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Temperature modulation of the transmission barrier in quantum point contacts
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We investigate near-equilibrium ballistic transport through a quantum point contact (QPC) along a
GaAs/AlGaAs heterojunction with a transfer matrix technique as a function of temperature and the shape
of the potential barrier in the QPC. Our analysis is based on a three-dimensional (3D) quantum-mechanical
variational model within the Hartree-Fock approximation that takes into account the vertical depletion potential
from ionized acceptors in GaAs and the gate-induced transverse confinement potential that reduce to an effective
slowly varying one-dimensional (1D) potential along the narrow constriction. The calculated zero-temperature
transmission exhibits a shoulder ranging from 0.3 to 0.6 depending on the length of the QPC and the profile of the
barrier potential. The effect is a consequence of the compressibility peak in the 1D electron gas and is enhanced
for antiferromagnetic interaction among electrons in the QPC, but is smeared out once temperature is increased
by a few tenths of a Kelvin.
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I. INTRODUCTION

A quantum point contact (QPC) is a narrow constriction in
a two-dimensional electron gas (2DEG). QPCs are commonly
realized in GaAs/AlGaAs heterostructures by applying a
negative voltage to a split metallic gate placed on top of
the device. This leads to the depletion of the electron gas
directly underneath the gate, leaving only a narrow channel
between two 2DEG reservoirs (acting as source and drain),
with a width that can be modulated by the gate bias (see Fig. 1,
top left). Experiments have shown that the QPC conductance
is quantized in units of1–3 G0 ≡ 2e2/h. This phenomenon is
a direct consequence of quantum-mechanical 1D transmission
through a saddle potential, for which the product of the carrier
velocity and 1D density of states is energy independent. As
a result, discrete steps appear whenever a new 1D channel
(1D energy subband) becomes populated for conduction.4,5

In addition to the quantized conductance, an anomalous
conductance plateau has been observed around 0.7G0.3,6 Of
particular interest is the fact that this plateau, dubbed the
0.7 structure or anomaly, becomes stronger as temperature
increases above 0 K, reaching its maximum strength at T ∼
1–2 K and vanishing by T ∼ 10 K due to thermal smearing.3,7

There is substantial agreement that the 0.7 structure is a
consequence of many-body effects, but the precise cause of this
phenomenon is still the subject of significant debate.8,9 One
possible explanation involves a Kondo-like effect due to the
formation of a quasibound state in the QPC.10,11 Alternatively,
it has been proposed that a static spin polarization is present
along the constriction.3,7,12 However, theoretical calculations
based on spin density-functional theory (DFT) have been
inconclusive. While several works favor the formation of a
bound state,11,13–16 others argue against it17,18 and support
the presence of a static spin polarization.17–19 To add to the
controversy, it has been suggested that Kondo correlations
may coexist with static spin polarization due to the presence of
localized, ferromagnetically coupled magnetic impurity states
at the QPC.20

In this work we reexamine the electron transmission
through a QPC along a GaAs/AlGaAs heterojunction by

using a three-dimensional (3D) self-consistent model that
takes into account the lateral confinement and the potential
barrier induced by the gates as well as the band bending
near the GaAs/AlGaAs interface. The system is not treated
as strictly two dimensional, which allows us to consider the
variation of the vertical confinement on the 2D constriction
and the resulting changes in the conductance. A key issue
in our approach is the assumption that the confinement
along the 1D channel is slowly varying (adiabatic). For
this reason, we first solve the 3D many-body effects of a
1D channel in the Hartree-Fock approximation to show that
tunneling of electrons through the QPC can be reduced to
an effective 1D potential. In our model, variational wave
function parameters and the effective potential are obtained
self-consistently as a function of the gate voltage, confinement
strength, and temperature. We then use the transfer matrix
technique21 to obtain the transmission coefficient and the
conductance through the QPC barrier. We show that at T = 0
the conductance through the QPC exhibits a kink or feature
occurring between 0.3 and 0.6G0, depending on the profile of
the potential barrier. The kink is caused by a pinning of the
effective potential when the electron gas in the region of the
QPC is depleted, and disappears as temperature increases.

II. QPC STRUCTURE MODEL

A quantum point contact is usually achieved along a
GaAs/AlGaAs heterojunction, which consists of a layer of
modulation-doped or δ-doped AlGaAs on top of a GaAs
substrate. The heterojunction interface is about 200–300 nm
below the surface.22,23 A cross section of the structure is shown
in Fig. 1 with the z axis perpendicular to the heterointerface,
oriented so that z > 0 measures the depth in the GaAs
substrate. Because of the doping, charge carriers are confined
into a 2DEG underneath the GaAs/AlGaAs heterojunction
interface (in the x-y plane) by the depletion potential UA

resulting from the GaAs ionized acceptors. Meanwhile, the
tall heterobarrier prevents electrons from tunneling into
AlGaAs (z < 0).24 Lateral confinement is achieved along the
y direction by applying a negative potential on the split-gate
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ALFREDO X. SÁNCHEZ AND JEAN-PIERRE LEBURTON PHYSICAL REVIEW B 88, 075305 (2013)

FIG. 1. Schematic representation of a quantum point contact.
S, D, and G stand for source, drain, and gate, respectively.

electrodes (Fig. 1). Electron energies are restricted to discrete
subbands which, at zero temperature, will be occupied only if
their energies are below the Fermi energy.

A top view of the transport configuration is shown schemat-
ically in Fig. 1. The x direction runs between the source and
drain electrodes, while the y axis extends from one gate to the
other. The center of the QPC is at (x,y) = (0,0). Electrons are
injected into the QPC from the 2DEG on the source side of
the structure and collected at the drain. As a consequence of
the finite width of the negatively biased gate electrodes, there
is a saddle potential UQPC(x,y) in the QPC that results from
two contributions: First, the potential energy well Uwell, which
we model as parabolic [see Fig. 2(a)], confines electrons to a
narrow channel between the gates along the y direction, and

FIG. 2. (a) Confinement potential well Uwell induced by the gates,
showing the energy sublevels Ey0, Ey1, etc. (b) Potential in the 2DEG,
showing the Fermi energy and the 2DEG subbands. (c) Contributions
to the effective potential: energy of the lowest subband (Ez0), potential
barrier (Ux), and energy due to the parabolic confinement (Ey0).

splits each of the 2DEG subbands (with energies Ez0, Ez1, . . .

away from the QPC for x → −∞) into a new set of discrete 1D
energy subbands with energies Ey0, Ey1, . . . above those of
the 2DEG subbands. Second, there is also a smooth potential
barrier Ux running along the x direction. Due to the saddle
potential, the charge density at the QPC decreases, which in
turn reduces the effect of electron-electron interactions and
shifts the 2DEG subband energies downwards. The addition
of the energy Ez0 of the lowest 2DEG subband [Fig. 2(b)], the
(smallest) energy increase Ey0 from the parabolic confinement,
and the QPC potential barrier Ux , results in an effective 1D
potential Ueff , as shown in Fig. 2(c).

In our study we limit ourselves to the lowest-energy
subband and include the Coulomb and exchange interac-
tions (Uel and Uexch, respectively) within the Hartree-Fock
approximation. The Fermi energy EF is pinned at the source
electrode, whereas the Fermi level at the drain is shifted from
this value by a small applied source–drain bias. We neglect
the spin-orbit (Rashba) interaction Ĥso = α(σ̂ × p̂)z/h̄, as its
contribution to the effective potential in GaAs will be much
smaller than in other materials. The Rashba coupling constant
in GaAs is α = (0.052e nm2)Fz (where Fz is the electric
field in the z direction), which is significantly less than in
InAs [(1.17e nm2)Fz] and in InSb [(5.23e nm2)Fz].25 We also
neglect the image potential, considering the relatively small
difference between the dielectric constants of GaAs (κ = 12.9)
and AlxGa1−xAs (κ = 12.0 for x = 0.3).

III. 3D HARTREE-FOCK MODEL OF
MODULATION-DOPED 1D GaAs CHANNELS

Before solving for the electronic properties in the QPC
we consider the case of a very long constriction, effectively
a 1D channel or quantum wire. In this case, the system is
translationally invariant along the x direction and the QPC
potential barrier Ux in the wire is reduced to a constant
value U0.

In the absence of an applied split-gate voltage, the (2DEG)
confinement potential in GaAs due to the depletion from ion-
ized acceptors is well approximated by24 UA(z) = q2NA

ε
z(zd −

z
2 ); where q is the electron charge, ε is the GaAs dielectric
constant, NA is the acceptor density, and zd =√

2εEC/q2NA is
the width of the depletion region (EC being the bottom of
the conduction band in the bulk of GaAs). This potential
satisfies the boundary conditions [∂UA/∂z](z = zd ) = 0 (i.e.,
the electric field is zero at z = zd ) and UA(z = 0) = 0. The
parabolic confining potential induced by the applied gate
voltage is given by Uwell(y) = m∗ω2

yy
2/2, where ωy represents

the strength of the confinement.
With these confining potentials, the Schrödinger equation

within the Hartree-Fock approximation reads

− h̄2

2m∗ ∇2ψ{i}(	r) + [UA(z) + Uwell(y) + Ux

+Uel(	r)]ψ{i}(	r) + Ûexch[ψ{j}(	r)] = E{i}ψ{i}(	r), (1)

where the quantum numbers {i} = {ix,iy,iz,σi} (σ being the
electron spin) are associated with the eigenenergies E{i}. The
Hartree (direct) term Uel and the exchange term Ûexch read,
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respectively:

Uel(	r)ψ{i}(	r) = −
∑
{j}

∫
d3	r ′|ψ{j}(	r ′)|2UCoul(	r,	r ′)ψ{i}(	r),

(2)

Ûexch[ψ{j}(	r)] = −
∑
{j}

∫
d3	r ′ ψ∗

{j}(	r ′)UCoul(	r,	r ′)

×ψ{i}(	r ′)ψ{j}(	r)δσiσj
(3)

UCoul, the Coulomb interaction, is given by

UCoul(	r,	r ′)

= q2

4πε

(
1

|	r ′ − 	r| − 1√
(x ′ − x)2 + (y ′ − y)2 + (z′ + z)2

)
.

(4)

The second term on the right-hand side corresponds to
mirror charges placed on the AlGaAs side of the interface.
With this expression for UCoul, Uel(	r) satisfies boundary
conditions similar to those of UA, i.e., Uel(z = 0) = 0 and
[∂Uel/∂z]z=zd

≈ [∂Uel/∂z]z→∞ = 0. (This will also ensure
that the expectation value 〈Uel〉 remains finite.) The occupation
number of a state with energy E is given by the Fermi-Dirac
distribution fT (E) = {1 + exp[(E − μ)/kBT ]}−1, where μ is
the chemical potential (which equals EF at T = 0).

Since Ux(= U0) is constant, the solution to Eq. (1) can
be written as a product of a plane wave traveling along
x and a function depending on y and z, i.e., ψ{kx ,iy ,iz,σi } =
(eikxx/

√
Lx )�iy ,iz (y,z), where Lx is the length of the wire. With

this assumption, the y and z dependence in Eq. (1) can be
separated, yielding{

− h̄2

2m∗
(
∂2
y + ∂2

z

)
UA(z) + Uwell(y) + Ux + Uel(y,z)

}
×�iy,iz (y,z) + Ûexch[�jy,jz

(y,z; kx,σj )]

=
{
E(kx,iy,iz,σi) − h̄2k2

x

2m∗

}
�iy,iz (y,z), (5)

where, after expanding UCoul [Eq. (4)] in a Fourier series, the
Hartree and exchange terms are, respectively, given by

Uel(y,z) =
∑

px,jy ,jz,σj

∫
dy ′

∫
dz′|�jy,jz

(y ′,z′)|2 1

Lx

×
∫

dpy

py

eipy (y ′−y)[e−py |z′−z| − e−py (z′+z)], (6)

Ûexch[�jy,jz
(y,z; kx,σj )]

= −
∑

px,jy ,jz,σj

δσiσj

∫
dy ′

∫
dz′ �∗

jy ,jz
(y ′,z′)�iy,iz (y

′,z′)

×�jy,jz
(y,z)

1

Lx

∫
dpy

p̄y

eipy (y ′−y)[e−p̄y |z′−z| − e−p̄y (z′+z)],

(7)

with p̄y ≡√
(px−kx )2+p2

y . We take the expectation value of the
left-hand side of Eq. (5) and we define two new potential
energies: Eyz, which corresponds to the carrier kinetic energy
and the confinement along the y and z directions, and Uee,

which corresponds to electron-electron interactions:

Eyz ≡
〈
− h̄2

2m∗
(
∂2
y + ∂2

z

)〉 + 〈Uwell〉 + 〈UA〉, (8)

Uee ≡ 〈Uel〉 + 〈Ûexch〉. (9)

Then, we define the effective 1D potential as

Ueff(kx,iy,iz,σi) = Ux + Eyz(iy,iz) + Uee(kx,iy,iz,σi) (10)

so that the 1D electron energy reads

E(kx,iy,iz,σi) = h̄2k2
x

2m∗ + Ueff(kx,iy,iz,σi). (11)

To study the extreme quantum limit, when only the lowest-
energy subband is occupied, we use the trial wave function
defined as

�00(y,z) =
(

a1/2

π1/4
e−a2y2/2

)(
b3/2

21/2
ze−bz/2

)
, (12)

where the parameters a and b are determined by the variational
method. The first term of the right-hand side is the ground
state of the parabolic potential Uwell, while the second term
approximates the ground state of the depletion potential UA.

Then, we obtain the following expectation values for the
different terms in the effective potential Ueff :〈

− h̄2

2m∗
(
∂2
y + ∂2

z

)〉 ≡ 〈T̂yz〉 = h̄2

8m∗ (2a2 + b2), (13a)

〈Uwell〉 + 〈UA〉 = m∗ω2
y

4a2
+ 3q2NAzd

εb

(
1 − 2

zdb

)
,

(13b)

〈Uel〉 = q2

16π2ε
ζab (0)

∫ +∞

−∞
dpx fT [E (px)]

= q2ζab (0)

16πε
n0, (13c)

〈Ûexch(kx)〉 = − q2

32π2ε

∫ +∞

−∞
dpx ζab (px − kx)

× fT [E (px)] . (13d)

Here, n0 = 1
π

∫ +∞
−∞ dk fT [E(k)] is the 1D electron density

in the wire and ζab is a dimensionless function given by

ζab(px − kx)=b

∫ ∞

0
dpy e−p2

y/2a2

×3p̄4
y + 18bp̄3

y + 44b2p̄2
y + 54b3p̄y + 33b4

(p̄y + b)6
.

(14)

Parameters a and b are obtained by minimizing the average
effective energy per electron Uavg = Eyz + 1

2 〈Uel〉 + Javg,
where Javg is the average exchange energy per electron:

Javg = − q2

64π3εn0

∫ +∞

−∞
dkx fT [E(kx)]

∫ +∞

−∞
dpx

× fT [E(px)]ζab(px − kx). (15)

As a way to check the validity of this model, we notice that
the expressions for 〈− h̄2

2m∗ ∂
2
z 〉 ≡ 〈T̂z〉 and 〈UA〉 [Eqs. (13a)
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and (13b)], in the zero-confinement case (ωy = 0), reduce
to the corresponding expressions for the 2DEG, which are
given by 〈T̂z,2D〉 = h̄2b2

8m∗ and 〈UA,2D〉 = 3q2NAzd

εb
(1 − 2

bzd
). We

also compare 〈Uel〉 [Eq. (13c)] to its 2DEG counterpart24

〈Uel,2D〉 = 33q2n2D

16εb
, by first expanding ζab(0) in a series:

ζab(0) = 33
√

π√
2

a

b
− 144

(
a

b

)2

+ 413
√

π√
2

(
a

b

)3

+ · · · .

(16)

Then, to first order in a/b, 〈Uel〉 = 33q2n0a

16
√

2πεb
, which matches

〈Uel,2D〉 if we identify n2D with n0a√
2π

.
In general, the effective potential Ueff(kx) and the electron

density n0 are obtained self-consistently by solving the integral
equation for E(kx) [Eq. (11)] numerically. However, we note
that if the exchange term is negligible compared to the Hartree
term (which is the case when n0 is sufficiently large), an
explicit solution for n0 can be obtained at T = 0:

n0[T = 0] = 2

√
2m∗

π2h̄2 θ (EF − Ux − Eyz)

×
{

−
√

2m∗

π2h̄2

(
q2ζab(0)

16πε

)

+
√

2m∗

π2h̄2

(
q2ζab(0)

16πε

)2

+ (EF − Ux − Eyz)

⎫⎬
⎭ .

(17)

For T > 0, the solution is obtained by solving the following
expression numerically:

n0[T ] =
√

2m∗kBT

π2h̄2

×F−1/2

[
1

kBT

(
μ − Ux − Eyz − q2ζab(0)

16πε
n0

)]
.

(18)

Here F−1/2 is the Fermi-Dirac integral of order −1/2.
Meanwhile, if exchange effects are included, the zero-

temperature solution for n0 (written in terms of kF = πn0/2)
is given by the solution of

EF = h̄2k2
F

2m∗ + Ueff = h̄2k2
F

2m∗ + Ux + Eyz

+ q2

32π2ε

[
4kF ζab(0) −

∫ 2kF

0
dkx ζab(kx)

]
. (19)

For very small kF the integral in Eq. (19) is approximately
equal to 2kF ζab(0) since ζab(k) = ζab(0) + O(k2). Therefore,
in this situation, 〈Ûexch〉 ≈ − 1

2 〈Uel〉 and Eq. (17) can be used
to obtain an approximate solution for n0 in the presence of
the exchange interaction, provided that ζab(0) is replaced with
ζab(0)/2.

Figures 3(a) and 3(b) display the variational parameters a

and b (normalized to their values when n0 = 0, a0 =√
m∗ωy/h̄,

and b0 ≈ [12m∗q2NAzd/h̄
2ε]1/3) versus the electron density

n0 in the wire for different confinement strengths h̄ωy .
Calculations are carried out using the parameters for GaAs26:
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FIG. 3. (Color online) (a) a/a0 and (b) b/b0 − 1 vs electron
density n0 for different confinement strengths h̄ωy in the wire, from
1 meV (solid line) to 4 meV (dot-dashed line), for NA = 1014 cm−3,
at T = 0. Inset in (a): a0 vs h̄ωy . For (b), b0 = 0.190 nm−1.

ε = 12.9ε0, m∗ = 0.067m0, EC = 1.52 eV. For a wire length
of a few hundred nanometers, the calculated electron densities
correspond to a population that varies from a few electrons to
tens of electrons in the wire.

Figure 3 shows that, as n0 increases, a decreases relative to
a0 (and the characteristic length of the wave function along
y, which is proportional to 1/a, increases). This indicates
that electron-electron interactions counteract the effects of the
gate-induced lateral confinement and spread out the electrons
over a wider region along the y axis. a0 itself increases
with increasing confinement strength, as seen in the inset
of Fig. 3(a). Meanwhile, b increases relative to b0 when n0

increases, as seen in Fig. 3(b), which means that electrons are
confined to a narrower region near the heterojunction interface
along the z axis. The variation in both parameters relative to
their zero-population values is more pronounced for smaller
h̄ωy , but a is more sensitive to changes in the electron density
than b, e.g., for n0 = 5 × 105 cm−1, Figs. 3(a) and 3(b) show
that a decreases by up to 25% (for h̄ωy = 1 meV), while b goes
up by 1% at most for the same confinement strength. The small
variation of b, coupled with the fact that 1/b (the characteristic
length of the wave function along z) is of the order of a few
nanometers and an order of magnitude smaller than 1/a, is
consistent with the quasi-2DEG nature of the electron layer in
GaAs.
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FIG. 4. (Color online) (a) a/a0 and (b) b/b0 vs n0 for differ-
ent temperatures, with h̄ωy = 2 meV and NA = 1014 cm−3. a0 =
0.0419 nm−1 and b0 = 0.190 nm−1.

Figures 4(a) and 4(b) show the temperature dependence
of a and b. Even at 1 K , a and b do not vary significantly
when compared to their zero-temperature values. The largest
variations occur for very low electron densities, with a varying
by less than 0.5% (with respect to its zero-temperature value)
and b by less than 0.05%. For high electron densities, the effect
of temperature on the variational parameters is negligible.
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FIG. 5. (Color online) Hartree and exchange terms Uel and Uexch

vs n0 in a wire at T = 0. h̄ωy = 2 meV and NA = 1014 cm−3. Inset:
Uel/|Uexch| vs n0.

Figure 5 displays the variation of the Hartree and exchange
terms versus the electron density n0 in the wire. As suggested
by Eq. (13c), the Hartree term Uel grows approximately
linearly with respect to n0. Deviations from linearity are due
to the fact that both a and b depend on n0. The exchange
term |Uexch| grows at a slower rate than Uel with increasing n0.
For low concentrations, |Uexch| is equal to one-half of Uel, as
predicted by Eq. (19).

IV. TRANSPORT MODEL FOR THE QPC

When these results are extended to a QPC of finite length,
Ux does not take a constant value anymore, but rather depends
on x. Additionally, the lateral confinement Uwell will now drop
to zero as x increases. Thus, the Schrödinger equation [Eq. (1)]
is no longer separable. However, if Ux varies smoothly and
slowly relative to Uwell and UA, an adiabatic approximation can
be carried out in Eq. (1) to find local energy levels E(kx ; x),
a local electron density n0(x), and x-dependent parameters a

and b.
Initially we set Ux(x) = U0sech2(x/x0), with x0 growing

as the length of the QPC increases, while the QPC barrier
height U0 is taller when the gate voltage is more negative.
Ballistic transport occurs for x0 of the order of a few hundred
nanometers, given that the mean-free path is of the order of
several microns.1,2 Given that the confinement length in the
y direction (1/a) is of the order of a few tens of nanometers,
the adiabatic approximation remains valid for x0 � 100 nm.
Meanwhile, the lateral confinement becomes Uwell(x,y) =
m∗[ωy(x)]2y2/2, where we assume ωy(x) = ωy,max

√
Ux (x)/U0.

Once the effective potential Ueff[x,kx(x)] [Eq. (10)] is found
for sample points along the x axis, the transmission coefficient
T [E(kx,σ )] = Tσ (E) is calculated by the transfer matrix
method.21 Finally, the conductance is obtained using the
Landauer formula,27

G = e2

h

∑
σ

∫
dE

(
− ∂fT

∂E

)
Tσ (E). (20)

The Fermi level EF is determined by the electron density
n2D in the 2DEG far away from the QPC, where the effective
potential is Ueff(x → −∞) = 〈T̂z〉 + 〈UA〉 + Uee = Ez0(x →
−∞):

EF − Ueff(x→−∞) = πh̄2n2D

m∗ . (21)

Of particular interest is the case of a very low carrier
concentration in the QPC. Then, the effective potential, and
therefore the transmission coefficient, depends on whether or
not one of the electrons shares the same spin with the electron
preceding it on the wire. If the electron spins are different, then
the exchange term in the effective potential drops out and the
interaction is antiferromagnetic.

V. RESULTS AND DISCUSSION

Figures 6(a)–6(d) show the profile of the effective po-
tential Ueff(E = EF ) at T = 0 along the x direction when
the maximum value of the effective potential Ueff,max is,
respectively, (a) greater than or (b) less than EF . Here we
assume that n2D = 8.4 × 1010 cm−2, so that for x → −∞ the
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FIG. 6. (Color online) Effective potential vs position when (a) and (c) Ueff,max > EF (U0 = 7 meV); (b) and (d) Ueff,max < EF (U0 =
5.4 meV). For (a) and (b), T = 0 K; for (c) and (d), T = 1 K. h̄ωy,max = 2 meV, NA = 1014 cm−3, n2D = 8.4 × 1010 cm−2, and x0 = 200 nm.
All energies are measured with respect to (Ez0 − Uee)x→−∞.

Fermi energy is 3 meV above Ueff , according to Eq. (21).
Energies in the plot are measured relative to (Ez0 − Uee)x→−∞.
The solid and dashed lines represent the effective potential
when the exchange interaction is either included or ignored.
The separation between the dotted and solid (or dashed)
lines corresponds to the contribution of electron-electron
interactions Uee to Ueff , which is more significant far away from
the QPC (i.e., where the QPC barrier height Ux drops to zero).

As Ux increases near x = 0, Uee becomes smaller because
fewer electron states are populated, and therefore Ueff increases
less rapidly. In particular, when Ueff > EF , the electron
channel is depleted and Uee = 0. Figure 6 shows that, at the
point where Ueff = EF , there is a kink or shoulder in the
effective potential due to the onset of Coulomb interactions in
Ueff . Above EF , Ueff varies at the same rate as Ux . The kink
is not present in Fig. 6(b) since the effective potential in that
figure is below EF throughout the QPC, but Uee is still smaller
near the center of the QPC when compared to points that are
farther away.

Figures 6(c) and 6(d) show the same plots for T = 1 K. The
kink in the effective potential is less pronounced in Fig. 6(c)
compared to Fig. 6(a) because the electron concentration
does not vanish anymore when Ueff > EF , and therefore
the Hartree and exchange terms contribute to the effective

potential, especially when Ueff is still very close to EF . Far
away from the QPC, the potential profiles are indistinguishable
from their zero-temperature counterparts.

In Fig. 7 we plot Ueff,max versus the maximum QPC barrier
height (U0) for different temperatures. At zero temperature,
the effective potential maximum decreases linearly with U0

above the Fermi energy, i.e., when the QPC is “pinched-off”
and there are no electrons in the 1D channel. When Ueff,max

crosses the Fermi level at U0 ≈ 6 meV, it remains practically
constant (“pinned”) over a certain range of U0 values while
the channel opens. Then, it decreases at a slow rate for U0 �
5.75 meV, when the QPC channel becomes more populated
with electrons. This pinning effect is a consequence of the
compressibility peak in the 1D electron gas, in agreement with
previous works.28–30 It also occurs when Ueff crosses the Fermi
level on both sides of the QPC when the 1D channel is still
closed, and is responsible for the “kink” observed in the barrier
profile [Fig. 6(a)]. The pinning is less effective at nonzero
temperatures because the electron density in the QPC is not
zero. The dependence of n0 on Ux is shown in Fig. 7(b). As
predicted by Eq. (17), decreasing Ux past the critical point
at Ux ≈ 6 meV leads to an increase in n0. Meanwhile, n0

increases with rising temperature near the effective potential
crossover, as expected.
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FIG. 7. (Color online) (a) Maximum effective potential vs
U0, including exchange effects, for different temperatures. Inset:
�Ueff,max = Ueff,max (w/o exchange) − Ueff,max (w/exchange) vs U0.
(b) Electron density vs Ux , including exchange effects, for different
temperatures. Inset: �n0 = n0 (w/o exchange) − n0 (w/exchange).
All parameters (except temperature) as in Fig. 6.

The changes in Ueff,max and n0 when exchange effects are
neglected are shown in the insets of Figs. 7(a) and 7(b). As
can be seen in Fig. 7(a), neglecting the (negative) exchange
term leads to an increase in the maximum effective potential
below EF , as explained in the comments of Fig. 6. In addition,
Ueff,max also becomes less sensitive to variations in U0, which
indicates that the pinning of the effective potential is enhanced
by the absence of the exchange interaction. The increase in
Ueff,max becomes even more pronounced when temperature is
increased. Since the effective potential is higher, the carrier
concentration in the absence of exchange effects is lower
relative to the case with exchange, as shown in the inset of
Fig. 7(b).

A plot of the transmission coefficient as a function of U0

at T = 0 [Fig. 8(a)] reveals a kink or anomaly close to 0.35,
when U0 reaches the critical point of ∼ 6 meV and Ueff,max

crosses EF . This kink is a consequence of the pinning of the
effective potential just below EF and is more pronounced when
the exchange interaction is neglected (dashed curve) since the
effective potential is enhanced, as mentioned in our discussion
of the insets in Figs. 6 and 7. In Figure 8(b) we display the
transmission coefficient at T = 1 K and show that the anomaly
disappears with increasing temperature. This is caused by
the thermal smearing of the effective potential pinning, as
shown in Fig. 7. At zero temperature, when the gate voltage
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FIG. 8. (Color online) Transmission coefficient vs U0 for (a) T =
0 K and (b) T = 1 K, showing the curves in the presence and in the
absence of the exchange interaction. All other parameters as in Fig. 6.

is sufficiently negative, the transmission coefficient drops
rapidly because of the sudden increase in the height Ueff,max

of the effective potential [Figs. 7(a) and 7(c)]. However, due
to the modulation of the potential barrier with increasing
temperature, the changes in Ueff,max are smoother and the
transmission coefficient does not change as abruptly, thus
softening the anomaly. By neglecting the (negative) exchange
interaction (dashed curve), the effective potential barrier is
taller, thereby resulting in a lower transmission coefficient, as
can be seen both in Figs. 8(a) (for U0 below the critical value
of 6 meV) and 8(b).

Figure 9(a) shows the QPC conductance as a function of U0

for different temperatures. Here we included exchange effects
on the barrier. At T = 0 K the kink in the transmission coeffi-
cient at G ∼ 0.35G0 is well reproduced in the conductance, but
is smeared out as temperature increases, even by a few tenths
of a Kelvin. This thermal smearing is confirmed in Fig. 9(b),
where we plot the slope of the conductance as a function of
U0. At T = 0 K, the conductance slope exhibits a double peak
with a sharp maximum before U0 = 6 meV, followed by a
broader and lower maximum, which indicates that the kink
in the conductance is not simply a slope change, but is rather
due to the onset of the 1D compressibility of the electron gas.
However, as temperature increases the dip in the double peak
structure disappears to leave a single and broad peak.
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FIG. 9. (Color online) (a) Conductance vs U0 for different
temperatures. For clarity, each successive curve is shifted to the right
by 0.25 meV. The dot-dashed line indicates the location of the kink.
(b) Slope of the conductance |dG/dU0| vs U0. Exchange effects are
included. All parameters as in Fig. 6.

In Fig. 10(a) we display the sensitivity of the T = 0 K
conductance as a function of the QPC length, which consists
of varying x0, the characteristic length of the potential barrier
[defined as Ux = U0sech2(x/x0)]. As can be seen, a decrease
in x0, corresponding to a shorter QPC, leads to a spread of the
conductance with a lower slope over a broader U0 potential
range, and shifts the kink anomaly upwards, towards G ∼
0.4G0. At the same time, the kink becomes softer and broader
[Fig. 10(a), inset]. This upward displacement of the kink is
caused by the narrower barrier for which the transmission is
enhanced at low energy compared to the conductance in longer
QPCs. A more dramatic effect on the conductance is observed
if the Ux-potential profile changes. In Fig. 10(b) we use a
barrier potential of the form Ux = U0[1 + (x/x0)N ]−1 (where
N is a positive exponent) to calculate the QPC conductance
at T = 0 K. Compared to the sech2(x) potential shape, this
function has a sharper drop at x = 0 and a longer tail for
x > x0, especially when N is small. As can be seen, a
decrease in the value of the exponent N leads to an upwards
displacement of the anomaly since for N = 2 the anomaly
occurs at G ∼ 0.4G0, whereas for N = 1.25 it rises up to
G ∼ 0.6G0. The transmission is higher in this case compared
to higher-N potentials over the whole U0 energy range. At
the same time, the anomaly broadens and shifts to lower U0

potential values [Fig. 10(b), inset].
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FIG. 10. (Color online) Conductance at T = 0 vs U0 for: (a) Ux =
U0sech2(x/x0), for different x0 and (b) Ux = U0[1 + (x/x0)N ]−1, for
different N . Exchange effects are included. All parameters [apart
from x0 in (a)] are the same as in Fig. 6. The thin vertical dotted
line shows the location of the kink. Insets: Slope of the conductance
vs U0.

VI. CONCLUSIONS

We developed a 3D quantum mechanical model for near-
equilibrium ballistic transport through a constriction in a
2D GaAs/AlGaAs electron gas by using a self-consistent
variational approach. We were able to define an effective 1D
potential (Ueff) for the constriction, which takes into account
the static potential arising from fixed acceptor charges, many-
body effects, and the confinement and barrier potentials. Away
from the constriction, the model reduces to that of a 2DEG
with a fixed Fermi level. In the constriction, the gate-induced
potential leads to a downward shift of the 2DEG subbands.
Our model, based on a transmission matrix technique, predicts
an anomaly in the range 0.3G0 < G < 0.6G0, during the rise
to the first conductance plateau at T = 0 K. This anomaly
is caused by a change of slope in the variation of the
effective potential with the external gate voltage due to the
charging of the 1D channel at the compressibility peak, in
agreement with previous observations.28–30 Our model also
predicts an anomaly enhancement in the case of antiferro-
magnetic interaction in the QPC as the attractive exchange
interaction lowers the potential barrier, thereby disqualifying
the presence of any spontaneous spin polarization. Our main
result, however, is that the exact conductance value for the
anomaly depends on the length of the QPC and the shape of
the potential barrier, i.e., long QPCs make the conductance
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sharper, while sharper potentials lead to a higher value of the
conductance kink. These findings tend to be in agreement
with experimental observations that show a shift of the
0.7 plateau toward higher conductance values under higher
source–drain biases,10 which also sharpens the QPC potential.
However, our self-consistent model also shows the barrier
sensitivity to temperature that smears out the anomaly, unlike
the enhancement of the 0.7 feature with increasing temperature
that is observed experimentally.3,6,10 We believe this result is
due to the approximation of a smooth QPC barrier, which
may not reproduce well the potential landscape characterized
by the AlGaAs substitutional disorder at the GaAs/AlGaAs

interface,31 nor any possible bound states required for the
occurrence of a Kondo-like effect.10,14 These issues, as well as
the investigation of far-from-equilibrium transport in QPCs,
will be the subject of a forthcoming paper.
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5M. Büttiker, Phys. Rev. B 41, 7906 (1990).
6S. Nuttinck, K. Hashimoto, S. Miyashita, T. Saku, Y. Yamamoto,
and Y. Hirayama, Jpn. J. Appl. Phys. 39, L655 (2000).

7K. J. Thomas, J. T. Nicholls, N. J. Appleyard, M. Y. Simmons,
M. Pepper, D. R. Mace, W. R. Tribe, and D. A. Ritchie, Phys. Rev.
B 58, 4846 (1998).

8K.-F. Berggren and M. Pepper, Phil. Trans. R. Soc. London Sect. A
368, 1141 (2010).

9A. P. Micolich, J. Phys.: Condens. Matter 23, 443201 (2011).
10S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P.

Kouwenhoven, C. M. Marcus, K. Hirose, N. S. Wingreen, and
V. Umansky, Phys. Rev. Lett. 88, 226805 (2002).

11Y. Meir, K. Hirose, and N. S. Wingreen, Phys. Rev. Lett. 89, 196802
(2002).

12L. P. Rokhinson, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett.
96, 156602 (2006).

13K. Hirose, Y. Meir, and N. S. Wingreen, Phys. Rev. Lett. 90, 026804
(2003).

14T. Rejec and Y. Meir, Nature (London) 442, 900 (2006).
15S. Ihnatsenka and I. V. Zozoulenko, Phys. Rev. B 76, 045338 (2007).
16Y. Meir, J. Phys.: Condens. Matter 20, 164208 (2008).
17A. A. Starikov, I. I. Yakimenko, and K.-F. Berggren, Phys. Rev. B

67, 235319 (2003).

18K.-F. Berggren and I. I. Yakimenko, J. Phys.: Condens. Matter 20,
164203 (2008).

19P. Havu, M. J. Puska, R. M. Nieminen, and V. Havu, Phys. Rev. B
70, 233308 (2004).

20T. Song and K.-H. Ahn, Phys. Rev. Lett. 106, 057203 (2011).
21B. Jonsson and S. Eng, IEEE J. Quantum Electron. 26, 2025

(1990).
22K. J. Thomas, M. Y. Simmons, J. T. Nicholls, D. R. Mace,

M. Pepper, and D. A. Ritchie, Appl. Phys. Lett. 67, 109
(1995).

23S. M. Cronenwett, Ph.D. thesis, Stanford University, 2001.
24T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437

(1982).
25R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional

Electron and Hole Systems, Springer Tracts in Modern Physics,
Vol. 191 (Springer, Berlin, 2003).

26K. Hess, Advanced Theory of Semiconductor Devices
(Wiley-IEEE, NewYork, 2009).

27S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge
Studies in Semiconductor Physics and Microelectronic Engineering
(Cambridge University Press, Cambridge, 1997).
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