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Currently, much effort is being put into detecting unconventional p-wave superconductivity in Josephson
junctions based on topological insulators (TIs). For that purpose we propose to use superconducting Klein
tunneling, i.e., the reflectionless passage of Cooper pairs through a potential barrier in a gated ballistic junction.
This phenomenon occurs due to the fact that the supercurrent is carried by helical Andreev bound states (ABSs)
characterized by spin-momentum locking similar to the normal-state carriers. We derive the spectrum of the
helical ABSs and the corresponding Josephson current for a junction made on the surface of a three-dimensional
TI. The superconducting Klein tunneling is predicted to yield a nonsinusoidal current-phase relation and
an anomalous critical current Ic that does not vanish with increasing barrier strength. We also analyze the
dependence of the IcRn product (where Rn is the normal-state junction resistance) on the microscopic parameters
of the superconductor/TI interface, which leads to lower IcRn values than expected from previous models of the
proximity-effect Josephson junctions.
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I. INTRODUCTION

Unconventional p-wave superconductivity and Majorana
states predicted in topological insulator (TI)/superconductor
(S) junctions1 have become a topic of vigorous research
(see, e.g., reviews2–7). In three-dimensional (3D) TIs the
superconductivity can be induced in the proximity to a
conventional superconductor (e.g., Al, W, or Nb) deposited
on the surface of the TI material.8–16 The unconventional
superconductivity originates from the broken spin rotation
symmetry of the helical surface states, allowing for mixed
singlet s-wave and triplet p-wave pair correlations, whereby
the p-wave component inherits the spin-momentum locking of
the surface states. Models for the superconducting proximity
effect in the TIs have been proposed in Refs. 7, 14, and 17–23,
including the case of disordered TIs in which the p-wave
superconductivity is suppressed.24

Due to the induced p-wave superconductivity, the TI
Josephson junctions are expected to support gapless Andreev
bound states (ABSs)1 which have been studied theoretically
in a variety of situations (see Refs. 7 and 25–35). Transport
mediated by the gapless ABSs may therefore serve as evidence
for the unconventional superconductivity in the TIs. Among
such transport phenomena proposed in literature on TIs are
the 4π -periodic Josephson effect25,30–32 and its signatures in
the current noise,28 the magnetically controlled Josephson
effect,26,32,34 the phase-dependent electric conductance and
noise,33 as well as the anomalies in the current-phase relation
and Fraunhofer pattern.35

Based on our recent proposal,7 in this paper we study
another transport manifestation of the induced p-wave su-
perconductivity in TIs, a phenomenon analogous to Klein
tunneling in normal helical metals. It should be observable
in ballistic TI Josephson junctions with a gated weak link [see
Fig. 1(a)], which we model by introducing a potential barrier
between the S terminals. We show that the induced p-wave
superconductivity leads to helical ABSs that exhibit spin-
momentum locking and depend strongly on the momentum
direction with respect to the barrier. For the normal incidence

at the barrier with θ = 0 [see Fig. 1(b)], the ABSs are protected
by time-reversal symmetry and are gapless. In contrast, for
the oblique incidence with θ �= 0 there is no protection since
the incident and reflected trajectories are not connected by
time-reversal symmetry. In this case, the ABSs acquire a
minigap ∝√

1 − Tθ depending on the normal-state barrier
transparency Tθ [see Fig. 1(b)]. As a consequence, for the
normal propagation the supercurrent carried by the gapless
ABSs is just the same as in the absence of the barrier.
In this sense, there is a direct analogy with the normal-
state Klein tunneling. Although the net supercurrent contains
the contributions of all possible propagation directions, we
demonstrate that the superconducting Klein tunneling is still
identifiable by two features: the nonsinusoidal current-phase
relation and the anomalous critical current Ic that does not
vanish with increasing barrier strength. We also analyze the
IcRn product (where Rn is the normal-state junction resistance)
as a function of the barrier strength and the microscopic
parameters characterizing the S/TI interface.

The paper is organized as follows. In Sec. II we review the
superconducting proximity effect in a 3D TI, emphasizing its
two characteristic features: helical Bogolubov quasiparticles
and the mixed s- and p-wave pair correlations. In Sec. III
we derive the helical ABSs and discuss their anisotropic
properties. Section IV presents the results for the current-phase
relation, critical current, and the IcRn product. Section V
summarizes our results.

II. INDUCED SUPERCONDUCTIVITY IN TIs

A. Model

We begin by setting up a microscopic model for the
proximity effect in an infinite planar contact between a singlet
s-wave superconductor (S) and a 3D TI. Assuming tunneling
coupling between the systems, we will follow the general
idea of McMillan’s approach,36 further adapted to various
low-dimensional systems in Refs. 17, 18, and 37–42. In
this approach the superconducting proximity is accounted
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FIG. 1. (Color online) (a) Schematic of S/TI/S junction with a
gated-induced barrier in the middle (see also the text). (b) Scattering
geometry in junction plane and polar plot of barrier transparency Tθ

as a function of incidence angle θ [see Eq. (28)].

for by a tunneling self-energy �̂(ε), leading to an effective
Hamiltonian of the 3D TI in the form

Ĥ eff
p = Ĥ p + �̂(ε), Ĥ p =

[
h p 0

0 −h∗
− p

]
, (1)

�̂(ε) =
[ −i�(ε)σ0 �(ε)iσyeiφ

−�(ε)iσye−iφ −i�(ε)σ0

]
, (2)

�(ε) = i�0fS
(ε) = i�0

�
S√

ε2 − �2
S

, (3)

�(ε) = �0gS
(ε) = �0

ε√
ε2 − �2

S

, �0 = πt2N
S
. (4)

In Eq. (1) h p = vσ · p − μ is the Hamiltonian of the surface
state in the absence of tunneling [ p = [px,py,0] is the carrier
momentum on the surface, (h̄/2)σ is the spin vector expressed
in terms of Pauli matrices σx,σy , and σz (σ0 is the unit matrix),
and v and μ are the surface Fermi velocity and energy,
respectively]. The matrix Ĥ p is the representation of the
surface-state Hamiltonian in the four-component Nambu basis
consisting of the wave functions ψ↑, p,ε, ψ↓, p,ε, ψ∗

↑,− p,−ε ,
and ψ∗

↓,− p,−ε , where the star denotes complex conjugation.

The tunneling self-energy �̂(ε) (2) has off-diagonal entries
describing the induced singlet superconducting pairing with
strength �(ε) and phase φ. The diagonal entries of �̂(ε)
account for the shift i�(ε) of quasiparticle energies due to the
tunneling. Both �(ε) and �(ε) are energy dependent, as they
are related to the condensate and quasiparticle (momentum-
integrated) Green’s functions of the S, f

S
(ε) = �

S
/
√

ε2 − �2
S

and g
S
(ε) = ε/

√
ε2 − �2

S
, where �

S
is the energy gap in the S.

The characteristic energy scale of �̂(ε) is �0, which is
determined by the tunneling coupling strength t and the
normal-state density of states N

S
in the S [see Eq. (4)]. At

high energies |ε| � �
S
, the induced pairing is suppressed:

�(ε) ∼ �0 �
S
/|ε|, whereas �(ε) ≈ �0, yielding the quasi-

particle escape rate into the S. In the zero-energy limit

|ε| → 0, �(ε) vanishes, and only the off-diagonal entries
with constant �(ε) ≈ �0 remain. In this limit the effective
Hamiltonian (1) coincides with that of Ref. 1. In our calcu-
lations we will use the more general Hamiltonian (1) given
explicitly by

Ĥ eff
p =

[
vσ · p − μ − i�(ε) �(ε)iσye

iφ

−�(ε)iσye
−iφ vσ ∗ · p + μ − i�(ε)

]
. (5)

B. Helical quasiparticles, induced gap, and mixed s- and
p-wave pair correlations

The main focus of this article is on the superconducting
properties of inhomogeneous systems such as described
in Sec. III. However, before going to that more complex
problem, it is necessary to briefly discuss the homogeneous
superconducting state described by Hamiltonian (5). Its main
feature is the induced p-wave correlations1 emerging from
an interplay of the singlet s-wave pairing ∝iσy and carrier
spin helicity σ · p̂, where p̂ denotes the unit vector in the
momentum direction. The precise classification of the pairing
symmetry of the induced order parameter as well as the
character of the single-particle excitations can be obtained
from the Green’s function Ĝ p defined by the equation[

ε − Ĥ eff
p

]
Ĝ p = Î , (6)

with Î being the 4 × 4 unit matrix. We will consider Ĝ p near
the Fermi level positioned in the conduction band at high
energies

μ � �(ε). (7)

Inverting the equation for Ĝ p we find the matrix elements of
the Green’s function as follows:

Ĝ p =
[

G11, p G12, p

G21, p G22, p

]
, (8)

where the indices 1 and 2 refer to the Nambu space, and the
corresponding entries are 2 × 2 matrices in spin space given
by24

G11, p = 1

2

(σ0 + σ · p̂) [E(ε) + v(p − pF )]

E2(ε) − v2(p − pF )2 − �2(ε)
, (9)

G22, p = 1

2

−iσy(σ0 + σ · p̂)iσy [E(ε) − v(p − pF )]

E2(ε) − v2(p − pF )2 − �2(ε)
, (10)

G12, p = 1

2

(σ0 + σ · p̂)iσy �(ε) eiφ

E2(ε) − v2(p − pF )2 − �2(ε)
, (11)

G21, p = 1

2

−iσy(σ0 + σ · p̂) �(ε) e−iφ

E2(ε) − v2(p − pF )2 − �2(ε)
, (12)

where

E(ε) = ε + i�(ε), p̂ = p/pF , σ0 =
(

1 0

0 1

)
. (13)

Equation (9) for G11| p reveals properties of the single-particle
excitations in the superconducting TI. Just like in the normal TI
(cf. Ref. 43) they are eigenstates of the helicity σ · p̂, but their
spectrum is modified due to the superconducting proximity
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FIG. 2. (Color online) Induced gap εg (16) versus superconduct-
ing gap �

S
.

effect and is obtained by solving the equation

E2(ε) − v2(p − pF )2 − �2(ε) = 0. (14)

For p ≈ pF the solution to Eq. (14) is

ε p ≈ ±
√

v2(p − pF )2 + ε2
g, (15)

where εg is the induced superconducting gap given by24

εg ≈ �0

(
1 − γ + 3

2
γ 2

)
, γ = �

�
S

� 1. (16)

We introduced the dimensionless parameter γ assumed small
throughout. According to Eq. (16), εg is reduced as the gap
in the superconductor �

S
becomes smaller. This tendency

is shown in Fig. 2. In Sec. IV we will encounter a similar
dependence of the critical current in the S/TI/S junctions. It
is also worth noting that the energy εg can be extracted from
the temperature dependence of the critical current in short
proximity-effect junctions.44

The Green’s function G21| p (12) (as well as G12| p) describes
the induced superconducting condensate. The symmetry of the
induced pair correlations is identified by the spin structure of

Eq. (12):

G21| p ∝ (iσy + iσyσ · p̂)�(ε). (17)

Here the first term is a singlet s-wave component, whereas
the second term is a triplet p-wave pairing in which the unit
momentum vector p̂ can be identified as the Balian-Werthamer
d vector (for a more detailed classification of the pairing of
spinfull electrons, see, e.g., Ref. 45). Equation (17) implies the
usual basis of the up- and down-spin states and agrees with
the results of Ref. 17 for a large Fermi energy. The origin
of the mixed s- and p-wave superconducting correlations
is the broken spin-rotation symmetry due to the helicity of
the surface states. The situation reminds to some extent the
mixed singlet-triplet intrinsic superconductivity predicted for
systems without inversion symmetry.46,47 The induced p-wave
component inherits the spin-momentum locking σ · p̂ of the
normal-state carriers. Since it is an odd function of the
momentum direction p̂, the p-wave component is suppressed
in dirty TIs24 in which the elastic mean-free path  is much
smaller than the superconducting coherence length ξ . In this
paper we consider the opposite case of a clean TI defined by
the condition

 � ξ, ξ = h̄v/
√

�2(ε) − E2(ε). (18)

In the next sections we discuss the link between the mixed s-
and p-wave pairing (17) and Andreev bound states (ABSs) in
a ballistic S/TI/S Josephson junction.

III. HELICAL ANDREEV BOUND STATES

Let us consider a junction between two superconducting TI
terminals (see Fig. 1). The junction length defined as distance
between the terminals is assumed much smaller than the
superconducting coherence length ξ [see Eq. (18)]. Concretely,
for Nb/TI contacts with typical parameters �

S
≈ 1 meV,

�0 ≈ 0.2 meV, and h̄v ≈ 250–350 meV nm (see, e.g., Ref. 14),
the junction length should be smaller than 1.25–1.75 μm,
which is easily realizable experimentally. In this limit the
junction can be described by an equation

[H eff(r) + τzσ0U (x)]�(r) = ε �(r), (19)

for the Nambu spinor �(r) in position representation. Explic-
itly, Eq. (19) can be written as

⎡
⎢⎢⎢⎢⎣

U (x) − μ − E(ε) h̄v(−i∂x − ∂y) 0 �(ε)eiφ
L,R

h̄v(−i∂x + ∂y) U (x) − μ − E(ε) −�(ε)eiφ
L,R 0

0 −�(ε)e−iφ
L,R μ − U (x) − E(ε) h̄v(−i∂x + ∂y)

�(ε)e−iφ
L,R 0 h̄v(−i∂x − ∂y) μ − U (x) − E(ε)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ψ↑,ε(r)

ψ↓,ε(r)

ψ∗
↑,−ε(r)

ψ∗
↓,−ε(r)

⎤
⎥⎥⎥⎦ = 0, φ

L
= 0, φ

R
= φ, (20)

where we introduce different phases φL,R in the left (L, x < 0)
and right (R, x > 0) terminals. In addition to that we introduce
a potential U (x) = Uδ(x) in the middle of the junction [the
Pauli matrix τz in Eq. (19) acts in the Nambu space]. In practice,
the potential barrier can be induced by a top-gate electrode as
sketched in Fig. 1. The precise form of the scattering potential
is not of crucial importance here because we will focus
on the effects arising from Klein tunneling that takes place

independently of the barrier shape. We note that the related
earlier studies of Refs. 1, 29, and 30 assumed a scattering-free
weak link. The influence of the normal scattering on the ABSs
and the resulting superconducting Klein tunneling was first
pointed out in Ref. 7.

The ABS solutions of Eq. (19) occur at energies ε smaller
than the induced gap and decay exponentially for x → ±∞.
We seek such solutions as the sum of independent modes with
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different ky wave numbers:

�(r) =
∑
ky

�ky
(x)

eikyy

√
W

, (21)

where �ky
(x) are evanescent functions for both x > 0 and

x < 0. For a large Fermi energy (7) the spinors �ky
(x) are

readily obtained from Eq. (19) as follows:

�ky
(x > 0) =

⎡
⎢⎢⎢⎣

1

eiθ

−eiθa+
R

a+
R

⎤
⎥⎥⎥⎦ C>

R eixkF cos θ−x/ξ

+

⎡
⎢⎢⎢⎣

1

−e−iθ

e−iθ a−
R

a−
R

⎤
⎥⎥⎥⎦ C<

R e−ixkF cos θ−x/ξ , (22)

�ky
(x < 0) =

⎡
⎢⎢⎢⎣

1

eiθ

−eiθa−
L

a−
L

⎤
⎥⎥⎥⎦ C>

L eixkF cos θ+x/ξ

+

⎡
⎢⎢⎢⎣

1

−e−iθ

e−iθ a+
L

a+
L

⎤
⎥⎥⎥⎦ C<

L e−ixkF cos θ+x/ξ , (23)

where C
>,<
R,L are constants, the length-scale ξ is defined in

Eq. (18), and other parameters and notations are explained
below:

a±
R,L(ε) = �(ε)e−iφ

R,L

E(ε) ± i
√

�2(ε) − E2(ε)
, (24)

cos θ =
√

1 − (ky/kF )2, (25)

Here a±
R,L(ε) are the Andreev reflection amplitudes at the ends

of the junction, the angle θ indicates the particle propagation
direction (spanning the range from −π/2 to π/2 around the x

axis) for a given open channel with ky smaller than the Fermi
wave number kF . The matching condition for spinors (22)
and (23) is obtained by integrating Eq. (19) around x = 0,
which yields

�ky
(−0) = (1 + iZτzσx)�ky

(+0), Z = U/h̄v, (26)

where the dimensionless parameter Z characterizes the barrier
strength. Inserting (22) and (23) into (26) we arrive at four
linear algebraic equations for the four constants C>

R , C<
R , C>

L ,
and C<

L . Equating the determinant of the system to zero, we
then obtain after some algebra the following equation for the
ABSs:

[a+
R (ε) − a−

R (ε)][a+
L (ε) − a−

L (ε)]

= Tθ [a+
R (ε) − a+

L (ε)][a−
R (ε) − a−

L (ε)], (27)

where T (θ ) is the normal-state junction transparency:

Tθ = cos2(θ )

1 − sin2(θ )/(1 + Z2)
. (28)

Using Eq. (24) for the Andreev amplitudes, we obtain
from (27) an equation for ε:48

(
ε

�
S

+ ε

�0

√
1 − ε2

�2
S

)2

= 1 − Tθ sin2 φ

2
. (29)

Its solutions depend not only on the phase difference φ,
but also on the relative energy �0/�S

characterizing the
S/TI interface. The latter dependence was not accounted
for in the previous calculations of the ABSs in S/TI/S
junctions.

The solutions of Eq. (29) come in pairs ε± = ±|ε|. In order
to find |ε| it is convenient to recast Eq. (29) as follows:

∣∣∣∣ ε

�
S

∣∣∣∣
2
(

1 −
∣∣∣∣ ε

�
S

∣∣∣∣
2
)

= γ 2

(√
1 − Tθ sin2

φ

2
−

∣∣∣∣ ε

�
S

∣∣∣∣
)2

,

(30)

where γ is the small parameter defined in Eq. (16). We seek
the solution to Eq. (30) in the form of the expansion in powers
of γ :

|ε|
�

S

= γf1(φ) + γ 2f2(φ) + γ 3f3(φ) + · · · . (31)

The functions f1(φ),f2(φ),f3(φ), . . . are obtained by equating
the coefficients at γ,γ 2,γ 3, . . . on the left- and right-hand sides
of Eq. (30). Up to the cubic terms we find

f1 = −f2 =
[

1 − Tθ sin2 φ

2

]1/2

, (32)

f3 =
[

1 − Tθ sin2 φ

2

]1/2

+ 1

2

[
1 − Tθ sin2 φ

2

]3/2

. (33)

Within this approximation the ABSs are given by48

E±
θ (φ) ≈ ±�0

{
(1 − γ + γ 2)

[
1 − Tθ sin2 φ

2

]1/2

+ γ 2

2

[
1 − Tθ sin2 φ

2

]3/2}
. (34)

The ABSs appear exactly below the induced gap given by (16),
i.e., |E±

θ (φ)| � εg = |E±
θ (0)|.

A. Angle-selective protection of ABSs

Figure 3 shows the ABSs for two distinct cases: normal
incidence at the potential barrier with θ = 0 [Fig. 3(a)] and
oblique incidence with θ �= 0 [Fig. 3(b)]. The perpendicular
propagation is reflectionless, with the transparency T0 = 1 for
any barrier strength [see Eq. (28) and Fig. 1(b)], which is the
familiar Klein tunneling. In this case, the ABSs are gapless
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FIG. 3. (Color online) Andreev bound states (34) versus phase
difference φ for (a) normal incidence at potential barrier with θ = 0
and (b) oblique incidence with θ = π/4; γ = 0.3, Z = 0.5. Arrows
indicate the 4π -periodic branches (36). Dashed line corresponds to
fixed energy (37).

[see also Fig. 3(a)]

E±
0 (φ) ≈ ±�0

[
(1 − γ + γ 2)

∣∣∣∣ cos
φ

2

∣∣∣∣ + γ 2

2

∣∣∣∣ cos
φ

2

∣∣∣∣
3
]
. (35)

We recall that gapless ABSs also appear in conventional ballis-
tic Josephson junctions.49 Unlike the latter, the solutions (35)
are protected by time-reversal symmetry. In order to check
this we notice that the ± states in Eq. (35) are equivalent
to two 4π -periodic branches crossing in the middle of the
gap:

E
(1,2)
0 (φ) ≈ ±�0

[
(1 − γ + γ 2) cos

φ

2
+ γ 2

2
cos3 φ

2

]
, (36)

where we introduced notation E
(1,2)
0 (φ) to distinguish the 4π -

periodic solutions (36) from (35). Let us now examine their
wave functions at the same fixed energy [shown by the dashed
line in Fig. 3(a)], which implies

E
(1)
0 (φ) = E

(2)
0 (2π − φ) = ε. (37)

The wave functions of these states [see, e.g., Eq. (22)
for θ = 0] appear to consist only of one-way propagating
states:

�
(1)
0 (x) =

⎡
⎢⎢⎢⎣

1

1

−a+
R (φ)

a+
R (φ)

⎤
⎥⎥⎥⎦ eikF x−x/ξ

2
√

ξ
, (38)

�
(2)
0 (x) =

⎡
⎢⎢⎢⎣

1

−1

a−
R (2π − φ)

a−
R (2π − φ)

⎤
⎥⎥⎥⎦ e−ikF x−x/ξ

2
√

ξ
, (39)

where 1/2
√

ξ is the normalization factor. Note that for the
given energy (37) the Andreev amplitude a−

R in �
(2)
0 (x) has the

phase 2π − φ. It is now easy to see that the states (38) and (39)
are connected by the time-reversal operation:

�
(2)
0 (x) = τ0iσy�

(1)∗
0 (x), (40)

where τ0 denotes a unit matrix in Nambu space. Moreover,
�

(1)
0 (x) and �

(2)
0 (x) are the eigenstates of the helicity matrix

τzσx :

τzσx�
(1,2)
0 (x) = ±�

(1,2)
0 (x). (41)

This shows that the spin of these states is tied to the momentum
direction. As a consequence of Eqs. (40) and (41), the
ABSs (38) and (39) are orthogonal to each other and, therefore,
immune to spin-independent potential scattering.

Clearly the topological protection does not hold for the
ABSs with oblique incidence at the potential barrier since
in this case the incident and reflected trajectories are not
related by the time reversal [see Fig. 3(b)]. The reflection
from the potential barrier generates a minigap ∝√

1 − Tθ at
φ = π,3π, . . . , similar to the ABSs in conventional Josephson
junctions.49

Although for θ �= 0 the ABSs are not protected from
potential scattering, they still feature the spin-momentum
locking and, therefore, can be called helical in the same sense
as the normal-state 2D surface carriers. It is worth noting that
despite the dependence on the normal-state quantity Tθ the
helical ABSs reflect the nature of the induced superconducting
condensate, i.e., its mixed s- and p-wave character. In Eq. (20)
the s- and p-wave correlations are explicitly accounted for
by the couplings between the opposite-spin (e.g., ψ↑,ε and
ψ∗

↓,−ε) and the same-spin (e.g., ψ↑,ε and ψ∗
↑,−ε) particle and

hole components, respectively. Alternatively, one can examine
the spin structure of the Green’s function of the ABSs. It can
be obtained by means of the Hilbert-Schmidt expansion in
terms of the eigenspinors and energies of the ABSs. Since for
our purpose the full expansion is not needed, we focus on the
contributions of the normally propagating states (38) and (39).
For ε → E

(1)
0 (φ), the contribution of the state (38) is con-

structed by making a direct product (⊗) of spinor �
(1)
0 (x) and

its conjugate �̃
(1)
0 (x ′) = [1,1, − a+∗

R ,a+∗
R ] e−ikF x ′−x ′/ξ /(2

√
ξ )

075401-5



G. TKACHOV AND E. M. HANKIEWICZ PHYSICAL REVIEW B 88, 075401 (2013)

as follows:

G
(1)
0 (x,x ′) ≈ �

(1)
0 (x) ⊗ �̃

(1)
0 (x ′)

ε − E
(1)
0 (φ)

=

⎡
⎢⎢⎢⎣

1 1 −a+∗
R a+∗

R

1 1 −a+∗
R a+∗

R

−a+
R −a+

R 1 −1

a+
R a+

R −1 1

⎤
⎥⎥⎥⎦

ε=E
(1)
0 (φ)

eikF (x−x ′)−(x+x ′)/ξ

4ξ
[
ε − E

(1)
0 (φ)

] (42)

=
[

σ0 + σx (σ0 + σx)iσya
+∗
R

−iσy(σ0 + σx)a+
R σ0 − σx

]
ε=E

(1)
0 (φ)

eikF (x−x ′)−(x+x ′)/ξ

4ξ
[
ε − E

(1)
0 (φ)

] . (43)

Clearly the spin structure of the diagonal and off-diagonal matrix elements of Eq. (43) is identical to that of the Green’s
functions in Eqs. (9)–(12) for p̂||x. This proves that ABS (38) is of the mixed s- and p-wave type. Similar calculation for the
counterpropagating state (39) yields

G
(2)
0 (x,x ′) ≈ �

(2)
0 (x) ⊗ �̃

(2)
0 (x ′)

ε − E
(2)
0 (φ)

=
[

σ0 − σx (σ0 − σx)iσya
+
R

−iσy(σ0 − σx)a+∗
R σ0 + σx

]
ε=E

(2)
0 (φ)

e−ikF (x−x ′)−(x+x ′)/ξ

4ξ
[
ε − E

(2)
0 (φ)

] . (44)

The spin matrices in Eqs. (43) and (44) are related to each other by the time-reversal operation.

IV. CURRENT-PHASE RELATION I(φ), CRITICAL CURRENT Ic, AND Ic RN PRODUCT

In the short junction case the Josephson current is carried mostly by the ABSs and can be calculated in equilibrium using the
formula49

I (φ) = −eN

h̄

∫ π/2

0
dθ cos θ

∂E+
θ (φ)

∂φ
tanh

E+
θ (φ)

2�
, (45)

where N = kF W/π is the number of the open channels and � is the temperature in energy units. For the ABSs in Eq. (34) the
current (45) is

I (φ)

I0
= sin φ

2

∫ π/2

0
dθ cos θ

Tθ

[
1 − γ + 5

2γ 2 − 3
2γ 2Tθ sin2 φ

2

]
[
1 − Tθ sin2 φ

2

]1/2 tanh
(1 − γ + γ 2)

[
1 − Tθ sin2 φ

2

]1/2 + 1
2γ 2

[
1 − Tθ sin2 φ

2

]3/2

2�/�0
,

(46)

where I0 = eN�0/2h̄. It is instructive to also consider a reference S/N/S junction of the same geometry, where N is a conventional
2D system with a spin-degenerate parabolic dispersion. In this system the proximity effect is described by the same self-energy
as in Eq. (2). For the Josephson current in the reference S/N/S system we introduce notation I ′(φ). The latter is given by the
equation

I ′(φ)

I ′
0

= sin φ

2

T ′[1 − γ + 5
2γ 2 − 3

2γ 2T ′ sin2 φ

2

]
[
1 − T ′ sin2 φ

2

]1/2 tanh
(1 − γ + γ 2)

[
1 − T ′ sin2 φ

2

]1/2 + 1
2γ 2

[
1 − T ′ sin2 φ

2

]3/2

2�/�0
, (47)

where I ′
0 = 2I0 includes the factor of 2 due to the spin degen-

eracy and T ′ = 1/(1 + Z2) is the normal-state transparency
of the N region with the same (δ-like) potential in the middle.
For the nonhelical carriers in the N neither T ′ nor I ′(φ) is
angle dependent. The equilibrium current-phase relation (46)
is 2π periodic. It is plotted for different barrier strengths Z in
Fig. 4. Interestingly I (φ) remains nonsinusoidal even for very
large Z. In contrast, for the conventional current (47) for
Z � 1 we get I ′(φ) ∝ sin φ, shown for comparison in the
inset of Fig. 4. This difference reflects the helical character of
the ABSs (34) most pronounced in the gapless case θ = 0.

Next we analyze numerically the critical current Ic defined
as the maximum of I (φ) (46) at fixed parameters Z and γ .
Figure 5 shows the normalized Ic as function of the barrier
strength Z. Initially decreasing with Z, the critical current
saturates at a constant value for Z > 3. This is in sharp

contrast with the conventional S/N/S junction for which I ′
c(Z)

is strongly suppressed for Z > 3.
The large supercurrent despite the presence of the strong

barrier is a manifestation of the helical ABSs (34) that are
able to transport Cooper pairs without reflection for θ = 0 or
with weak scattering for θ �= 0 across the junction. This can be
viewed as a superconducting analog of the normal-state trans-
port dominated by the Klein tunneling. For comparison, the
inset of Fig. 5 shows the normal-state (Sharvin) conductance
of the TI channel:

Gn = G0

∫ π/2

0
dθ cos θ Tθ , G0 = e2N

h
, (48)

along with the conductance of the conventional N channel
G′

n = G′
0T

′, with G′
0 = 2G0.
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FIG. 4. (Color online) Current-phase relation I (φ) (46) for
different barrier strengths Z. Inset: Current-phase relation I ′(φ) (47)
for a reference conventional S/N/S junction for strong barrier with
Z = 100. In both cases γ = 0.2 and � = 0.01�0.

Figure 6 shows another experimentally relevant character-
istic, the product of the critical current Ic and the normal-state
resistance Rn = 1/Gn (48) normalized by π�0/π . In accord
with the above discussion, the IcRn product is larger for
the S/TI/S junction compared with the conventional S/N/S
system.

Finally, in Fig. 7 we plot the dependence of the normalized
IcRn product on the superconducting gap �

S
. The limit

�
S
/�0 → ∞ corresponds to a frequently used simplified

model of the proximity effect in which the induced pairing
potential is approximated by an energy-independent constant
� = εg = �0. In this limit and for small Z we recover the

I  /I c 0

c 0

G /G0n

0

S/TI/S junction

S/N/S junction

Z

0

0.2

0.4

0.6

0.8

Z

TI channel

N channelG /Gn 0

I  /I 0.2

0.4

0.6

0.8

1

1

1 2 3 4 5

1

2 3 4 5

FIG. 5. (Color online) Normalized critical current versus barrier
strength Z for S/TI/S and conventional S/N/S junctions; γ = 0.2 and
� = 0.01�0. Inset: Normal-state conductance versus barrier strength
Z for TI and N channels (see also the text).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
Z

S/TI/S junction

S/N/S junction

n

n

c

c

I R

I R

FIG. 6. (Color online) IcRn product in units of π�0/e versus
barrier strength Z for S/TI/S and conventional S/N/S junctions; γ =
0.2 and � = 0.01�0.

known result

IcRn ≈ e�0/π. (49)

However, as shown in Fig. 7, for any finite �
S
/�0 the IcRn

product is smaller than (49). Thus, the dependence on the
microscopic parameters �

S
and �0 may be one of the factors

contributing to lower values of the IcRn product in proximity-
effect Josephson junctions.

V. SUMMARY

Based on a microscopic model for the superconducting
proximity effect, we studied the Josephson effect in a short
ballistic junction made on the surface of a 3D TI. The induced
superconductivity in the TI is the mixture of singlet s-wave
and triplet p-wave pair correlations. Furthermore, the presence
of the p-wave correlations is encoded in helical Andreev
bound states characterized by the spin-momentum locking.
We showed that the supercurrent carried by helical Andreev

00.6

0.7

0.8

0.9

3 30
S

n
c

60

Z=0.1

Z=1

Δ  /Γ

I R

90

FIG. 7. (Color online) IcRn product in units of π�0/e versus
normalized superconducting gap �

S
; � = 0.01�0.
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bound states decreases in the presence of the potential barrier
in the junction, but cannot be completely suppressed due
to the Klein tunneling of Cooper pairs through the barrier.
Such superconducting Klein tunneling reveals itself in the
nonsinusoidal current-phase relation and in the saturation of
the critical current at high barrier strengths. This suggests that
the p-wave superconductivity should be detectable in gated TI
Josephson junctions. For that the gate-induced potential must
be higher than the Fermi energy of the surface state. In this

limit we also do not expect the shape of the induced potential
barrier to play an essential role.
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