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Gapped broken symmetry states in ABC-stacked trilayer graphene
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We use a self-consistent Hartree-Fock approximation with realistic Coulomb interactions for π -band electrons
to explore the possibility of broken symmetry states in weakly disordered ABC-stacked trilayer graphene. The
competition between gapped and gapless broken symmetry states and normal states is studied by comparing
total energies. We find that gapped states are favored and that, unlike the bilayer case, gapless nematic broken
symmetry states are not metastable. Among the gapped states, the layer antiferromagnetic state is favored over
anomalous and spin Hall states.
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I. INTRODUCTION

The electronic structure of few-layer graphene1,2 systems
consists of pairs of bands that cross, or narrowly avoid crossing,
near the Fermi level. Because the number of band pairs
depends in an interesting way on the stacking arrangement,
and because both semimetallic and semiconducting behaviors
occur, this family of two-dimensional materials provides an
attractive playground for the study of electron interaction
effects in systems3,4 with approximate Fermi points. For
example, interactions lead to a marginal Fermi liquid behavior
in neutral single-layer graphene,5,6 and to broken-symmetry
ordered states in bilayers.7–15

The recent surge of interest in ABC-stacked trilayer
graphene16–28 has motivated theoretical studies of the electron-
interaction-induced instabilities that are expected when these
structures are weakly disordered. Instabilities are favored in
ABC trilayers by extremely flat crossing2 of a single pair of
bands at the neutral system Fermi level, and by exchange
energy frustration associated with momentum-space textures
in the valence-band wave functions.29 In the trilayer case,
the competition between competing broken symmetry states
is massaged by weak remote neighbor hopping processes
that reshape the bands at energies within ∼20 meV of the
crossing point.30 This energy scale should be compared to the
∼ 1 meV scale of analogous processes in bilayer graphene.31

The remote hopping processes are therefore more likely to
play a prominent role in determining how the system responds
to electron-electron interactions in the trilayer case.

The broken symmetry states that have been discussed in
the bilayer graphene literature can be broadly classified either
as gapped phases with broken layer inversion symmetry7–10

or as gapless nematic states that lower rotational symmetry.11

Although the two types of states in principle should have clear
experimental signatures, it has not yet been possible13–15 to
achieve a universally accepted consensus on the character of
the ground state because of the complicated role of residual
disorder. Studies of ABC-stacked trilayer graphene could
prove to be more unambiguous because its bands are flatter and
interaction effects correspondingly stronger, while disorder
strengths should be comparable.

In this paper, we present a study of the competition between
gapful and gapless states in ABC-stacked trilayer graphene,
including the effects of weak remote-hopping processes which
can dominate band dispersion very close to the band-crossing

(Dirac) point. Interaction physics in this system has also been
studied recently under different types of approaches.32–34 Our
study is based on a six-band π -orbital tight-binding model,
combined with long-range Coulomb interactions treated using
a Hartree-Fock mean-field theory. The quasiparticle band
structures of both gapped and gapless states are reshaped
when interactions are included. We find that gapped phases
are favored over a wide range of the hopping-parameter
model space. In mean-field theory, the energy difference
between gapped and gapless states is typically smaller than
∼ 10−7 eV per carbon atom. The small condensation energy
reflects the fact that only single-electron states close to the
band-crossing points participate in ordering. The strength of
the direct hopping process between low-energy sites on the
outer layers of the trilayer, γ2, plays an especially important
role in determining the character of the ground state.

II. MODEL HAMILTONIAN

We describe ABC trilayer graphene using a lattice model
Hamiltonian with one atomic 2pz orbital per carbon site. We
label the six sublattice sites illustrated in Fig. 1(a) as A,
B, A′, B ′, A′′, B ′′; the A and B ′′ sites avoid near-neighbor
interlayer coupling, and for this reason they are low-energy
sites which are dominantly occupied by electrons close to
the band-crossing points. With this convention, the six-band
tight-binding model Hamiltonian of ABC trilayer graphene is

H0 = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γ0f 0 γ3f
∗ + γN 0 γ2

γ0f
∗ 0 γ1 0 0

0 γ1 0 γ0f 0 γ3f
∗

γ3f + γ ∗
N 0 γ0f

∗ 0 γ1 0

0 0 0 γ1 0 γ0f

γ2 0 γ3f 0 γ0f
∗ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(1)

where

f (k) = eikya/
√

3

[
1 + 2e−i3kya/2

√
3 cos

(
kxa

2

)]
(2)

with a = 2.46 Å using the same triangular lattice vector
convention as in Refs. 4 and 8. The global minus sign in
front of the Hamiltonian means that π -bonding bands have
lower energy than antibonding bands when the γ parameters
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FIG. 1. (Color online) Trilayer graphene unit cell and π -band structure. (a) Schematic representation of the hopping processes included in
our model. (b) Band structure near the Dirac point K = (4π/3a,0) for different values of the remote hopping parameters. The upper row shows
2D band structures seen from a view rotated by 30◦ with respect to vertical while the lower row shows the same information expressed in terms
of contour plots. When nonzero, the hopping parameters have the values γ2 = 0.01 eV and γ3 = 0.3 eV. We have set γ4 = γ5 = 0 throughout
our calculations. Wave vectors k are in units of a−1. The γ2 term splits the Brillouin-zone corner cubic band crossing into three Dirac cones
(linear band crossings) located at the vertices of an equilateral triangle. The trigonal γ3 term acting on its own results in four band-crossing
points, including one at the Brillouin-zone corner. When both terms are present simultaneously, the gapless point at K disappears. When the
signs of both terms are the same, they tend to produce opposing triangular distortions, whereas if they have opposite signs their triangular
distortions are reinforcing. The orientation of the triangular distortion for each of the above parameters is sign-dependent. In realistic band
structures, the γ2 term dominates over γ3 resulting in three Fermi points with linear dispersion. The nematic term γN captures the influence of
a layer relative–sliding sliding strain and breaks the triangular rotational symmetry of the bands. We used the value γ 0

N = 0.02 eV in the above
illustration.

are positive. In most of our calculations, we have used
graphite hopping parameter values that are similar to those
in Ref. 35: γ0 = 3.12 eV, γ1 = 0.377 eV, γ2 = 0.01 eV,
and γ3 = 0.3 eV. We specifically address the importance of
the signs of the remote γ2 and γ3 hopping parameters. The
near-neighbor intralayer and interlayer hopping processes γ0

and γ1 are responsible for broad features of the band structure,
while the γ2 and γ3 parameters have their main impact
close to the band-crossing points. This model qualitatively
reproduces the ab initio band structure in Ref. 36, in particular
capturing the orientation of the triangle formed by the three
band-crossing points close to the Brillouin-zone corner. We
have ignored the ABC trilayer γ4 and γ5 processes that break
particle-hole symmetry, and other small on-site terms that are
often introduced in models of graphite, because they do not
visibly alter the low-energy features of the bands in ABC
trilayer graphene.

Using a model similar to that used previously for bilayer
graphene,37,38 we have also examined the influence of a term
in the Hamiltonian that is intended to capture the influence on
low-energy states of an interlayer relative-translation strain.
We write γN = γ 0

N exp(−|k − K(′)|/kr ), introducing a damp-
ing factor that makes the term small away from the Brillouin-
zone corners, where this form for the strain Hamiltonian
becomes inaccurate, by setting kr = γ1/h̄υF = 0.0573 Å

−1
.

Because there is some confusion in the literature on the
signs of the remote hopping processes, we have also considered
other sign choices for γ2 and γ3. As shown in Fig. 1(b), direct
hopping γ2 between the low-energy sites A, B ′′′ gives rise to
three Fermi points at the vertices of a triangle centered on
the Brillouin-zone corner. The trigonal warping (γ3) process
which connects the A,B ′ and A′,B ′′ sites is also responsible
for a trigonal distortion that leads to four Fermi points near
K , as in bilayer graphene. Each one of the three Fermi
points contributes to a phase winding of 2π for a total 6π

phase winding along paths that encircle all three points, as

expected in ABC trilayer graphene.2 (We use the term Fermi
point to refer to a band crossing that is tied to the Fermi
level of a neutral ABC trilayer. The band-crossing points
are exactly at the Fermi level because we have neglected
particle-hole symmetry-breaking terms in the band-structure
model.) Both γ2 and γ3 terms break circular symmetry near the
Dirac point by splitting a single Fermi point with cubic band
dispersion into multiple Fermi points with linear dispersion.
The orientations of the triangular distortion due to γ2 and
γ3 are opposite when both hopping parameters have the
same sign. First-principles band-structure calculations suggest
that γ2 dominates over γ3 and determines the shape of the
bands near the Dirac point. (Note that γ2 has a much greater
influence on the two low-energy states than γ3 for a given
numerical value because it couples them directly, whereas
γ3 acts virtually via high-energy states.) When both terms
are present simultaneously and have the same sign, the band
structure can have a hybrid shape; for some parameters values,
the bands consist of two intertwined triangles with opposite
orientations that can exhibit up to nine Dirac cones. The
additional parameter, γN , couples A,B ′ and A′,B ′′, like the
γ3 term, but without an accompanying factor f (k). The γN

term qualitatively describes a band deformation that lowers the
crystal rotational symmetry, and is similar to the model used to
mimic a small layer-sliding structural deformation in bilayer
graphene.38 This term is also useful to seed lowered rotational
symmetry gapless states in our Hartree-Fock calculations.

Electron-electron interaction effects are treated in an
unrestricted Hartree-Fock approximation,4,8 which allows
symmetries to be broken:

VHF =
∑
kλλ′

Uλλ′
H

[∑
k′

〈c†k′λ′ck′λ′ 〉
]

c
†
kλckλ

−
∑
k′λλ′

Uλλ′
X (k′ − k)〈c†k′λ′ck′λ〉c†kλckλ′ , (3)
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where c
†
kλ,ckλ are Bloch state creation and annihilation

operators, and λ = (l,σ ) lumps lattice and spin indices. The
Hartree and exchange Coulomb integrals in Eq. (3),

Ull′
H = 1

A

∑
G

eiG·(sl−sl′ )|f̃ (|G|)|2 Ṽ ll′ (|G|), (4)

Ull′
X (q) = 1

A

∑
G

eiG·(sl−sl′ )|f̃ (|q − G|)|2 Ṽ ll′ (|q − G|), (5)

involve sums over reciprocal-lattice vectors G. In these equa-
tions, sl is the (2D projection of the) position of the sublattice
in the unit cell. We used an isotropic atomic orbital form factor
f̃ (q) = ∫

dr e−q·r|φ(r)|2 = [1 − (roq)2]/{[1 + (roq)2]4} with
an artificially large atomic radius ro = 3ao/

√
30 to account for

sp2 orbital polarization.4 Here ao = a/(2
√

3) is the covalent
bond radius of carbon. The two-dimensional Coulomb interac-
tions in Eqs. (4) and (5) are defined by Ṽ ll′(q) = 2πe2/(|q|εr)
when the sublattice indices l and l′ refer to the atoms in the
same layer, and [2πe2/(|q|εr )] exp[−|q|d] when they refer to
atoms in layers separated by a distance d.

We used an effective dielectric constant εr = 4 in our
calculations, partly to account for dielectric screening by
surrounding material and partly to account for the well-known
tendency of the Hartree-Fock approximation, which neglects
screening, to overestimate exchange interaction effects.39 The
present implementation of the lattice model Hartree-Fock
mean-field theory follows closely the method described in
Refs. 4 and 8 for single and bilayer graphene, which also used
a momentum space representation of the Coulomb interaction.
One difference in the present implementation is that we
sample the full Brillouin zone without taking advantage of
the symmetry of the crystal in order to allow for the possibility
of broken rotational symmetry nematic phases. Because of
the greater importance of states near the Dirac point, we
have sampled momentum space nonuniformly; for k points
closer than ∼0.5/a to the Dirac point (where a = 2.46 Å is
the triangular lattice constant of graphene), we have used a
sampling density corresponding to 2304 × 2304 points in the
entire Brillouin zone. Outside this region, we used a matched
but coarser sampling with density corresponding to 18 × 18
points in the Brillouin zone. For a given sampling density, the
Hartree-Fock equations are solved iteratively and converged
to ∼10−11 eV per carbon atom in total energy.

III. GAPPED AND GAPLESS STATES

As in the AB bilayer case, the low-energy valence-band
states of ABC graphene are given approximately by equal-
weight coherent sums of top- and bottom-layer wave functions
with momentum-dependent phase differences. The gapped
broken symmetry states spontaneously increase weight in one
of the two layers, whereas29 the nematic states break the lattice
rotational symmetry of the interlayer phases. In the following,
we present the results of our π -band Coulomb-interaction
Hartree-Fock study. Note that our implementation of the
interaction that retains the 1/r Coulomb tail offers a more
realistic description of electron interactions that improves upon
the common short-range Hubbard U approximations, which
completely overlook the nonlocal correlations of the electron
interaction or truncate its effects of a few nearest neighbors.

This mean-field-theory calculation we perform cannot be fully
quantitative because it accounts for screening in an ad hoc
way, which might be quantitatively inaccurate, and because it
neglects higher-order correlation effects. We believe, however,
that our results provide some insight into the competition
between different potential ordered states, and in particular
into the way this competition is influenced by band-structure
features particular to ABC trilayer graphene. We first discuss
the gapped states, which have spontaneous layer polarizations
with spin- or valley-dependent signs, and then ungapped states
with lowered rotational symmetry.

A. Condensation energy of gapped phases with
spontaneous Hall conductivity

The ABC-stacked multilayer graphene constitutes a phys-
ical realization of a chiral 2DEG that, in the presence of
an inversion symmetry-breaking mass or gap term, develops
a valley Hall effect proportional to its layer number8,9,40,41

approximately proportional to σH ∼ e2/h.42 Although this
approximation, which is valid in the small mass limit, can
deviate substantially for large masses,43 it leads to 1D edge
modes and zero-line modes or kink states at interface regions
of opposite valley resolved Hall conductivity that can close the
gap irrespective of the crystallographic orientation.40

In a continuum model, this Hall conductivity remains
quantized in fractions of 1/2 of conductance unit per layer
number, valley, and spin.8,9 In the presence of electron
interactions that can introduce a mass term, the energy of
the gapped states is minimized when half of the spin-valley
components are polarized toward one layer and half toward
the other.8,9 We consider only states of this type, which
are favored over other closely related states by electrostatic
interactions without a net charge imbalance between one layer
to the other. Self-consistent studies in bilayer graphene have
shown that peculiar Hall states might be induced when an
external inversion symmetry-breaking electric field reduces
the electrostatic energy penalty of such charge unbalanced
configurations.8 In a lattice model, there is a clear distinction
and an energy difference between states with opposite layer
polarizations for different valleys, which have either an
anomalous Hall (AH) effect or a spin Hall (SH) effect, and
states with opposite layer polarization for opposite spins
(LAF), which form an antiferromagnetic state. The three
types of ABC trilayer gapped states that have no overall
layer polarization are compared in Table I. In our mean-field
calculations, anomalous Hall and spin Hall states have the
same energy.

We define the condensation energy of the LAF and AH/SH
gapped states as their energy relative to the ground-state energy
of the unbroken symmetry states. The unbroken symmetry
state energy is determined by carrying out self-consistent
mean-field calculations that are seeded by the noninteracting
electron ground state. We find that the condensation energies
for the ordered states are ∼10−7 eV per carbon atom. The
condensation energy is approximately three times smaller than
the product of the energy gap 
gap and the charge transferred
between layers within individual spins and valleys 
nl .

The condensation energy scales are approximately five
times larger than those obtained for bilayer graphene8 with
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TABLE I. Upper panel: Mean-field theory properties of the three balanced-charge-density gapped states. Each of these states has two of the
four valley or spin flavors polarized toward the top layer and two toward the bottom layer; see Ref. 9. Each polarized flavor contributes three
quantized e2/h units to the Hall conductivity with a sign that depends on both valley and layer polarization; the continuum model assignments
can be retained in a lattice model because the momentum space Berry curvatures are strongly localized near the Brillouin-zone corners. Middle
panel: The density transfer from one outer layer to the other 
nl for each valley-spin degree of freedom in units of 1011 cm−2. (This density scale
corresponds to ∼1.3 × 10−5 electrons per carbon atom.) The total amount of charge transferred per valley or spin is larger in the more stable
LAF configuration than the AH or SH configurations. 
gap is the energy gap in meV. The condensation energies 
Econd = Egapped − Egapless

shown are differences between the ordered gapped and gapless normal phases in units of 10−7 eV per carbon atom. The gapless normal state
energies have been obtained from a self-consistent calculation starting from the band orbital seed. The anomalous Hall and spin Hall states have
the same energy in mean-field theory. Lower panel: Differences in total energy between LAF and AH/SH states, 
E = ELAF − EAH/SH, in
units of 10−9 eV per carbon atom. The exchange energy difference per spin or valley is separated into an intravalley (
EKK

X ) and an intervalley
(
EKK ′

X ) contribution. Note that the total exchange energy difference satisfies 
EX = 4(
EKK
X + 
EKK ′

X ). Intervalley exchange, normally
neglected in continuum models, makes a substantial contribution to the energy difference between LAF and anomalous Hall states.

AF (λz τz σz) σK,↑
xy σK ′,↑

xy σK,↓
xy σK ′,↓

xy

AH (T K ↑) (B K ′ ↑) (T K ↓) (B K ′ ↓) 3 3 3 3
SH (T K ↑) (B K ′ ↑) (T K ′ ↓) (B K ↓) 3 3 −3 −3
LAF (T K ↑) (T K ′ ↑) (B K ↓) (B K ′ ↓) 3 −3 −3 3


nLAF
l 
nAH

l 
LAF
gap 
AH

gap 
ELAF
cond 
EAH

cond

γ2,γ3 = 0 1.22 1.21 65.1 64.9 −3.599 −3.554
γ2,γ3 > 0 1.09 1.08 56.0 55.6 −1.716 −1.680
γ2 < 0,γ3 > 0 0.12 0.10 12.1 11.7 0.00039 0.00046


Etot 
EX 
EKK
X 
EKK ′

X

γ2,γ3 = 0 −4.43 −14.02 −2.62 −0.88
γ2,γ3 > 0 −3.58 −13.81 −2.77 −0.68
γ2 < 0,γ3 > 0 −0.0065 −1.660 −0.4154 0.0005

similar approximations, presumably because the crossing
bands are even flatter in the trilayer case, thus they have
a higher density of states and the role of interactions is
enhanced. The band gaps we calculate and present in Table I
are roughly ten times larger than the spontaneous gap values
∼6 meV estimated from transport measurements in ABC
trilayer graphene,16 and between 1.6 and 2 times larger than
the gaps (∼30 meV) obtained for the bilayer graphene using
the same value of εr = 4.8 This could suggest that screening
effects are underestimated by this value of εr , or that other
interaction effects that are absent in mean-field theories play
an essential role. In first-principles calculations, the damping
of the strength of exchange, say by a factor of ∼2, is common
practice39 to account for Coulomb correlation screening
missing in an exchange-only theory. This type of consideration
motivates our choice for the dielectric constant, which is larger
than what would be suggested by dielectric screening consid-
erations alone, adding some uncertainty to any quantitative
predictions. Experimentally the ratio of trilayer to bilayer
gaps is ∼2.5, close to the ratio we obtain. This suggests
that the choice εr = 4 quantitatively overestimates exchange
effects in both cases. The discrepancy between theory and
experiment could, however, be due in part to the unfavorable
influence of disorder in experimental samples, and also in
part to inaccuracies in our band-structure model, which relies
on hopping parameters obtained from graphite. The presence
of disorder leads to impurity states within the gap that will
enhance the screening of electron interaction, which in turn
can lead to a suppression of the interaction-driven spontaneous
gap. Further experiments on trilayer graphene with improved
quality with controlled disorder levels comparable with those
of bilayer or single-layer samples would help to shed light on
our discussions.

B. Parameter sweep and band reshaping due
to distant hopping terms

The band Hamiltonian introduced and discussed in Sec. II
include hopping terms beyond the minimal model to capture
the band reshaping that is expected to take place in the ABC
trilayer. In the calculation results of Table I, we can observe, for
example, that the gapped states are strongly suppressed when
γ2 and γ3 have opposite signs, separating the Fermi points
of the three Dirac cones. On the other hand, when γ2 and γ3

have the same sign, the overall effect is that of restoring the
approximate circular symmetry of the bands, enhancing the
chances for a gapped phase.

Our calculations find that the nematic broken symmetry
state is not stable in ABC trilayers. When we iterate the
Hartree-Fock equations starting from a nematic seed, lattice
rotational symmetry is restored at convergence. In both
γ2 = γ3 = 0 and the more realistic γ2,γ3 �= 0 case, the same
unbroken symmetry state with three band-crossing points is
reached for self-consistent calculations starting from either
nematic or band seeds. This result is different from the one
obtained in the graphene bilayer case, in which the same type
of calculation yields a stable gapless state which lowers the
crystal’s rotational symmetry, giving rise to a nematic order.44

The gapped solution of the Hartree-Fock equations lowers
the total energy of the system by avoiding rapid in-plane xy

rotation of the sublattice pseudospin direction near the band-
crossing point.7 The gapless nematic phase lowers the total
energy of the system by reducing the wave-vector dependence
of intersite phase differences and introduces an anisotropic
renormalization of the band velocity. The competition between
the two broken symmetry phases depends on how much energy
can be gained by reshaping the quasiparticle bands in two
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FIG. 2. (Color online) Self-consistent Hartree-Fock calculations
iterated from seeds for the gapped and gapless nematic states in
ABC trilayer graphene. The gapped solution (a) has been obtained
starting from the layer antiferromagnetic initial condition, while the
gapless self-consistent solution (b) has been obtained by seeding
with a nematic γN term. Note that the gapless solutions restore the
rotational symmetry of the crystal lattice that was broken by the γN

term, indicating that nematic order is not stable at the mean-field
level in the trilayer case. When the remote hopping parameters γ2 =
0.01 eV and γ3 = 0.3 eV are accounted for, they induce a triangular
distortion of the bands near the Dirac point and determine the angles
at which the band crossings occur.

different ways. Figure 2 shows the band structures obtained
from self-consistent calculations with gapped and nematic
seeds. The remote hopping terms introduce a triangular
distortion in the shape of the bands near the Fermi energy,
but they do not greatly influence the gapped state properties.
These distortions will have important consequences for the
electronic properties of doped ABC trilayers. It is noteworthy
that the gapless phase within the minimal model develops a
three-Fermi-point structure due to electron interactions alone,
although it does not lower the rotational symmetry of the
crystal. In the picture of an effective two-dimensional low-
energy model, this would be an additional off-diagonal term

introduced by the electron interaction that does not break any
symmetry but enhances the triangular distribution features of
the Dirac cones dictated by the band term. Hence, the presence
of the γ2,γ3 terms also plays a role in determining the orienta-
tion of the triangular deformation the bands undergo near the
Dirac points in the gapless state. Although we have found that
the gapless phases are not the preferred ground state from a
total energy for a wide range of hopping parameter values, they
might be favored in certain conditions of straining and disorder
or disorder that screens out the gapped phase. In such cases, the
signatures of electronic interaction can be manifested through
an enhancement of the triangular Dirac cones distribution.

Motivated by uncertainty in the values of the remote hop-
ping process parameters, we have performed self-consistent
calculations over a range of values of the γ2, γ3, and γN

parameters. The dependence of the energy difference between
the interaction-driven gapped and gapless states on model
parameters is summarized in Fig. 3. We find that the gapped
phase almost always has a lower total energy than the gapless
phase. However, as expected, when the remote hopping
processes are stronger, the difference in the total energy
between the gapped and gapless phases becomes smaller.
Figure 3 shows that the occurrence of the gapped phase relies
on the principal intralayer and interlayer processes, whose
strength is defined by γ0 and γ1, and by the flatness of the
crossing between conduction and valence bands that their
dominance implies.

IV. DISCUSSION

We have used a Hartree-Fock mean-field-theory calculation
to demonstrate that electron interactions can lead to ordered
phases in ABC trilayer graphene, provided that the strengths
of the remote hopping process in this two-dimensional crystal
are close to current estimates. In ABC trilayers, bands near the
Dirac point are strongly influenced by the γ2 parameter over

Δ
E

(e
V

)

γ2 (eV ) γ3 (eV )

γ3 = 0.3

γN (eV )

γ2 = 0.01
γ3 = 0.3
γ2 = 0.01

FIG. 3. (Color online) Energy difference between gapped and gapless states 
E = Egapped − Egapless as a function of γ2, γ3, and γN .
For γN = 0, the lattice symmetry of the gapless state is not lowered by interactions. The vertical black solid lines indicate the hopping
parameters γ2 = 0.01 eV and γ3 = 0.3 eV that best approximate the band structure predicted by ab initio DFT calculations. For strong remote
hopping processes, the gap in the gapped state closes progressively and the energy difference between gapped and ungapped states is reduced
progressively.
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energy scales of ∼20 meV, compared to the ∼1 meV scale
over which analogous processes play a role in AB bilayers.
The physics of their interplay with interactions is therefore less
likely to be distorted by disorder. Remote hopping processes
in ABC trilayers can be important in fixing the shape of the
energy bands near the Fermi level. We have shown that the
gapped broken symmetry phases are nevertheless preferred
energetically over gapless states for a wide range of remote
hopping parameters. We find that our gapless solutions do
not lower the crystal symmetry, although they do generally
lead to the formation of a triple Dirac point at the vertices of
an equilateral triangle. The nematic phase that would break
the triangular crystal symmetry is not stable. When remote
hopping processes are included, the location of the Dirac points
is fixed by the γ2 process.

There are three distinct gapped states which have very
similar energies. Among these, the anomalous Hall and spin
Hall (AH and SH) states have the same energy within mean-
field theory, whereas the layer antiferromagnet state is distinct
and is favored by intervalley exchange because electrons with
the same spin state have the same sense of layer polarization.
We find that the difference in total energy between LAF
and AH/SH is two orders of magnitude smaller than the
condensation energy of either state. In our view, these states
should therefore be considered as close cousins. Real samples
are likely to be found in configurations in which several phases
are present separated by domain walls. An external magnetic
field which favors anomalous Hall states, at least at finite
carrier densities, could be used as a knob to manipulate the
domain structure.

Using the Hartree-Fock approximation and reducing in-
teraction strengths by a factor of εr = 4, we find that ABC
trilayer graphene has a substantial interaction driven gap of
the order of 65 meV. The size of the gap is sensitive to

the choice we have made for the εr parameter, which we
have chosen to mimic exchange interaction renormalization
parameters that are used in ab initio hybrid-density-functional
calculations. Band-structure effects can reduce the size of the
gap substantially when γ2 and γ3 are assigned with values
of opposite sign. For favorable parameters, the gaps we find
are approximately twice as large as those predicted values for
bilayer graphene using corresponding approximations. The
theoretical gaps for the minimal model are therefore very
much larger than initial estimates of a spontaneous band gap
from ABC trilayer experiments, which suggest a value ∼6
meV.16 The discrepancy is certainly due in part to disorder
and inhomogeneity, which reduces the gaps of experimental
systems below ideal values but could also reflect a theoretical
overestimate. We note in this connection that ABC trilayer
graphene samples generally have poorer quality than bilayers.
This difference could be due to the lower effectiveness of the
current annealing procedure routinely applied to suspended
graphene single or multilayer samples. Future experimental
work may establish a higher lower bound for the trilayer
graphene gap.

Note added: Our recent electronic structure calculations
for trilayer graphene based on Wannier localized functions
indicate that γ2 and γ3 effective hopping parameters have
opposite signs, which corresponds to the less favorable
parameter set for the gapped phase.
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