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Giant electron-spin g factors in a ferromagnetic nanoparticle
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School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

(Received 28 May 2013; revised manuscript received 18 July 2013; published 5 August 2013)

We utilize single-electron tunneling spectroscopy to measure the discrete energy levels in a nanometer-scale
cobalt particle at T = 60 mK, and find effective single-electron spin g factors ≈7.3. These large g factors do not
result from the typical orbital contribution to g factors, since the orbital angular momentum is quenched. Instead,
they are due to nontrivial many-body excitations. A kink in the plot of conductance vs voltage and magnetic field
is a signature of degenerate total spin on the particle. Spin-orbit interactions cause the new particle eigenstates
to have “spin” that is an admixture of pure spin states. Fluctuations in the discrete energy level spacing allow for
the total change in “spin” on the particle during a single-electron tunneling event to be �S ′ = 3/2, leading to a
g factor of around 6.

DOI: 10.1103/PhysRevB.88.075303 PACS number(s): 73.23.Hk, 73.50.−h, 73.63.Kv

I. INTRODUCTION

The g factor of an elementary particle is a dimensionless
parameter relating the magnetic moment and the angular
momentum. For an electron, the magnetic moment due to
spin �S is �μ = −gμB

�S/h̄, where g is the spin g factor, μB

is the Bohr magneton, and h̄ is the reduced Planck constant.
In the Dirac point particle model of an electron, the spin
g factor is precisely 2, but the coupling to the environment
can change that value. Recently, g factors were measured of
single electrons occupying quantum electron-in-a-box levels
in a nanometer-scale metallic particle.1–9 In particles made
from light metals such as Al, the g factors are very close to 2,
demonstrating that the g factors are (very nearly) spin g factors,
and that coupling between the spin and the environment is
weak. The orbital motion of the electron does not affect the
g factors in light metallic particles because of the quenching
of the orbital angular momentum.10,11 Introduction of heavier
metals into the particle material leads to a significant reduction
of the g factor, caused by the coupling between the electron
spin and the crystalline environment, via the spin-orbit (SO)
interaction.1,2,12

Here we present measurements of electron g factors
g ≈ 7.3 in a ferromagnetic (cobalt) particle. We show how
this strong enhancement arises from the coupling between
traditional electron-in-a-box levels and the many-body states
in the electronic environment, when the ground state of the
particle is nearly spin degenerate. A different mechanism
leading to very large spin g factors has been proposed for
normal metal particles, but large g factors have not been
confirmed until now, probably because of the weak electron-
electron interactions in normal metals.13,14 By switching the
material from normal metal to a ferromagnet, the electron-
electron interactions strengthen, making it more probable
to observe large g factors. Very large g factors have been
observed recently in semiconducting quantum wires and
dots, where they represent the orbital contribution.15–17 The
difference between semiconducting wires or dots and our
metallic particles is that the orbital contribution is quenched
in the metallic particle.18 The large g factors described in this
letter are of spin origin, making the effect described herein
different from that in semiconducting quantum dots and wires.
This finding shows that a fundamental property of an electron,

such as the spin g factor, can be strongly modified by the
environment in an unexpected way.

II. EXPERIMENTAL METHODS AND DATA

Figure 1(a) sketches our arrangement for the studies of
quantum levels and g factors in a metallic particle. A single
metallic particle is attached between two macroscopic leads,
via high resistance tunnel junctions. Figure 1(b) displays the
energy levels of the particle between the tunnel junctions. A
voltage Vbias is applied on the source lead, changing the Fermi
level in that lead by eVbias. When the Fermi level in the source is
equal to the energy difference between the final and the initial
quantum states of the particle (after and before tunneling), an
electron can tunnel from the Fermi level in the lead into the
particle, resulting in current flow. In that case the electrons flow
through the particle one by one. Current vs voltage increases
in discrete steps at the voltages where the Fermi level in the
source equals the energy difference between the final and the
initial quantum states of the particle, as our sample shows
in Fig. 1(c). In most metallic particles, the energy difference
between the final and the initial quantum states of the particle
is equal to a discrete electron-in-a-box level in the particle.
Thus, voltages at which the steps are observed in the I -V
curve correspond to the discrete electron-in-a-box levels εμ.
These levels are twofold spin degenerate, because of Kramers’
theorem, and the degeneracy is lifted by the applied magnetic
field. The g factor is defined as in Ref. 13 by

g = ±2

μB

dεμ

dB
. (1)

The tunneling junction devices are fabricated using the
same recipe quoted in Ref. 8. See Appendix A for more details.
The devices are studied at T = 60 mK in a dilution refrigerator.
The voltage bias is swept and the output current is measured
using an Ithaco model 1211 current preamplifier. The detailed
data sweeps involve a slow magnetic field ramp, along with
a slightly faster sweep of the voltage bias. The differential
conductance is calculated numerically. Figure 2 displays our
experimental data of the differential conductance vs applied
magnetic field and bias voltage for a Co sample. There are
three main features of the data that are different from previous
work on magnetic field dependence of tunneling spectra in a
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FIG. 1. (Color online) (a) Circuit diagram of tunneling through
particle. (b) Energy level diagram for tunneling process. (c) I -V curve
displaying Coulomb blockade and discrete single-electron tunneling
steps.

Co particle. First, the energy levels vs magnetic field exhibit an
abrupt change in slope around B = 4 T. This kink was absent in
prior work, which displayed energy levels that were monotonic
with field in the range B > 1 T.8,9,19 Second, the g factors of
some levels in the figure are larger than 2. For example, the
levels marked A and B in the figure correspond to g factors of
≈7.3 at B > 4 T. In comparison, prior work displayed only g

factors <2 or ≈2.8,9,19 Finally, the fluctuations in the weights
(i.e., the relative heights of the differential conductance peaks)
of various levels is enhanced. Level A has a weight that is
a factor of ≈4 smaller than level C, which displays a g

factor of ≈0.6. In Appendix C, additional data is provided,
demonstrating the usual magnetic hysteresis loops of discrete
levels in the low magnetic field range (<1.5 T). Because the
energy level spacing of the Co particle is comparable to that
of our previous work, we estimate the particle size to be
≈2 nm.8

III. DATA MODEL: THE UNIVERSAL HAMILTONIAN

In this paper, we will present the analysis of electron tunnel-
ing through the particle, based on the universal Hamiltonian
(UH) model, and show how giant spin g factors naturally
arise in a ferromagnetic particle near spin degeneracies.20

In the UH model, when the SO interaction is zero, the

FIG. 2. (Color online) Experimental data of differential conduc-
tance vs magnetic field and bias voltage. The dotted lines follow the
conductance peak behavior for two different spin transitions. The
slope of the red dotted lines [(a) and (b)] yield a g factor of ≈7.3,
while the green dotted lines (c) correspond to a g factor ≈0.6.

electron-electron interaction commutes with the kinetic energy
and the confinement potential, and the electronic energy in a
metallic particle can be written as

E(N,S0) =
∑

μ,σ=↑,↓
εμnμ,σ − U

2
S(S + 1) − 2μBBSz, (2)

where εμ is the energy of electron-in-a-box level μ, nμ,σ is
the occupation number for the level μ and spin direction σ ,
U is the exchange interaction, B is the magnetic field applied
along the z axis, and S and Sz are the spin magnitude and
its z component, respectively, in units of h̄. If the exchange
interaction is small compared with the level spacing δμ at the
Fermi level, then the ground state for this Hamiltonian will be
the normal-metal Fermi sphere, with spin 0 or 1/2, depending
on parity of the number of electrons on the particle (N ). Giant
spin g factors can arise in the normal-metal state; however,
their probability is very low. In the ferromagnetic state, the
probability of giant g factors increases dramatically; thus, we
first analyze the ferromagnetic case.

Ferromagnetism occurs if the exchange interaction U is
comparable to or larger than the level spacing δμ = εμ+1 − εμ

at the Fermi level, and some minority electrons are promoted
to higher level majority states. The maximum energies of the
occupied levels will be labeled εm and εM (with corresponding
level spacings δm and δM ), for the minority and majority elec-
trons, respectively. In the ground state, the exchange splitting
between εm and εM is compensated by the gain in the exchange
interaction energy: εM − εm = U (S0 + 1/2) + d(B).21,22 The
parameter d(B) has magnetic field dependence d(B) = d0 −
2μBB, where d0 is a mesoscopic parameter. Since the level
spacings vary by the Wigner-Dyson statistics, the value of
εM − εm will have mesoscopic fluctuations comparable to
δM + δm. Figure 3(a) depicts the N -electron ferromagnetic
ground state with spin S0. S0 will be the ground state spin
of the particle if (U/2 − δM ) < d(B) < (δm − U/2). At the
applied magnetic field Bd , defined as d(Bd ) = U/2 − δM , the
ground state is degenerate; that is, EN (S0) = EN (S0 + 1). In
a magnetic field slightly above Bd , the N -electron particle
ground state spin will be S0 + 1. The S0 + 1 state is obtained
from the diagram in Fig. 3(a), by annihilating the minority
electron at energy εm and creating a majority electron at energy
εM+1.

As the magnetic field increases further, the transitions to
higher spin states take place at the corresponding degeneracy
fields. The stability regions for the ground state spins S0 + i,
i = 0,1,2, . . . are shown in Fig. 3(b).

In a Co particle, the average spacings and the exchange
interaction are δM = 4.58 eV/S0, δm = 1.18 eV/S0, and U =
1.77 eV/S0, respectively.22,23 Note that the level spacings scale
as 1/S0, which accounts for the vanishingly small level spac-
ings as the electron number approaches typical bulk values.
The magnetic field region (�B) for the stability of a particular
spin is, on average, 2μB�B = δM + δm − U = 4 eV/S0. For
a typical Co particle in our experiment, S0 ≈ 1000, and the
corresponding magnetic field range is quite large, �B ≈ 35 T.
Since our typical experimental field range of is ≈10 T, we do
not expect to observe spin degeneracy in a typical sample.

In an electron tunneling process, the number of electrons
on the particle changes by 1. In that case, if the particle spin
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FIG. 3. (Color online) (a) Electron-in-a-box levels for minority and majority electrons. The black dots signify occupied levels. (b) Stability
diagram for N - and (N + 1)-electron particles. The spin value in each region denotes the ground state spin for the given magnetic field range.
There is a degeneracy in ground state spin at B = Bd and B = B ′

d for the N - and (N + 1)-electron cases respectively.

before tunneling is S0, then the final spin of the particle after
the tunneling transition will be S0 ± 1/2. In Co, most tunneling
transitions will be spin lowering, as discussed previously.8,9,19

Indeed, experimental studies of electron-in-a-box levels in Co
particles done to date show that the levels from a given sample
have roughly linear magnetic field dependence above about
1 T, with similar g factors <2.

Figure 3(b) also displays the regions of stability for the
ground state spins of S0 − 1/2 + i, for the (N + 1)-electron
system. B ′

d is the degenerate magnetic field value for the
(N + 1)-electron particle. Note that in most of the magnetic
field range, the tunneling transition between the ground states
reduces the spin by 1/2. However, in the narrow magnetic field
range slightly below the degeneracy field Bd , the tunneling
transition between the ground states will be spin increasing,
S0 → S0 + 1/2. Such spin increasing tunnel transitions occur
between B = B ′

d and B = Bd , where gμB(Bd − B ′
d ) = δm −

U/2. On average, 〈Bd − B ′
d〉/�B = 0.07. However, there is

a prediction from the UH model that did not gain much
attention until now, as far as we are aware. Because the
level spacings fluctuate, there is a possibility that (δm − U/2)
could be negative. In a Co particle, δm = 1.33U/2. Assuming
the Wigner-Dyson distribution for δm, Pr[(δm − U/2) < 0] =
36% (See Appendix B). If (δm − U/2) < 0, then in the
magnetic field interval [Bd,B

′
d ] the ground state spins of the N -

and (N + 1)-electron systems will be S0 + 1 and S0 − 1/2. In
that case, the tunneling transitions between the ground states
involve a spin difference of 3/2, so the tunnel transition would
display a g factor of 6. Near any spin degeneracy, tunneling
transitions between excited states can show large g factors as
well.

However, the tunnel Hamiltonian has zero-valued matrix
elements between states of the particle with a spin differ-
ence other than ±1/2. That is, there is a spin selection
rule �S = ±1/2. But, if the SO-interaction in the parti-
cle is included, then the matrix elements 〈S0 − 1/2,S0 −
1/2|HSO |S0 + 1/2,S0 + 1/2〉 and 〈S0,S0|HSO |S0+1,S0 + 1〉

will be nonzero. For example, the calculation of the matrix
element 〈3/2,3/2|HSO |1/2,1/2〉 is available in Ref. 13.24

The result is that the spin eigenstates of the particle with
N + 1 electrons are “spin” admixtures (hereafter labeled
with a prime index) of pure states |S0 + 1/2,S0 + 1/2〉 and
|S0 − 1/2,S0 − 1/2〉. Similarly, for the N electron system,
states |S0,S0〉 and |S0 + 1,S0 + 1〉 mix. The closer the system
is to spin degeneracy, the stronger the admixing will become.
The admixing produces two effects. First, the matrix elements
of the tunnel Hamiltonian between |S0,S0〉′ → |S0 ± 1/2,S0 ±
1/2〉′ and |S0 + 1,S0 + 1〉′ → |S0 ± 1/2,S0 ± 1/2〉′, become
nonzero. Now all tunneling transitions involving these four
levels become active. If admixing is weak, then the weight of
the transition |S0 + 1,S0 + 1〉′ → |S0 − 1/2,S0 − 1/2〉′ will
be weak compared to the weight for transition |S0,S0〉′ →
|S0 − 1/2,S0 − 1/2〉′. Similar variation in weights have been
predicted before.13 Second, the admixing will change the g

factors of the levels. For example, we expect the g factor
for the transition |S0 + 1,S0 + 1〉′ → |S0 − 1/2,S0 − 1/2〉′ to
be widely distributed around 6 and likely to remain much
larger than 2, similar to the analysis in Refs. 13 and 14.
However, there needs to be a more rigorous, full random-
matrix-theory description that includes orbital contributions
to the g factor in order to fully account for the measured value
of 7.3.

Figures 4(a) and 4(b) sketch the energy versus magnetic
field near the spin degeneracy for the N - and (N + 1)-electron
systems. In the magnetic field range between Bd and B ′

d

indicated in the figure, the tunneling transition between the
ground states involves a “spin” change of �S ′ = 3/2, and
the g factor should be about 6. Even if Bd > B ′

d , the tunnel
transition with �S ′ = 3/2 will be close in energy. Thus, we
expect to observe large g factors for the transitions between
the excited states, as long as the applied magnetic field is tuned
near spin degeneracy.

In a normal-metal particle, the above analysis leads to
a similar result. At the degeneracy field Bd,S−T between
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FIG. 4. (Color online) Possible spin transitions upon the tun-
neling event of a single electron onto the particle. The lengths of
the arrows represent the energy change of the particle upon such
a transition. (a) Case where B ′

d < Bd (δm > U/2). (b) Case where
B ′

d > Bd (δm < U/2). (c), (d) Kink in energy curve as a function of
B for the two cases considered in (a) and (b).

singlet and triplet for the N -electron state (assuming N is
even), the magnetic field is off degeneracy between doublet-
quadruplet for the (N + 1)-electron state by the amount given
by gμB(Bd,S−T − Bd,D−Q) = δ − U/2. In order to observe a
tunnel transition between ground states with spin difference
3/2, (δ − U/2) needs to be less than zero. In contrast to
the Co particle, U in a normal metal is small. For example,
in a Au particle, U/2 ≈ 0.06δ, leading to the probability
of 0.3% that the tunneling transition between ground states
has �S ′ = 3/2.13 This is perhaps the reason no g factors
larger than 2 have been measured in a metallic particle,
until now.

Moving back to Co particles, in order to measure large g

factors, we need to measure the particle near spin degeneracy at
the ground state. The experimental signature of the degeneracy
would be a kink in the energy level versus magnetic field,
according to Figs. 4(c) and 4(d). This is consistent with our
data, where several levels display a kink near B = 4 T. Our
model also agrees with the predictions of Ref. 25, which
discusses the signature kink in data near degeneracies, and is
reminiscent of Ref. 26 and 27. Although the shape of the kink is
not the exact same as that suggested by our simple model, the
two have qualitatively good agreement. Additionally, we do
not observe a second kink in the higher field range. However,
due to the increasing intensity of the conductance peaks in the
higher field range (which we attribute to stronger admixing
between states), as well as a slight curvature of the lowest
level near 12 T, it is likely that a second kink lies beyond our
magnetic field range.

IV. CONCLUSION

In summary, we predicted the possibility of large spin
g factors of a ferromagnetic particle tuned close to spin

degeneracy. The existence of these giant effective g factors
is due to the many-body interactions (i.e., strong exchange
energy) in a ferromagnetic particle. When tuned within a
certain range, the magnetic field induces a degenerate total
spin value on the particle. Due to fluctuations in the electron-
in-a-box level spacings, there is a significant probability that
this magnetic field range, along with spin-orbit interactions,
can allow transitions that change the “spin” of the particle
by 3/2 upon the tunneling event of a single electron.
However, this will only occur if the magnetic field is tuned
sufficiently close to one of these degenerate field values. We
prepared many samples of cobalt particles, and found the
experimental signature of a degenerate magnetic field value
(the kink in the conductance data plot). Within this data
set, we found very large g factors (g ≈ 7.3), in relatively
close agreement with our prediction. These giant spin g

factors display the intricate interplay between the many-body
energy states and the traditional electron-in-a-box quantum
states.
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APPENDIX A: SAMPLE FABRICATION

The structures of our samples are defined using electron-
beam lithography on a poly(methyl methacrylate) (PMMA)
substrate, as is illustrated in Fig. 5.

After exposure to the electron beam, the sample is placed
in developer solution and a bridge of PMMA is established
for use in shadow evaporation. Next, the sample is placed in a
vacuum chamber and the tunnel junctions are created through
shadow evaporation around the PMMA bridge. Aluminum is
evaporated to form the electrode, followed by a a layer of

50-180 nm

PMMA bridge
Direction 1:
Al, Al2 O3

Direction 2:
Co, Al2 O3, Al

Al

Al2 O3

Al2 O3

Co particles

Al
Al

FIG. 5. (Color online) Sample fabrication process. The cobalt
particles are shown in red between the two tunneling barriers (blue)
and the conducting Al electrodes (yellow).
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FIG. 6. (Color online) TEM image of Co nanoparticles (dark) on
amorphous Al2O3 background (light).

Al2O3 to form the first tunneling barrier. Next, the sample
is rotated and a layer of cobalt on the order of 0.6 nm is
added, which nucleates due to surface tension and forms
the nanoparticles to be studied. A second layer of Al2O3

is then added to form the other tunnel junction, and then a
final layer of Al is evaporated to form the other electrode.
The electrodes are ≈14 nm thick, and the Al2O3 tunnel
junctions are ≈1.7 nm thick. After the evaporation process,
the excess metals are lifted off in acetone, leaving a series
of patterned devices on our substrate. The nanoparticles are
pictured in Fig. 6 in a transmission electron microscope (TEM)
micrograph.

APPENDIX B: WIGNER-DYSON STATISTICS

The energy level statistics of electrons occupying chaotic
wave functions on the quantum dot can be modeled using
random matrix theory (RMT) and Wigner-Dyson statistics.
For our model, we use the Gaussian orthogonal ensemble
(GOE) because we are in the low magnetic field regime and
therefore can treat the system as effectively time-reversal
invariant. Modeling the system with the Gaussian unitary
ensemble (GUE), which is the ensemble that should be used for
systems without time-reversal symmetry, was also performed,
but the results for GOE and GUE have a difference of only
a few percent. The GOE has normalized energy level (x ≡
δm

〈δm〉 , where 〈δm〉 ≡ δm) fluctuations that follow the distribution
function F (x):

F (x) = π

2
xe− π

4 x2
(B1)

FIG. 7. (Color online) Low magnetic field data <1.5 T.

So to find the probability, Pr, that (δ − U/2) is negative, we
note

Pr

[(
δm − U

2

)
< 0

]
= Pr

[(
δm

〈δm〉 − U/2

〈δm〉
)

< 0

]

= Pr

[(
x − U/2

1.33U/2

)
< 0

]

= Pr [(x − 0.75) < 0]

= Pr (x < 0.75)

=
∫ 0.75

0
dx

π

2
xe− π

4 x2 ≈ 36%.

A similar calculation using the GUE instead yields a probabil-
ity of ≈30%. Either way, there is non-negligible probability
that the quantity (δ − U/2) will be negative.

APPENDIX C: LOW MAGNETIC FIELD DATA (<1.5 T)

The data shown in Fig. 7 display the low magnetic field
regime of the differential conductance vs voltage. Over time,
the field was swept from −1.5 → +1.5 T, and then from
+1.5 → −1.5 T. This is shown in the graph by reading it
from top to bottom. The discontinuities in the conductance
data for the same bias voltage values indicate that a magnetic
switch has occurred. Note the hysteresis in the switching
field values—when the field is swept from negative values
to positive ones, the switch occurs in the positive magnetic
field range. Conversely, when the field is swept from positive
to negative values (the lower half of the graph), the switch
occurs for negative field values. These characteristics indicate
that we are indeed measuring the tunneling through a single
ferromagnetic particle, and agree qualitatively with previous
work on Co particles.8
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