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Superlinear increase of photoluminescence with excitation intensity in Zn-doped GaN
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We have observed a superlinear increase of photoluminescence (PL) intensity in a narrow range of excitation
intensities for Zn-doped GaN. The characteristic intensity at which the abrupt increase occurs increases with
increasing temperature. This is unlike the usual observations for defects in semiconductors in which the PL
intensity increases linearly with excitation intensity, saturating at high intensity because defects become saturated
with photogenerated charge carriers. The observed phenomenon is attributed to a redirection of electron and hole
flow from nonradiative centers at low excitation intensity to a recombination path via the ZnGa acceptor at high
excitation intensity. This is the same explanation responsible for the abrupt thermal quenching of PL reported
earlier [Reshchikov et al., Phys. Rev. B 84, 075212 (2011).]
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I. INTRODUCTION

In a previous paper1 it was shown that, for high-resistivity
gallium nitride (GaN) doped with zinc, the photoluminescence
(PL) intensity of the blue luminescence (BL) band drops
by several orders of magnitude with increasing temperature
over an interval of only a few Kelvins, and this occurs at
temperatures between 100 K and 300 K. In addition, it was
shown that the crossover temperature at which this drop occurs
changes as a function of excitation power density Pexc or
electron-hole-pair generation rate G. The model that was used
to explain this phenomenon included three types of point
defects: the ZnGa acceptor, the ON shallow donor, and an
unknown nonradiative center S. In this paper, we study in
depth the excitation intensity dependence, and we see that the
increase of the PL intensity IPL is superlinear.

Photoluminescence from deep-level defects in semicon-
ductors has been studied for many years and, in general, is
well understood.2–5 Usually, the defect-related PL intensity
IPL increases linearly with G for a wide range of excitation
intensities and tends to saturate at high G when defects become
saturated with photogenerated charge carriers.5–7 However,
even as early as 1939, studies of PL from phosphors and
photoconductors (ZnS, ZnCdS, and CdS) showed a superlinear
increase in PL intensity with G that was commonly described
by a power law IPL ∝ Gm, with powers of m exceeding 1
and sometimes 2.8–15 An important feature of this unusual
PL behavior was its tunability with temperature. Specifically,
the region of the nonlinear increase of PL efficiency shifted
to higher G as temperature increased or as the concentration
of PL “killer centers” (centers of nonradiative recombination)
increased.10,11,14 After several attempts to fit this nonlinear
behavior of the PL with empirical formulas,15,16 Klasens17

suggested an explanation based on a two-center model. His
approach was to use Duboc’s method of considering all pos-
sible combinations of simplified solutions of rate equations.18

However, because little was known about semiconductors
at that time, the model that he produced had donors close
to the valence band and acceptors close to the conduction

band. Nevertheless, viewed as an empirical formula, his
model had the virtue of being able to reproduce the main
features of the unusual PL behavior, namely, the superlinear
increase of PL intensity in a certain region of G, with that
superlinear increase shifting to higher G with increasing
temperature or with increasing concentration of nonradiative
centers. Klasens’s formulation correctly attributed the tunable
superlinear rise of PL to the crossover of a system from a
quasiequilibrium population of defect states, with the lower
states in the band gap mostly filled with electrons and the
upper states mostly empty at low G, to a population inversion,
with more electrons at higher energy states than at lower
energy states at high G. Unfortunately, the Klasens model
was forgotten, possibly because of the unphysical energies
of the acceptor and donor levels, and the basic ideas were
not modified to account for more recent developments in
the understanding of semiconductor defects. For instance,
the superlinear tunable rise of PL intensity in the double
heterostructures of InGaAsP/InP could not be satisfactorily
explained,19,20 even though the PL behavior was very similar
to the one predicted by Klasens.17

However, our recent discovery of the abrupt thermal
quenching in Zn-doped GaN shows many of the same features
of the superlinear increase in PL intensity. We found that
two centers were not sufficient to explain the data, since
we are constrained by the knowledge of the approximate
energies of the acceptors and shallow donors, as well as
constraints on various other parameters.1 Because of these
constraints, it became apparent that a deep donor, responsible
for nonradiative recombination, was necessary. In the previous
paper, we showed that the model with three types of defects
could predict the temperature dependence, and in this paper
we show that it also predicts the nonlinear dependence of
PL intensity on excitation intensity in the temperature range
corresponding to PL quenching.

The organization of the paper is as follows. In Secs. II
and III, the experimental details and results are presented.
In Sec. IV, the rate-equation model, developed earlier and
used to explain the PL thermal quenching behavior in
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high-resistivity semiconductors, is employed to analyze the
excitation intensity dependence of the PL intensity. In Sec. V,
the effect of the exponential absorption of the excitation light
on the calculations is considered. In Sec. VI, a comparison of
the results of the rate equation model and the experimental
data is discussed, including constraints on the parameters and
the inadequacy of older models. The conclusions are given in
Sec. VII.

II. EXPERIMENT

We have studied several Zn-doped GaN layers grown by the
hydride vapor phase epitaxy method on the c-plane sapphire.
These samples were produced by the Ostendo GaN Lab
(formerly TDI, Inc.) and had thicknesses between 3 and 10 μm.
All the samples exhibited unusual PL quenching in which
the BL band intensity dropped abruptly at a characteristic
temperature T ∗ that depended on the excitation intensity.1

From these samples we selected three samples for detailed
study of the excitation intensity dependence of PL, as listed
in Table I. In this table, the concentration of Zn atoms [Zn]
is found from the secondary ion mass spectrometry (SIMS),
and the concentrations of main defect species (ZnGa acceptor,
shallow donor, and the nonradiative deep donor) are estimated
from the fit of the temperature dependencies of PL intensity in
this work and in Refs. 1 and 21.

Steady-state PL was excited with a continuous-wave He-Cd
laser (50 mW, photon energy 3.81 eV), and the PL signal
was dispersed by a 1200 rules/mm grating in a 0.3-m
monochromator and detected by a cooled photomultiplier tube.
The excitation power density (Pexc) was varied from 2 × 10−7

to 0.3 W/cm2 by using neutral density filters and an unfocused
laser beam with a diameter of 4 mm. Levels of Pexc up to
100 W/cm2 were obtained by using a focused beam with a
diameter of 0.1–0.2 mm. These power densities are related
to the generation rate G of electron-hole pairs by G = 1.6 ×
1023Pexc [W/cm2] cm−3 s−1. This was determined by dividing
Pexc by the energy of the excitation photons and multiplying
by the absorption coefficient α = 105 cm−1. Therefore, the
generation rates varied from G = 3.2 × 1016 cm−3 s−1 to
1.6 × 1025 cm−3 s−1.

A closed-cycle optical cryostat was employed for the tem-
perature range of 10 K–330 K. The PL spectra were corrected
for the response of the optical system. The absolute PL
quantum efficiency is defined by η = IPL/G, where IPL is the
integrated PL intensity from a particular defect (from ZnGa in
the case of the BL band), and G is the concentration of electron-
hole pairs created by UV illumination per second in the same
volume. To find η, we compared the integrated intensity of the
BL band with the PL intensity obtained from the standard GaN

TABLE I. Characteristics of the GaN samples.

Thickness [Zn] Calculated concentrations (cm−3)

Sample (μm) (cm−3) NA ND NS

s452 2.9 2 × 1019 1.6 × 1018 5 × 1017 1 × 1018

s560 5.0 Unknown 4.3 × 1017 1.7 × 1017 2.5 × 1017

ap269 6.6 2.5 × 1018 3 × 1017 1.3 × 1017 1.5 × 1017

FIG. 1. (Color online) Photoluminescence spectrum of Zn-doped
GaN (sample s452) for excitation power densities Pexc between 3 ×
10−6 and 0.3 W/cm2 with (a) T = 13 K and (b) T = 140 K.

sample previously calibrated1 and measured under identical
conditions and known excitation power density Pexc.

III. RESULTS

The low-temperature PL spectrum from a high-resistivity
GaN:Zn is shown in Fig. 1(a) for several excitation intensities.
The peak at 3.458 eV (labeled ZnXA) is attributed to an exciton
bound to a neutral ZnGa acceptor. This peak, followed by two
LO phonon replicas, is the only exciton-related emission band
in the near-band-edge region of the PL spectrum. The intensity
of this band at 13 K increases with excitation intensity as
a power law (Pexc)m, where m ≈ 1.5. In the defect-related
region, the BL band with a maximum at 2.89 eV is the
dominant PL band. The BL band intensity increases linearly
with excitation intensity at 13 K. We observed similar intensity
dependencies in other high-resistivity GaN:Zn samples.

With increasing temperature, the exciton emission
quenches and almost disappears at 140 K, as shown in Fig. 1(b).
At this temperature, the BL band is slightly broader than at
13 K and has a maximum at 2.92 eV. It can be seen
from Fig. 1(b) that at low excitation intensities (below
3 × 10−5 W/cm2) the BL band suddenly disappears. When
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FIG. 2. (Color online) Dependence of PL intensity on excitation
intensity for the BL band in three high-resistivity GaN:Zn samples at
different temperatures. The solid lines indicate a linear dependence
of the PL intensity on excitation intensity and the dashed line shows
the highly nonlinear dependence, IPL ∝ Gm with m = 4.

the integrated PL intensity is plotted as a function of the
excitation intensity, a superlinear increase is observed in a
certain range, as shown in Fig. 2. Note that at lower and higher
excitation intensities, a linear dependence was observed for
the BL band. Such a nonlinear behavior in a narrow range
of excitation intensity was observed for all high-resistivity
GaN:Zn samples. Figure 3 shows the dependence of PL

FIG. 3. (Color online) Dependence of the quantum efficiency of
the BL band on excitation power density for selected temperatures
for high-resistivity GaN:Zn (sample s452). The solid curves are
for p type and are calculated with the following parameters:
NA = 1.6 × 1018 cm−3, NS = 1 × 1018 cm−3, ND = 5 × 1017 cm−3,
CnS = 2 × 10−7 cm3 s−1, CnD = 3 × 10−8 cm3 s−1, CpA = 7 ×
10−7 cm3 s−1, CpS = 2 × 10−6 cm3 s−1, CnA = 4 × 10−13 cm3 s−1,
CDA = 4 × 10−12 cm3 s−1, ED = 20 meV, EA = 350 meV, G =
1.6 × 1023 × Pexc[W/cm2] cm−3 s−1. The dashed curves are for
n type and are calculated with the same parameters except for
NA = 1.4 × 1018 cm−3.

FIG. 4. (Color online) Temperature dependence of the quantum
efficiency of the BL band for excitation power densities between
3 × 10−6 and 30 W/cm2 for high-resistivity GaN:Zn (sample s452).
These correspond to G ranging from 4.8 × 1017 cm−3 s−1 to
4.8 × 1024 cm−3 s−1. The solid curves are calculated with the same
parameters as for Fig. 3.

quantum efficiency on the excitation power density for one
of the samples. The region of the abrupt, superlinear increase
of the quantum efficiency of the BL band gradually shifts
to higher excitation intensity with increasing temperature.
The temperature dependence of the quantum efficiency of
the BL band is shown in Fig. 4 for the same sample. The
characteristic temperature, the temperature at which the PL
intensity abruptly drops, gradually shifts from 130 K to
260 K with increasing excitation power density from 3 × 10−6

to 30 W/cm2. As demonstrated below, the nonlinear increase
of PL intensity with increasing excitation intensity at fixed tem-
perature, shown in Fig. 3, and the abrupt quenching of PL inten-
sity with increasing temperature at fixed excitation intensity,
as shown in Fig. 4, are two aspects of the same phenomenon.

IV. RATE-EQUATION MODEL

The model presented in Ref. 1 successfully explained the
temperature dependencies of PL in high-resistivity GaN:Zn,
and it will be used here to explain the intensity dependencies.
As shown in Fig. 5, the model includes three types of
point defects: the ZnGa acceptor, the ON shallow donor, and
an unknown nonradiative deep donor S, which have total
concentrations NA, ND , and NS , respectively. The ionization
energies for the acceptors and shallow donors are EA and
ED , respectively, while the S center is sufficiently deep that
thermal emission of charge carriers from it can be ignored.
Two cases can be distinguished that result in nonlinear PL
behavior in high-resistivity semiconductors: (1) an n-type
semiconductor, for which ND + NS > NA > ND and (2) a
p-type semiconductor, for which NA > ND + NS .

The rates of transitions that release energy are described
with terms of the form CαβNαNβ , where the indices α and β

indicate the initial and final states of the transition, Nα and
Nβ are the concentrations of the available carriers in the initial
state and available empty sites in the final state, respectively,
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FIG. 5. (Color online) Band diagram and transitions of electrons
(solid arrows) and holes (dashed arrows) in a semiconductor with a
shallow donor D, acceptor A, and a nonradiative deep donor S.

and Cαβ is the capture coefficient, assumed to be temperature
independent for simplicity. The rates of thermal emission of
electrons and holes from the defect levels to the conduction
and valence bands are described by the emission coefficients

QD = CnDNc

g
exp

(
−ED

kT

)
, (1)

QA = CpANv

g
exp

(
−EA

kT

)
, (2)

respectively, where Nc and Nv are the effective densities of
states in the conduction and valence bands, respectively, k is
Boltzmann’s constant, and g is the degeneracy factor of the
donor and acceptor levels (assumed to be equal to 2 for both).

The rate equations under steady-state conditions can be
written from the band diagram shown in Fig. 5 and are given
by Eqs. (7)–(12) of Ref. 1 and are repeated in Eqs. (A1)–(A6)
of the Appendix. The defect-related BL band in GaN:Zn is
caused by unresolved superposition of transitions of electrons
from the conduction band and from the shallow donor level to
the ZnGa acceptor level; i.e., its intensity is

IPL = CDAN0
DN0

A + CnAnN0
A. (3)

By solving the rate equations and the charge conservation
equation explicitly given by Eqs. (A1)–(A6), we can determine
how the PL intensity depends on excitation intensity at fixed
temperature.

As we have established previously,1 the abrupt thermal
quenching of PL separates two temperature regions divided
by the solid red line in Fig. 6: a quasiequilibrium population
of energy levels in the gap at high temperature to the left and
below the red line (region I) and population inversion at low

FIG. 6. (Color online) Characteristic regions for different PL
behavior. The solid red line shows the G∗(T ) or T ∗(G) dependence.
This line separates region I (to the left and below the line) from
region II (to the right and above the line). The long-dashed blue line
is G1(T ), which separates subregions Ia and Ib, and the short-dashed
green line is G2(T ), which separates subregions IIa and IIb. For
fixed T , the four regions (Ia, Ib, IIa, and IIb) analyzed in the current
paper are indicated with the vertical dashed line at T = 180 K. The
parameters are the same as in Fig. 3.

temperature to the right and above the red line (region II). This
line is characterized by the equation

ln G∗ = ln B − EA

kT
, (4)

where

B = CpA

(
1

η0
− 1

)
(NA − ND)

Nv

g
(5)

and

η0 = CpAND

CpSNS + CpAND

. (6)

Here η0 is the constant quantum efficiency observed at high
excitation intensity and low temperature, above the crossover,
before it starts to decline at the highest intensities.

In Ref. 1, we focused on the temperature dependence for a
given generation rate G, with the PL quenching abruptly at the
solid line as one proceeds along a horizontal line in this figure.
In that paper, the range of experimental generation rates G

never exceeded 1025 cm−3 s−1, and so the experimental data
all lay in the regions shown as Ia, Ib, and IIa. Because the
parameters shift the boundaries between regions, in this paper,
some of the data fall in region IIb, as we will see in Sec. IV B.
Here, in order to enable the reader to develop an intuitive idea
of the processes involved, we proceed through the regions at
a fixed temperature, starting in region I for low intensity and
continuing to region II for high intensity. We then consider the
narrow range of excitation intensities in which the crossover
occurs.

In region I (low G), the majority of photogenerated
electrons are quickly captured by the S centers because they
have a high electron-capture cross section. Since free holes
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FIG. 7. (Color online) (a) p-type calculations and (b) n-type
calculations of dependencies of concentrations of charge carriers
on the electron-hole-pair generation rate G, where G∗ is the
characteristic generation rate at which an abrupt crossover from
low-efficiency to high-efficiency PL occurs. The curves are calculated
with T = 180 K and with the other parameters the same as for Fig. 3.

are readily available due to their thermal emission from the A

center to the valence band, the electrons at S centers recombine
nonradiatively with these holes, leaving the S centers empty
of electrons for most of the time, so that for p type, N+

S ≈ NS .
In region II (high G), due to the increasing rate of electron
capture by S centers and a lower rate of hole capture, the S

centers become saturated with photogenerated electrons, with
N+

S � NS , and excess electrons accumulate in the conduction
band. Moreover, the A centers become saturated with holes
because they capture holes much faster than they capture
electrons. Thus, a population inversion is observed because the
energy level of the A center is lower than the energy level of the
S center. A crossover from region I to region II can be achieved
either by variation of the temperature at a fixed excitation
intensity (considered in detail in Ref. 1) or by variation of the
excitation intensity at a fixed temperature. Below we consider
how this transition takes place in Zn-doped GaN at a fixed

FIG. 8. (Color online) (a) p-type calculations and (b) n-type
calculations of the dependence of the PL quantum efficiency on
the electron-hole-pair generation rate G. Exact calculations were
done using Eqs. (A1)–(A6) of the Appendix, and approximate
calculations were done using Eqs. (16), (28), (29), (43), and (39).
Model parameters are the same as for Fig. 3 with T = 180 K.

temperature, and simple analytical expressions are derived
for the different regions. The solutions with approximate
analytical expressions will be compared to the numerical
solutions of the rate equations, which are shown in Figs. 7
and 8.

A. Low excitation intensity

At an excitation intensity below the crossover (region I,
G < G∗), shallow donors D are almost completely empty
(N+

D ≈ ND). Because the excitation intensity is low, the
concentrations of free electrons and holes are negligibly small,
as can be seen in Fig. 7, and the charge conservation equation
is simply

N−
A = N+

S + N+
D ≈ N+

S + ND. (7)

In this region, the free electrons n in the conduction band are
approximately in thermal equilibrium with the electrons N0

D

bound to shallow donors, and so the rate of capture of electrons
by shallow donors and the rate of thermal emission of electrons
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to the conduction band are almost equal; i.e.,

CnDN+
Dn ≈ QDN0

D. (8)

Moreover, in this region, the free holes p in the valence band
are approximately in thermal equilibrium with the acceptor
states, and therefore the rate of capture of free holes by
acceptors is nearly equal to the rate of thermal emission of
holes to the valence band, so that

CpAN−
A p ≈ QAN0

A. (9)

Also, the PL internal quantum efficiency η is very low, since the
capture coefficients CDA and CnA are small compared with CnS

and CpS , and as a consequence, the generated electron-hole
pairs almost exclusively recombine through the nonradiative
center S. Thus, the recombination rate at those centers is
approximately equal to the generation rate G of electron-hole
pairs, and so we can write

CnSN
+
S n = CpSN

0
Sp ≈ G. (10)

Combining Eqs. (7), (9), and (10), together with N−
A = NA −

N0
A and N+

S = NS − N0
S , we obtain a quadratic equation for

N0
A, the solution of which is given by

N0
A = 1

2
(NA − NS − ND − N2)

+ 1

2

√
(NA − NS − ND − N2)2 + 4NAN2, (11)

where

N2 = GCpA

QACpS

. (12)

This equation can also be found from the cubic equation for
N+

S from Eq. (B12) of Ref. 1 by setting ζ = 0, dividing out a
factor of N+

S , and substituting N+
S = NA − ND − N0

A. Here ζ

is a small dimensionless parameter given by

ζ = CDACnD

CnS

ND

QD

+ CnA

CnS

. (13)

Then n can be found from Eq. (10) using Eq. (7), with N−
A =

NA − N0
A,

n ≈ G

CnSN
+
S

= G

CnS

(
NA − ND − N0

A

) , (14)

and N0
D can be found from Eq. (8), where N+

D ≈ ND , and is
given by

N0
D ≈ n

CnDND

QD

. (15)

The quantum efficiency ηI in region I can then be found from
Eq. (3) as the PL intensity divided by G as

ηI = IPL

G
≈ ζN0

A

NA − ND − N0
A

, (16)

where N0
A is given by Eq. (11) and ζ is given by Eq. (13). This

expression is valid in all of region I (Ia and Ib).
For very low excitation intensity, or high temperature,

corresponding to region Ia, N2 becomes sufficiently small
that it can be neglected in Eq. (11). Therefore, we define
the dividing line in that equation as the point at which the

sum of the terms inside the square root that are proportional
to N2 is equal to (NA − ND − NS)2. Then this characteristic
generation rate G1, which separates regions Ia and Ib, is given
by

G1 = QACpS(NA − ND − NS)2

2CpA(NA + ND + NS)
. (17)

In the limiting case of region Ia, where G � G1, the population
of energy levels in the band gap is close to the equilibrium
population in the dark and is different for a p-type than for an
n-type semiconductor. Here we explain qualitatively how to
envision this limiting case, and we present a rigorous derivation
using a successive approximation method in the Appendix.

For p type, NA > ND + NS , and for n type, NA < ND +
NS . In Eq. (11), this determines whether the expression inside
the square root nearly doubles or nearly cancels the first term
in the expression. Expanding the square root, this means that
for p type,

N0
A ≈ NA − ND − NS + �, N−

A ≈ ND + NS − �, (18)

where the small parameter � in the expansion is

� = N2NA

(NA − ND − NS)
, (19)

with N2 given in Eq. (12) and

N+
S ≈ NS − �, N0

S ≈ �. (20)

Therefore, the S centers are mostly ionized for p type, while,
for the numerical calculations of this paper, the A centers are
about 90% filled with electrons, i.e., N−

A ≈ 0.9NA.
For n type,

N−
A ≈ NA + �, N0

A ≈ −�, (21)

where � is negative, and

N+
S ≈ NA − ND − �, N0

S ≈ ND + NS − NA + �. (22)

Therefore, for n type, the A centers are almost completely
filled with electrons, and for the numerical calculations of
this paper, the S centers are about 90% filled with holes; i.e.,
N+

S ≈ 0.9NS .
Finding an expression for the free hole concentration p in

region Ia is simplified by taking advantage of the quantities
that are nearly constant for p type and n type. For p type, it is
the most convenient to use Eq. (9) since N0

A and N−
A are nearly

constant, and we obtain

p ≈ pth = N0
A

N−
A

QA

CpA

= (NA − ND − NS)

ND + NS

Nv

g
exp

(
−EA

kT

)
,

(23)

where we call pth the thermally generated holes. For n type,
since N0

S is nearly constant, it is better to use Eq. (10), and we
have

p ≈ popt = G

CpSN
0
S

= G

CpS(ND + NS − NA)
, (24)

where we call popt the optically generated holes. At very
low excitation intensity for p type, since p ≈ pth, the hole
concentration is independent of G, as can be seen in Fig. 7(a) as
the dark blue long-dashed curve or the horizontal black-dotted
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FIG. 9. (Color online) Neutral acceptor concentration N0
A and

neutral deep donor concentration N0
S as a function of total acceptor

concentration NA. The parameters are the same as for Fig. 3.

curve. For n type, since p ≈ popt, the hole concentration is
primarily optically generated and increases linearly with G, as
can be seen by the dark-blue long-dashed curve in Fig. 7(b).
To illustrate why these results are different for p type and n

type, we have plotted in Fig. 9 the concentrations N0
A and N0

S

as a function of NA. The middle of the graph, where NA =
ND + NS , is for a completely compensated semiconductor,
while to the left is n type and to the right is p type. We see
from this figure that N0

A and N0
S trade places in p type versus

n type, which, as we explain in the Appendix, is required by
charge neutrality.

The concentration of free electrons in region Ia can now be
obtained from Eq. (10) with N+

S = NS for p type as

n ≈ G

CnSNS

(25)

and with N+
S = NA − ND for n type as

n ≈ G

CnSN
+
S

≈ G

CpS(NA − ND)
. (26)

In both cases, n increases linearly with G, as can be seen as
the blue dotted curves in Figs. 7(a) and 7(b). From Eq. (8), we
find the concentration of neutral shallow donors in terms of
the free electron concentration as

N0
D ≈ n

CnDND

QD

= n
gND

Nc

exp

(
ED

kT

)
. (27)

The quantum efficiency for very low excitation intensity
can be found from Eq. (16) and for p type, with N0

A from
Eq. (18), as

ηIa ≈ ζ

(
NA − ND − NS

NS

)
, (28)

which is a constant in region Ia, as can be seen in Fig. 8(a). In
n type, with N0

A from Eq. (21), the quantum efficiency can be
written as

ηIa ≈ ζ (−�)

(NA − ND)
= ζNAN2

(NA − ND)(ND + NS − NA)
, (29)

where N2 is defined in Eq. (12), and this increases linearly
with G in region Ia, as can be seen in Fig. 8(b). The fact that,
in p type, ηIa is independent of G implies that the PL intensity
increases linearly with the excitation intensity. However, for
n type, ηIa is proportional to G through N2, and so the PL
intensity for that case increases as G2.

B. High excitation intensity

In the high excitation intensity region, region II (G > G∗),
analytical expressions all remain the same for the high-
resistivity n type and the p type materials because the
concentration of optically generated holes exceeds the concen-
tration of thermally generated holes. Due to the high capture
rate CnS of electrons, the S centers become saturated with
electrons (N0

S ≈ NS) and are unable to act as efficient sinks for
photogenerated conduction electrons.1 Instead, recombination
occurs primarily through the radiative channel. Because of
this, the rate of capture of holes by the A center becomes
much higher than the rate of thermal emission of bound holes
to the valence band, and so the term QAN0

A can be neglected.
As a consequence, the internal quantum efficiency of PL is
much higher in this region than that in region I.

This means that the expression for the PL intensity related
to the A center can be found in terms of the free hole
concentration by combining Eqs. (3) and (A5) as

IPL ≈ CpAN−
A p, (30)

where we have neglected the term QAN0
A. Alternatively, the

expression for the quantum efficiency can be written in terms
of the free electron concentration, since the expression for N0

D

given by Eq. (15) is still valid in this region. Using Eq. (3) and
substituting for n in terms of N0

D from Eq. (15), we have

IPL = (
CDAN0

D + CnAn
)
N0

A

≈
(

CDACnDND

QD

+ CnA

)
nN0

A ≈ ζCnSnN0
A, (31)

where ζ is given by Eq. (13).
Region IIa is defined for generation rates G that are above

the crossover G∗ but below a temperature-independent upper
limit G2, which will be determined later. In this region, the
concentrations of free electrons n and holes p are still small,
as can be seen in Fig. 7, and can be ignored in the charge
neutrality equation, as was done for region I. Approximate
analytical expressions for the quantum efficiency η and
the concentrations of free and bound electrons and holes can
be found for this case because here N0

D � ND , as was true in
region I, and here, in addition N+

S � NS . Consequently, the
charge conservation equation reduces to

N−
A ≈ ND. (32)

The concentrations of free holes and electrons in this region
are proportional to G, as can be seen in Fig. 7. In particular,
p can be found from the rates of hole capture by both the
acceptor and the deep donor through the equation

G = CpAN−
A p + CpSN

0
Sp. (33)
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Then substituting for N−
A from Eq. (32), the concentration of

free holes can be written from Eq. (33) as

p ≈ p0 = G

CpSNS + CpAND

, (34)

where p0 means optically generated, and n can be found from
Eqs. (30), (31), and (32) as

n ≈ CpAN−
A p0

ζCnSN
0
A

= CpAND

ζCnS(NA − ND)
p0. (35)

As can be seen in Fig. 7, in this region n � p for
high-resistivity GaN:Zn because ζ � 1, while CnS and ND

are not much different from CpA and NA − ND , respectively.
The quantum efficiency ηIIa in this region is independent of G

because N0
S ≈ NS and assumes the form

ηIIa ≈ η0 = CpAND

CpSNS + CpAND

, (36)

and this constant quantum efficiency in region IIa is clearly
seen in Fig. 8.

At a very high excitation intensity, region IIb (G > G2),
the acceptors become saturated with photogenerated holes.
Therefore, in this region N−

A � NA and N+
S � NS , as is clear

from Fig. 7. The electron concentration increases greatly so
that in this region the charge conservation equation becomes

n ≈ N+
D . (37)

Then in Eq. (A3) of the Appendix, we set N0
A = NA, N+

D = n

and N0
D = ND − n, which produces a quadratic equation in n.

Also, since CDANA � QD for T > 100 K, we neglect terms
containing CDA, and, solving the resulting quadratic equation,
we obtain

n =
√

Q2
D + 4QDCnDND − QD

2CnD

. (38)

Then from Eqs. (3) and (37), we obtain an expression for the
PL quantum efficiency in region IIb as

ηIIb = [CDA(ND − n) + CnAn]NA

G
, (39)

where n is given by Eq. (38). We can see from Eq. (39) that
η ∝ G−1, as can be seen in Fig. 8, and the PL intensity
therefore becomes independent of the excitation intensity.

By equating the quantum efficiencies in regions IIa and IIb
given by Eqs. (36) and (39), respectively, we can now obtain
an expression for the characteristic generation rate G2 that
separates regions IIa and IIb and is given by

G2 = [CDA(ND − n) + CnAn] NA

η0
, (40)

where η0 is given by Eq. (36). A condition that is commonly
satisfied for GaN:Zn samples is CnDND/QD � 1 for T >

100 K. When that is true, by looking at Eq. (38), it can be seen
that n � ND . In this case, Eq. (40) can be simplified to

G2 ≈ NDNA

η0

[
CDA − (CDA − CnA)

√
QD

CnDND

]

≈ CDANDNA

η0
. (41)

FIG. 10. (Color online) Dependence of the PL quantum efficiency
on excitation power density for temperature T = 135 K. The points
are experimental data for sample ap269. The curves are the numerical
solution of Eqs. (A1)–(A6) of the Appendix, calculated with the
following parameters: NS = 1.5 × 1017 cm−3, NA = 3 × 1017 cm−3,
ND = 1.3 × 1017 cm−3, CnD = 10−8 cm3 s−1, CpA = 10−6 cm3 s−1,
CpS = 3 × 10−6 cm3 s−1, CnA = 4 × 10−13 cm3 s−1, ED = 30 meV,
EA = 340 meV, G = 1.6 × 1023 × Pexc[W/cm2] cm−3 s−1. The
dotted curve is calculated using the step-function absorption
model and the long-dashed curve using the exponential absorp-
tion model with α = 105 cm−1, both using CnS = 1 × 10−7 and
CDA = 8 × 10−12 cm3 s−1. The solid curve is calculated using
the exponential absorption model with CnS = 3 × 10−8 and CDA =
2.4 × 10−12 cm3 s−1.

For the parameters given in the caption to Fig. 3 with T =
180 K, we find that G2 = 1.2 × 1025 cm−3 s−1 when it is
calculated with Eq. (40) and G2 = 2.1 × 1025 cm−3 s−1 when
it is calculated with Eq. (41). The highest intensity shown in
Fig. 4 is for Pexc = 30 W/cm2, corresponding to G = 4.8 ×
1024 cm−3 s−1, which is still in region IIa. However, for sample
ap269, G2 = 8.3 × 1023 and 1.4 × 1024 cm−3 s−1 when it is
calculated with Eqs. (40) and (41), respectively. From this,
we expect that the quantum efficiency will decrease for Pexc

above about 5 W/cm2. This is illustrated in Fig. 10, where
the experimental quantum efficiency, shown by the points,
rises abruptly at Pexc = 10−6 W/cm2, becomes constant for
the range 10−5 W/cm2 < Pexc < 0.1 W/cm2, and decreases
for Pexc > 1 W/cm2.

C. Near the crossover G∗(T )

The electron-hole-pair generation rate G∗ at which the
system abruptly crosses over from region I to region II is
given by Eq. (5), and at that point the PL efficiency η jumps
by orders of magnitude. In p type, the ratio of the efficiency in
region IIa divided by that in region Ia can be used as a measure
of the size of the jump, since both of these are approximately
constant. This ratio R∗, found by dividing Eq. (36) by Eq. (28),
is given by

R∗ ≈ η0NS

ζ (NA − ND − NS)
, (42)
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where ζ is given by Eq. (13). This is the same ratio obtained
on either side of the crossover as a function of temperature
as given by Eq. (27) of Ref. 1. On the high-intensity side of
the crossover, as G approaches G∗, the PL quantum efficiency
decreases with decreasing G, as given in Eqs. (20) and (B28)
of Ref. 1, and varies as

η = η0

[
1 − B

G
exp

(
−EA

kT

)]
. (43)

Very close to the crossover, the quantum efficiency has the
form given by Eq. (B31) of Ref. 1, which is

ηcross ≈ ζ

(
NA − ND

N+
S

)
, (44)

and the slope on the log-log plot increases dramatically
compared with the slopes on either side of the crossover. The
slope right at the crossover is equivalent to finding the power
m in the expression η ∝ Gm and can be found by taking the
logarithmic derivative of ηcross, given by

m = d ln ηcross

d ln G

∣∣∣∣
G=G∗

= − G

N+
S

dN+
S

dG

∣∣∣∣
G=G∗

. (45)

The concentration of positively charged deep donors very close
to the crossover is given by Eq. (B30) of Ref. 1 and can be
written as

N+
S ≈ − b

2a
+

√
− c

a
, (46)

where a, b, and c are the coefficients of a cubic polynomial in
Eq. (B12) of Ref. 1, which gives results that are indistinguish-
able from the numerical solution. The coefficients are defined
in Eqs. (B13)–(B15) of that paper. The slope is so steep because
the coefficient b decreases by several orders of magnitude right
at the crossover compared with its values immediately to either
side. The changes of the other coefficients are practically zero
by comparison, and so, to a very good approximation, we
can take only the derivative of the b dependence. Also, b is
a function of G only through its dependence on N2 given in
Eq. (12). Then the slope can be written as

m = CpAG

2aN+
S CpSQA

db

dN2

∣∣∣∣
G=G∗

. (47)

At the crossover, db/dN2 ≈ ND , and N+
S is dominated by the

second term in Eq. (46), and

aN+
S

∣∣
G=G∗ ≈ NS(NA − ND)

√
ζλ, (48)

where ζ is given by Eq. (13) and

λ =
(

NS

ND

CpS

CpA

+ 1

) (
NA

ND

+ NA − ND

NS

)
. (49)

The slope is then given by

m = CpANDG∗

2QACpSNS(NA − ND)
√

ζλ
. (50)

For the parameters given in the caption to Fig. 3 and for
T = 180 K, we find that G∗ = 2.7 × 1021 cm−3 s−1, λ = 7.3,
ζ = 6.3 × 10−5, and the power of G in the quantum efficiency
dependence is m = 23.4, a huge increase above the usual
linear (m = 1) behavior.

V. DEPTH DEPENDENCE OF THE INCIDENT LIGHT

In the preceding discussion, the electron-hole excitation
rate G has been pictured as constant within an active layer of
thickness ∼0.1 μm, which we call the step-function absorption
model. In reality, the incident light is exponentially attenuated
with a penetration depth of this order. This variation in the
pair-generation rate G with depth causes some smearing of the
sharp features in the solution to the rate-equation model, and so
these features would be less pronounced in the experimentally
observed variation in the PL intensity with the excitation
power. To get an idea of how important this attenuation is for
the experimental data presented here, we construct a simple
model, which we call the exponential absorption model, in
which the generation rate G varies with depth x below the
surface as exp(−αx), where α is the absorption coefficient for
GaN at 325 nm, the wavelength of the incident light. In this
model, the quantum efficiency is averaged over the thickness
of the sample weighted by the depth-dependent generation rate
G(x) as

〈η〉 =
∫ ∞

0 η(G(x))G(x)dx∫ ∞
0 G(x)dx

, (51)

where

G(x) = G(0)e−αx, (52)

and α ≈ 105 cm−1. The upper limit on the integral is taken
to be infinite because for GaN samples with thickness greater
than 3 μm, the light intensity decays by more than 10 orders
of magnitude before it reaches the back surface. For G(x)
constant over a depth α−1, this expression reduces to the step-
function absorption model. The quantity that is plotted on the
upper horizontal axis in Fig. 11 is the average of G(x) within
a layer of thickness α−1,

〈G(x)〉 = α

∫ ∞

0
G(x)dx = G(0), (53)

which is the value of the generation rate at the surface.
In order to see how this averaging of the quantum efficiency

affects the sharp increase in quantum efficiency as a function
of 〈G(x)〉, we first consider the extreme case of a step function
η(G) that is zero below the generation rate G = G∗ at which
the abrupt increase occurs, and a constant value η0 above,

η(G) = η0�(G − G∗), (54)

where �(G − G∗) = 1 for G > G∗ and zero otherwise. To
perform the integration in Eq. (51), it is necessary to find the
depth x∗ at which G = G∗ using Eq. (52), yielding

x∗ = 1

α
ln

(
G(0)

G∗

)
(55)

for G(0) > G∗ and zero otherwise, because for G(0) < G∗ the
integral in the numerator of Eq. (51) would be zero. Therefore,
the average quantum efficiency becomes

〈η〉 =
(

1 − G∗

G(0)

)
η0 �(G(0) − G∗). (56)

In the inset to Fig. 11, the black dashed curve is the original
step function for η(x), which is what one would get with
the step-function absorption model (with the initial flat region
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FIG. 11. (Color online) Dependence of the PL quantum efficiency
on excitation power density for temperatures T = 140, 160, and
180 K. Points are experimental data from sample s452. Dashed
curves are the numerical solution of Eqs. (A1)–(A6) of the Appendix,
with the assumption the excitation intensity does not change in the
effective depth equal to the attenuation depth α−1. Solid curves are
calculated with the same parameters using the exponential attenuation
model with α = 105 cm−1. The parameters are the same as for Fig. 3.
The inset shows a hypothetical step function to mimic the quantum
efficiency in the step-function absorption model (dashed curve 1) and
its transformation using the exponential model (curve 2).

adjusted to be 10−4 instead of zero for purposes of illustration),
and the red solid curve is 〈η〉 averaged over the depth in the
exponential absorption model. It is clear that this averaging
process rounds the shoulder of the curve because the crossover
value of G(x) = G∗ at depth x requires that the G at the surface
be higher. The same procedure has been used to calculate the
effect of the depth dependence on the rate equation model
discussed in Sec. IV, as shown in Fig. 11. The dashed curves are
calculated with the step-function absorption model, using the
numerical solution to Eqs. (A1)–(A6) of the Appendix with the
parameters of Fig. 3, and the solid curves are calculated with
the exponential absorption model using the same numerical
solution. Clearly, the inclusion of the depth dependence of the
generation rate improves the fit to the data.

We found parameters in Ref. 1 that fit the temperature
dependencies of the quantum efficiency of the BL band for
the GaN:Zn sample ap269 using the step-function absorption
model, and we have used those same parameters to compare
with the experimental data as a function of G. From the fit of
these dependencies in the range of Pexc from 2 × 10−7 W/cm2

to 0.3 W/cm2 with Eqs. (7)–(12) of Ref. 1, we obtained the
set of parameters for the model discussed in Sec. IV that
includes three types of defects. In Fig. 10, we used these
parameters to model the dependence of the BL band quantum
efficiency on excitation power density for this sample using
the step-function absorption model, and this result is shown as
the dotted curve. When we used the same parameters with the
exponential absorption model, we obtained the long-dashed
curve, which is shifted to higher G compared with the
experimental data, where the left-hand part of this curve is the

same as the solid curve. The solid curve is obtained by keeping
the ratio CDA/CnS fixed and decreasing both constants by a
factor of 3 in order to fit the data. Keeping the ratio fixed
is required to keep the left-hand part of the curve the same.
Such a change in CnS and CDA does not affect the calculated
temperature dependencies reported in Ref. 1 because the data
in that paper did not extend into region IIb.

VI. DISCUSSION

We now discuss the constraints on the model parameters
that are imposed by analyzing both the temperature and
excitation intensity dependencies. Dependencies of the PL
quantum efficiency on excitation intensity were fit with
numerical solutions of Eqs. (A1)–(A6) of the Appendix, and,
as can be seen in Fig. 3, the fit reproduces the main features
of the experimental data. For instance, at 10 K, the quantum
efficiency is independent of excitation intensity over a wide
range and starts decreasing above 10 W/cm2. For temperatures
between 140 K and 200 K, the quantum efficiency rises
abruptly in a narrow range of Pexc and then becomes constant.
The characteristic excitation intensity corresponding to the
abrupt rise in PL quantum efficiency shifts to higher values of
Pexc with increasing temperature, in agreement with Eq. (4).
In the range of PL intensities that could be reliably measured
and where the BL band could be distinguished from the
background signal produced by other transitions, there are
no significant differences between the n-type and p-type cases
shown in Fig. 3 with dashed and solid lines, respectively.

A. Parameters of the model

Although there seem to be a large number of parameters
in the model, some of these are known from independent
experiments, and the others are constrained to be within a fairly
narrow range of reasonable values. All the parameters used in
the fits of the rate-equation model to the experimental data
have been chosen to be consistent with all other measurements
on similar samples. We begin with the ionization energies
and capture coefficients for the acceptor and shallow donor,
which are well characterized, and some are known from
independent studies. For example, from fitting the temperature
dependence of the BL band intensity in conductive n-type
GaN,22 the hole-capture coefficient for the ZnGa acceptor was
estimated as CpA = 7 × 10−7 cm3/s. From time-resolved PL
experiments on conductive n-type GaN,23 the electron capture
coefficient for the ZnGa acceptor was estimated as CnA =
4 × 10−13 cm3/s. PL spectroscopy5 is used to determine the
ionization energies of the shallow donor and the ZnGa acceptor.
Moreover, the exact value of the parameter ED is not important
for the fit when ED < 50 meV, while the parameter EA can
be found quite accurately from the fit of the temperature
dependencies of the PL intensity because the shift of the
abrupt thermal quenching with increasing excitation intensity
is very sensitive to this parameter.1,21 The fits are not sensitive
to the value of the parameter CnD when T > 100 K, yet
from an insignificant rise of the BL intensity with decreasing
temperature from 100 to 10 K, we conclude that CnD < CnS .

Regarding the concentrations of defect species, it is known
from SIMS measurements and from other experiments that the
concentration of uncontrolled shallow donors is commonly of
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the order of 1017 cm−3 in undoped GaN.5 For p-type GaN, we
expect that the concentration of shallow donors may be even
higher because of self-compensation. The value of NA − ND

can be determined from Eq. (5), in which the parameter B can
be estimated from the experimentally determined values of the
characteristic temperature T ∗ of the abrupt PL quenching at
different excitation intensities. The absolute internal quantum
efficiency η can be found by comparison of the PL intensity
with that from calibrated samples.1 By using this approach,
we find that NA ≈ 3 × 1017 cm−3 and 2 × 1018 cm−3 for
samples ap269 and s452, respectively. As can be seen in
Table I, these values are about an order of magnitude lower than
the concentrations of Zn atoms in these samples as estimated
from SIMS measurements. However, it is possible that not all
Zn atoms substitute for Ga atoms in Zn-doped GaN to form
radiative centers, which would lead to an overestimate of the
acceptor concentration NA.

With ND and NA known, the parameter CDA can be
estimated from Eq. (41), where the value of G2 can be found
from the experimental dependence of the PL efficiency on
excitation intensity, and this implicitly uses the step-function
absorption model. When the exponential absorption model is
used instead, the downturn in the η(G) curve in region IIb
shifts to higher excitation intensities, as can be seen in Fig. 10,
as shown by the long-dashed curve. In order to fit the data with
this exponential absorption model, as shown by the solid curve,
the value of CDA must be reduced slightly. Alternatively, CDA

can be roughly estimated from theory in the effective-mass
approximation, according to which CDA/CnA ≈ (aD/aA)3,
where aD and aA are the Bohr radii for the bound electron and
hole, respectively.24 Therefore, we expect that CDA � CnA in
the case of the shallow donor and the ZnGa acceptor in GaN.

This leaves the remaining unknown parameters in the model
as the concentration NS and the carrier capture coefficients
CnS and CpS of the dominant nonradiative center. We expect
that NS is of the same order of magnitude as NA and
ND in Zn-doped GaN samples. Since some of the GaN:Zn
samples that have been studied demonstrated behavior typical
of p type,1 for these samples NS < NA − ND . On the other
hand, the product of CpS and NS can be estimated from the
experimentally measured PL efficiency η0 in region IIa by
using Eq. (36), which can be rewritten as

CpSNS = CpAND

1 − η0

η0
. (57)

Assuming that ND ≈ 1017 cm−3 and NS ≈ 1017–1018 cm−3,
and taking η0 = 0.2 and CpA = 7 × 10−7 cm3 s−1, we obtain
that CpS ≈ 3 × 10−7 to 3 × 10−6 cm3 s−1. The coefficient CnS

(or at least the product CnSNS if NS is unknown) can be found
from the ratio CDA/CnS , which, in turn, can be estimated
from the value of the ratio R∗ characterizing the drop in PL
quantum efficiency defined in Eq. (42). In Ref. 1, we concluded
that it is a very small value of ζ , which is given in Eq. (13),
rather than a precise compensation (NS + ND ≈ NA), that is
responsible for the large drop (large R∗) because similar values
of the drop were observed in several GaN:Zn samples grown
in different conditions. After ζ is found from Eq. (42) using
the experimentally determined R∗, the ratio CDA/CnS can be
estimated from Eq. (13), where the term containing CnA can

be ignored for a GaN:Zn for T < 200 K. Typical values of CnS

obtained in our fits are of the order of CnS = 10−7 cm3 s−1,
which is slightly smaller that the value of CpS . A high value
of CpS agrees with the fact that nonradiative recombination is
usually the dominant path of carrier recombination in GaN:Zn,
even at the lowest temperatures, while a relatively high value
of CnS is consistent with an assumption that the S center is a
donor, and it explains why the drop of PL R∗ is very large in
these samples.

We proposed earlier that the dominant nonradiative center
in Zn-doped GaN may be a complex defect, most probably the
nitrogen vacancy-zinc complex (VNZnGa). This is a donor with
very deep levels and is expected to have a low formation energy
in Zn-doped GaN.25 However, the authors calculated the hole-
capture coefficient CpS to be only 5.6 × 10−10 cm3 s−1, a value
too small to explain the high efficiency of the nonradiative
recombination in this material.

To summarize, most of the parameters can be found inde-
pendently, and a set of reasonable parameters used in this work
and in Refs. 1 and 21 within a simple phenomenological model
explains quantitatively both the temperature dependencies
and the excitation intensity dependencies of the PL quantum
efficiency over a wide range of both temperature and excitation
intensity.

B. Comparison with other experimental data

In early work from 1939 to 1949 on PL from ZnS-CdS phos-
phors doped with Ag, a superlinear increase of defect-related
PL intensity with excitation intensity was observed.8,10,11

When a segment of the IPL dependence with the highest
slope was fit with a power-law dependence, IPL ∝ (Pexc)m,
powers up to m = 3.4 were reported.11 This is similar to some
of our experimental data, where the largest power achieved
was m = 4, as shown in Fig. 2. Interestingly, in 1956, not
only was an increase in PL efficiency observed for Cu-doped
ZnS at low excitation intensities, but also its decrease at high
excitation intensities,26 very similar to our results shown in
Fig. 10. The first phenomenological models were able to
explain powers up to m = 2.15 To explain larger powers,
empirical models were proposed.13 Later, Klasens17 suggested
a model, obtained by random fits of parameters, that included
two types of defects, a two-center model, and could explain
the superlinear rise of PL with large m observed in Ref. 11
and an unusual dependence of the PL efficiency, involving
an abrupt rise at low excitation intensity and a decrease at
high excitation intensity, that had been observed in Ref. 26.
These are the same effects we observe and explain with our
model, in which the condition of population inversion can be
achieved by decreasing the temperature at fixed light excitation
intensity Pexc or by increasing light excitation intensity at
fixed temperature. His model included the A center, which
he had as a donor with a level close to the valence band,
and a nonradiative center S, which he had as an acceptor
with a level close to the conduction band, which is clearly
unphysical. He did not include the shallow donor. Since this
work was done in 1958, he did not have the advantage of
a wealth of information about reasonable parameters that is
available today, and so it was not apparent at the time that his
parameters were unreasonable. In fact, our calculations show
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that the two-center model, when using physically reasonable
parameters, fails to explain the abrupt, stepwise change in PL
efficiency if the A is an acceptor and the S center is a donor.
The inclusion of the shallow donors in the model is necessary
because it allows electrons to accumulate in the conduction
band and saturate the S center with electrons.

VII. CONCLUSIONS

We have observed a superlinear increase in the BL band
intensity in Zn-doped GaN with increasing light excitation
intensity. The characteristic electron-hole-pair generation rate
G∗ corresponding to the abrupt rise of the PL efficiency shifts
to higher excitation intensities with increasing temperature.
This phenomenon is interrelated with another unusual effect:
the abrupt and tunable thermal quenching of PL observed in
the same samples.1 We showed with the help of a rate-equation
model that in both cases, a system involving three defect
species can switch from a nearly equilibrium population of
levels in the band gap at low excitation intensity (or high
temperature) to a population inversion at high excitation
intensity (or low temperature). This crossover is abrupt, and it
can be caused by changing the temperature at fixed excitation
intensity or by changing the excitation intensity at fixed tem-
perature. A useful consequence of the rate-equation model is
that it has enabled us to estimate the carrier-capture parameters
of the dominant nonradiative center in Zn-doped GaN.
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APPENDIX: DERIVATION OF APPROXIMATE
ANALYTICAL SOLUTIONS TO THE MODEL FOR LOW

EXCITATION INTENSITY

At low excitation intensity, the equations can be solved
approximately analytically up to first order in the electron-
hole-pair generation rate G for both p-type and n-type
semiconductors. The equations to be solved are Eqs. (7)–(12)
of Ref. 1, and we repeat them here for convenience:

∂n

∂t
= G − CnSN

+
S n − CnDN+

Dn − CnAN0
An + QDN0

D = 0,

(A1)

∂p

∂t
= G − CpSN

0
Sp − CpAN−

A p + QAN0
A = 0, (A2)

∂N0
D

∂t
= CnDN+

Dn − QDN0
D − CDAN0

DN0
A = 0, (A3)

∂N0
S

∂t
= CnSN

+
S n − CpSN

0
Sp = 0, (A4)

∂N0
A

∂t
= CDAN0

DN0
A + CnAN0

An − CpAN−
A p + QAN0

A = 0,

(A5)

p + N+
S + N+

D = n + N−
A . (A6)

Here, in agreement with Fig. 5, Eqs. (A1) and (A2) describe
the balance of electrons and holes in the conduction and
valence bands, respectively; Eqs. (A3), (A4), and (A5) describe
the flow of electrons and holes through shallow donors D,
acceptors A, and nonradiative centers S, respectively. Finally,
Eq. (A6) describes the conservation of charge in a semiconduc-
tor under the conditions of PL. Only five of these six equations
are linearly independent.

We solve these equations by a form of perturbation
theory known as successive approximations as powers of the
electron-hole-pair generation rate G. We write each carrier
concentration as the sum of a zeroth- and first-order part, where
we write G explicitly in the first-order term. For instance, the
free-electron concentration will be written as

n = n(0) + Gn̄(1), (A7)

where n(0) is the zeroth-order part and n̄(1) is the coefficient of
G in the second-order part. All the concentrations are written
with this same form. For a high-resistivity semiconductor,
the zeroth-order free electron concentration is zero, as is the
neutral shallow donor concentration. Therefore, setting n(0) =
N

0(0)
D = 0 and N

+(0)
D = ND , in zeroth order, Eq. (A1) has no

zeroth-order terms. In zeroth order, writing N−
A = NA − N0

A,
Eq. (A2) becomes(

CpSN
0(0)
S + CpANA − CpAN

0(0)
A

)
p(0) = QAN

0(0)
A . (A8)

The zeroth-order version of Eq. (A3), with n(0) = N
0(0)
D = 0,

yields no zeroth-order terms. If we make the same substitution
into Eq. (A4), we get the particularly simple expression,

−CpSN
0(0)
S p(0) = 0. (A9)

For Eq. (A5), substituting N−
A = NA − N0

A and n(0) =
N

0(0)
D = 0, the zeroth-order equation becomes

CpA

(
NA − N

0(0)
A

)
p(0) = QAN

0(0)
A . (A10)

In the charge conservation equation, when we set N−
A = NA −

N0
A, N+

D = ND − N0
D , N+

S = NS − N0
S , and n(0) = N

0(0)
D = 0,

Eq. (A6) becomes

−N
0(0)
S + N

0(0)
A + p(0) = NA − ND − NS. (A11)

We therefore have only four of six remaining equations,
and only three are linearly independent. We first notice that
Eq. (A9) requires that either N

0(0)
S = 0 or p(0) = 0. From

Eq. (A11), we see that N
0(0)
S = 0 is possible only if NA −

ND − NS > 0, which corresponds to a p-type semiconductor.
From the same equation, we see that if p(0) = 0, then from
Eq. (A8), we obtain N

0(0)
A = 0, and this is possible in Eq. (A11)

only if NA − ND − NS < 0, which corresponds to an n-type
semiconductor. Therefore, we must consider separately the
cases of p type and n type.

We start with p type, where N
0(0)
S = 0, and we use Eq. (A11)

to solve for N
0(0)
A in terms of p(0) and substitute the result into

Eq. (A10) to obtain a quadratic equation in p(0), given by

CpA(ND + NS + p(0))p(0) = QA(NA − ND − NS − p(0)).

(A12)
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The solution to this quadratic that gives a positive concentra-
tion is

p(0) = −1

2

(
ND + NS + QA

CpA

)

+1

2

√(
ND + NS + QA

CpA

)2

+ 4
QA

CpA

(NA − ND − NS).

(A13)

If 4 QA

CpA
(NA − ND − NS) � (ND + NS + QA

CpA
)2, which is gen-

erally true for our high-resistivity Zn-doped GaN for T > 100
K, then we can expand the square root and obtain the simple
result

p(0) ≈ QA

CpA

(NA − ND − NS)

(ND + NS)
. (A14)

This is the same as the result given in Eq. (23) for a
p-type semiconductor. Then N

0(0)
A = NA − ND − NS − p(0).

For n type, setting p(0) = N
0(0)
A = 0, we can solve Eq. (A11)

to obtain the zeroth-order solution,

N
0(0)
S = ND + NS − NA. (A15)

These zeroth-order solutions can now be substituted into
the first-order equations derived from Eqs. (A1)–(A6). We
begin with the form of the equations that is valid for both
p type and n type, where n(0) = N

0(0)
D = 0. Recalling that a

first-order concentration with a bar over it means that it has
been divided by G, the first-order version of Eq. (A1), which
has been divided through by G, is(

CnSNS + CnDND − CnSN
0(0)
S + CnAN

0(0)
A

)
n̄(1)

= 1 + QDN̄
0(1)
D . (A16)

To obtain the first-order version of Eq. (A2), we substitute
N−

A = NA − N0
A and divide through by G to obtain[

CpSN
0(0)
S + CpA

(
NA − N

0(0)
A

)]
p̄(1)

= 1 − CpSp
(0)N̄

0(1)
S + (CpAp(0) + QA)N̄0(1)

A .

(A17)

For Eq. (A3), we substitute N+
D = ND and get in first order

CnDNDn̄(1) = (
CDAN

0(0)
A + QD

)
N̄

0(1)
D . (A18)

Substituting N+
S = NS − N0

S into Eq. (A4) we find the first-
order equation

CnS

(
NS − N

0(0)
S

)
n̄(1) = CpSN

0(0)
S p̄(1) + CpSp

(0)N̄
0(1)
S . (A19)

Obtaining the first-order version of Eq. (A5) requires setting
N−

A = NA − N0
A, and we have to first order

CDAN
0(0)
A N̄

0(1)
D + CnAN

0(0)
A n̄(1)

= CpA

(
NA − N

0(0)
A

)
p̄(1) − (CpAp(0) + QA)N̄0(1)

A .

(A20)

Finally, in the charge conservation equation (A6), we substitute
N−

A = NA − N0
A, N+

D = ND − N0
D , N+

S = NS − N0
S , and we

have in first order

p̄(1) − N̄
0(1)
S − N̄

0(1)
D = n̄(1) − N̄

0(1)
A . (A21)

In order to proceed, we need to consider p type and n type
separately. For p type, we have in zeroth order n(0) = N

0(0)
D =

N
0(0)
S = 0, N

0(0)
A = NA − ND − NS − p(0), with p(0) given by

Eq. (A13) or approximately by Eq. (A14). From this point
forward, we use the approximate version. We begin with
Eq. (A19) to get N̄

0(1)
S in terms of n̄(1) as

N̄
0(1)
S = CnSNS

CpSp(0)
n̄(1). (A22)

We next solve Eq. (A18) for N̄
0(1)
D in terms of n̄(1) as

N̄
0(1)
D = CnDNDn̄(1)

CDA(NA − ND − NS − p(0)) + QD

. (A23)

We now substitute the expression N̄
0(1)
D from Eq. (A23) into

Eq. (A16) and solve for n̄(1), with the result

n̄(1) =
{

(CnSNS + CnDND) + CnA(NA − ND − NS − p(0))

−QD

CnDND

[CDA(NA − ND − NS − p(0)) + QD]

}−1

.

(A24)

For the GaN high-resistivity Zn-doped case discussed here,
CnA(NA − ND − NS − p(0)) can be neglected compared with
(CnSNS + CnDND), and CDA(NA − ND − NS − p(0)) can be
neglected compared with QD . Therefore, n̄(1) reduces to

n̄(1) = 1

CnSNS

, (A25)

N̄
0(1)
D reduces to

N̄
0(1)
D = CnDND

CnSNSQD

, (A26)

and N̄
0(1)
S reduces to

N̄
0(1)
S = 1

CpSp(0)
. (A27)

Having n̄(1), we can solve for N̄
0(1)
A in terms of n̄(1), p̄(1), N̄0(1)

D ,
and N̄

0(1)
S from Eq. (A21) and substitute into Eq. (A17). We

then substitute for N̄
0(1)
S and N̄

0(1)
D from Eqs. (A26) and (A27),

respectively, and we obtain an equation in terms of n̄(1) and
p̄(1). We then substitute for n̄(1) from Eq. (A25). In addition,
we neglect CnDND/QD compared with unity. Finally, we
substitute the approximate solution for p(0) from Eq. (A14).
The resulting solution for p̄(1) is

p̄(1) = NA

CpS(ND + NS)(NA − ND − NS)

×
[
1 + QA

CnSNS

CpS

CpA

(NA−ND−NS )
(ND+NS )

]
[
1 + QA

CpA(ND+NS )2 (2NA − ND − NS)
] . (A28)

For the parameters used in this paper, the terms involving QA

are small compared with unity and may therefore be neglected.
Therefore, we have the simple expression

p̄(1) ≈ NA

CpS(ND + NS)(NA − ND − NS)
. (A29)
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The free hole concentration for p type, up to and including
first order, is then

p = QA

CpA

(NA − ND − NS)

(ND + NS)
+ Gp̄(1), (A30)

where p̄(1) is given by Eq. (A29). To find N0
A, we use Eq. (A21)

together with the expressions for n̄(1), N̄
0(1)
D , N̄

0(1)
S , and p̄(1)

from Eqs. (A25), (A26), (A27), and (A29), respectively, and
neglect CnDND/QD compared with unity. Therefore, up to
and including first order N0

A is given by

N0
A = NA − ND − NS − p(0)

−G
(
p̄(1) + N̄

0(1)
S + n̄(1) + N̄

0(1)
D

)
= NA − ND − NS − QA

CpA

(NA − ND − NS)

(ND + NS)

+ CpA

CpS

G

QA

(ND + NS)

(NA − ND − NS)

×
[

1 + QANA

CpA(ND + NS)2

+ CpS

CpA

QA

CnSNS

(NA − ND − NS)

(ND + NS)

]
. (A31)

Using N0
A from Eq. (A31) and neglecting the terms in square

brackets containing QA, since they are small compared with
one, and using N0

D = GN̄
0(1)
D from Eq. (A26) and n = Gn̄(1)

from Eq. (A25), the quantum efficiency is given for p type
from Eqs. (3) and (16) by

η = 1

G

(
CDAN0

D + CnAn
)
N0

A

= ζ
(NA − ND − NS)

NS

[
1 − QA

CpA(ND + NS)

]
, (A32)

where ζ is given in Eq. (13). We have omitted the term in
N0

A that is proportional to G, because such a term is actually
second order in G in the PL intensity. In order to include this
term, we would need to calculate n and N0

D up to second order
in G also. The quantum efficiency given by Eq. (A32) is the

same expression for the p-type quantum efficiency in region
Ia, as given in Eq. (28), if we neglect the term containing
QA.

The solution of the equations to first order is much simpler
for the n-type case. In that case, we substitute p(0) = N

0(0)
A = 0

and N
0(0)
S = ND + NS − NA into Eqs. (A16)–(A21). We first

use Eq. (A18) to solve for N̄
0(1)
D in terms of n(1) as

N̄
0(1)
D = CnDND

QD

n̄(1). (A33)

From Eq. (A20), we solve for N̄
0(1)
A in terms of p̄(1) as

N̄
0(1)
A = CpANA

QA

p̄(1). (A34)

We can substitute this into Eq. (A17) to get p̄(1), and from this
get p to first order, which is

p = Gp̄(1) = G

CpS(ND + NS − NA)
. (A35)

Then we can get N̄
0(1)
A and N0

A to first order,

N0
A = GN̄

0(1)
A = CpA

CpS

GNA

QA(ND + NS − NA)
. (A36)

From Eq. (A19), we can get n̄(1) in terms of p̄(1) and then
substitute from Eq. (A35) to produce n to first order

n = Gn̄(1) = G

CnS(NA − ND)
. (A37)

This allows us to write N̄
0(1)
D , and thus N0

D , from Eq. (A33) as

N0
D = GN̄

0(1)
D = CnDND

QD

G

CnS(NA − ND)
. (A38)

We can therefore calculate the quantum efficiency, and
substituting ζ from Eq. (13) and N2 from Eq. (12), we have
for the quantum efficiency for n type,

η = ζN2NA

(NA − ND)(ND + NS − NA)
. (A39)

This is the same form given in Eq. (29) for n type in
region Ia.
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