
EPI system with an equilibrated phonon have reproduced
the logarithmic singularities in the electronic self-energies56

and consequently found the discontinuities in the differential
conductance and shot noise. It is therefore desirable in the
future research to develop a fully self-consistent calculation,
i.e., solving the coupled Dyson equations for the electronic
GF Gc(t,t ′) and the phononic GF K(t,t ′) simultaneously, to
observe the unequilibrated phonon effect on the singularities
and discontinuities.
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